Bicuspid Valve Aortopathy: Is It Reasonable to Define a Different Surgical Cutoff Based on Different Aortic Wall Mechanical Properties Compared to Those of the Tricuspid Valve?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Mechanical Property Analysis
2.2. Statistical Analysis
3. Results
3.1. Summary of Overall Patient Characteristics
3.2. Cumulative Mechanical Property Analysis (Primary End Point)
3.3. Comparative (BAV vs. TAV) Mechanical Property Analysis (Secondary End Points)
4. Discussion
Clinical Translation of Ex Vivo Mechanical Tests
5. Conclusions
6. Limitation
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. [29]
Appendix A.1. Mechanical Tests
Appendix A.2. Post-Processing
Appendix A.2.1. Data Analysis
- peak strain, "U, as the maximum strain before specimen rupture;
- peak stress, _U, as the maximum stress before specimen rupture;
- maximum elastic modulus, Emax, as the maximum slope of the stress–strain curve.
Appendix A.2.2. Curve Fitting and Elastic Modulus Computation
References
- Hoffman, J.I.E.; Kaplan, S. The incidence of congenital heart disease. J. Am. Coll. Cardiol. 2002, 39, 1890–1900. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, S.M.; Sanders, S.P.; Khairy, P.; Jenkins, K.J.; Gauvreau, K.; Lang, P.; Simonds, H.; Colan, S.D. Morphology of bicuspid aortic valve in children and adolescents. J. Am. Coll. Cardiol. 2004, 44, 1648–1651. [Google Scholar] [CrossRef] [PubMed]
- Della Corte, A.; Body, S.C.; Booher, A.M.; Schaefers, H.-J.; Milewski, R.K.; Michelena, H.I.; Evangelista, A.; Pibarot, P.; Mathieu, P.; Limongelli, G.; et al. Surgical treatment of bicuspid aortic valve disease: Knowledge gaps and research perspectives. J. Thorac. Cardiovasc. Surg. 2014, 147, 1749–1757.e1. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Roberts, W.C.; Ko, J.M. Frequency by decades of unicuspid, bicuspid, and tricuspid aortic valves in adults having isolated aortic valve replacement for aortic stenosis, with or without associated aortic regurgitation. Circulation 2005, 111, 920–925. [Google Scholar] [CrossRef]
- Sievers, H.-H.; Schmidtke, C. A classification system for the bicuspid aortic valve from 304 surgical specimens. J. Thorac. Cardiovasc. Surg. 2007, 133, 1226–1233. [Google Scholar] [CrossRef]
- Michelena, H.I.; Della Corte, A.; Evangelista, A.; Maleszewski, J.J.; Edwards, W.D.; Roman, M.J.; Devereux, R.B.; Fernández, B.; Asch, F.M.; Barker, A.J.; et al. International consensus statement on nomenclature and classification of the congenital bicuspid aortic valve and its aortopathy, for clinical, surgical, interventional and research purposes. J. Thorac. Cardiovasc. Surg. 2021, 162, e383–e414. [Google Scholar] [CrossRef] [PubMed]
- Verma, S.; Siu, S.C. Aortic Dilatation in Patients with Bicuspid Aortic Valve. N. Engl. J. Med. 2014, 370, 1920–1929. [Google Scholar] [CrossRef] [PubMed]
- Roman, M.J.; Pugh, N.L.; Devereux, R.B.; Eagle, K.A.; Holmes, K.; LeMaire, S.A.; Milewski, R.K.; Morris, S.A.; Prakash, S.K.; Pyeritz, R.E.; et al. Aortic Dilatation Associated with Bicuspid Aortic Valve: Relation to Sex, Hemodynamics, and Valve Morphology (the National Heart Lung and Blood Institute-Sponsored National Registry of Genetically Triggered Thoracic Aortic Aneurysms and Cardiovascular Conditions). Am. J. Cardiol. 2017, 120, 1171–1175. [Google Scholar] [CrossRef]
- Rodríguez-Palomares, J.F.; Dux-Santoy, L.; Guala, A.; Galian-Gay, L.; Evangelista, A. Mechanisms of Aortic Dilation in Patients with Bicuspid Aortic Valve: JACC State-of-the-Art Review. J. Am. Coll. Cardiol. 2023, 82, 448–464. [Google Scholar] [CrossRef]
- Karalko, M.; Stejskal, V.; Dergel, M.; Gofus, J.; Timbilla, S.; Zaloudkova, L.; Zacek, P.; Pojar, M.; Vojacek, J. Histopathological changes in dilated ascending aorta associated with aortic valve cuspidity. Eur. J. Cardio-Thorac. Surg. 2021, 59, 1103–1108. [Google Scholar] [CrossRef] [PubMed]
- Oulego-Erroz, I.; Alonso-Quintela, P.; Mora-Matilla, M.; Minaya, S.G.; de Armentia, S.L.-L. Ascending aorta elasticity in children with isolated bicuspid aortic valve. Int. J. Cardiol. 2013, 168, 1143–1146. [Google Scholar] [CrossRef] [PubMed]
- Frandsen, E.L.; Burchill, L.J.; Khan, A.M.; Broberg, C.S. Ascending aortic size in aortic coarctation depends on aortic valve mor-phology: Understanding the bicuspid valve phenotype. Int. J. Cardiol. 2018, 250, 106–109. [Google Scholar] [CrossRef] [PubMed]
- Tadros, T.M.; Klein, M.D.; Shapira, O.M. Ascending Aortic Dilatation Associated with Bicuspid Aortic Valve: Pathophysiology, Molecular Biology, and Clinical Implications. Circulation 2009, 119, 880–890. [Google Scholar] [CrossRef] [PubMed]
- Michelena, H.I.; Khanna, A.D.; Mahoney, D.; Margaryan, E.; Topilsky, Y.; Suri, R.M.; Eidem, B.; Edwards, W.D.; Sundt, T.M.; Enriquez-Sarano, M. Incidence of Aortic Complications in Patients with Bicuspid Aortic Valves. JAMA 2011, 306, 1104–1112. [Google Scholar] [CrossRef] [PubMed]
- Pasta, S.; Phillippi, J.A.; Gleason, T.G.; Vorp, D.A. Effect of aneurysm on the mechanical dissection properties of the human ascending thoracic aorta. J. Thorac. Cardiovasc. Surg. 2012, 143, 460–467. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Avanzini, A.; Battini, D.; Bagozzi, L.; Bisleri, G. Biomechanical Evaluation of Ascending Aortic Aneurysms. BioMed Res. Int. 2014, 2014, 820385. [Google Scholar] [CrossRef]
- Martufi, G.; Forneris, A.; Appoo, J.; Di Martino, E.S. Is there a role for biomechanics engineering in helping to elucidate the risk profile of the thoracic aorta? Ann. Thorac. Surg. 2016, 101, 390–398. [Google Scholar] [CrossRef]
- Emmott, A.; Garcia, J.; Chung, J.; Lachapelle, K.; El-Hamamsy, I.; Mongrain, R.; Cartier, R.; Leask, R.L. Biomechanics of the Ascending Thoracic Aorta: A Clinical Perspective on Engineering Data. Can. J. Cardiol. 2015, 32, 35–47. [Google Scholar] [CrossRef]
- Pichamuthu, J.E.; Phillippi, J.A.; Cleary, D.A.; Chew, D.W.; Hempel, J.; Vorp, D.A.; Gleason, T.G. Differential Tensile Strength and Collagen Composition in Ascending Aortic Aneurysms by Aortic Valve Phenotype. Ann. Thorac. Surg. 2013, 96, 2147–2154. [Google Scholar] [CrossRef]
- Pham, T.; Martin, C.; Elefteriades, J.; Sun, W. Biomechanical characterization of ascending aortic aneurysm with concomitant bicuspid aortic valve and bovine aortic arch. Acta Biomater. 2013, 9, 7927–7936. [Google Scholar] [CrossRef]
- Forsell, C.; Björck, H.M.; Eriksson, P.; Franco-Cereceda, A.; Gasser, T.C. Biomechanical Properties of the Thoracic Aneurysmal Wall: Differences between Bicuspid Aortic Valve and Tricuspid Aortic Valve Patients. Ann. Thorac. Surg. 2014, 98, 65–71. [Google Scholar] [CrossRef] [PubMed]
- Chung, J.C.; Wong, E.; Tang, M.; Eliathamby, D.; Forbes, T.L.; Butany, J.; Simmons, C.A.; Ouzounian, M. Biomechanics of Aortic Dissection: A Comparison of Aortas Associated with Bicuspid and Tricuspid Aortic Valves. J. Am. Heart Assoc. 2020, 9, e016715. [Google Scholar] [CrossRef] [PubMed]
- Pisano, C.; D’amico, F.; Balistreri, C.R.; Vacirca, S.R.; Nardi, P.; Altieri, C.; Scioli, M.G.; Bertoldo, F.; Santo, L.; Bellisario, D.; et al. Biomechanical properties and histomorphometric features of aortic tissue in patients with or without bicuspid aortic valve. J. Thorac. Dis. 2020, 12, 2304–2316. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Duprey, A.; Trabelsi, O.; Vola, M.; Favre, J.-P.; Avril, S. Biaxial rupture properties of ascending thoracic aortic aneurysms. Acta Biomater. 2016, 42, 273–285. [Google Scholar] [CrossRef] [PubMed]
- Benedik, J.; Pilarczyk, K.; Wendt, D.; Indruch, J.; Flek, R.; Tsagakis, K.; Alaeddine, S.; Jakob, H. Ascending Aortic Wall Cohesion: Comparison of Bicuspid and Tricuspid Valves. Cardiol. Res. Pract. 2012, 2012, 180238. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Otto, C.M.; Nishimura, R.A.; Bonow, R.O.; Carabello, B.A.; Erwin, J.P., III; Gentile, F.; Jneid, H.; Krieger, E.V.; Mack, M.; McLeod, C.; et al. 2020 ACC/AHA Guideline for the Management of Patients with Valvular Heart Disease: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. J. Am. Coll. Cardiol. 2021, 77, e25–e197. [Google Scholar] [CrossRef]
- Borger, M.A.; Fedak, P.W.; Stephens, E.H.; Gleason, T.G.; Girdauskas, E.; Ikonomidis, J.S.; Khoynezhad, A.; Siu, S.C.; Verma, S.; Hope, M.D.; et al. The American Association for Thoracic Surgery consensus guidelines on bicuspid aortic valve–related aortopathy: Full online-only version. J. Thorac. Cardiovasc. Surg. 2018, 156, e41–e74. [Google Scholar] [CrossRef] [PubMed]
- Czerny, M.; Grabenwöger, M.; Berger, T.; Aboyans, V.; Della Corte, A.; Chen, E.P.; Desai, N.D.; Dumfarth, J.; Elefteriades, J.A.; Etz, C.D.; et al. EACTS/STS Guidelines for diagnosing and treating acute and chronic syndromes of the aortic organ. Eur. J. Cardio-Thorac. Surg. 2024, 65, ezad426. [Google Scholar] [CrossRef] [PubMed]
- Ferrara, A.; Morganti, S.; Totaro, P.; Mazzola, A.; Auricchio, F. Human dilated ascending aorta: Mechanical characterization via uniaxial tensile tests. J. Mech. Behav. Biomed. Mater. 2016, 53, 257–271. [Google Scholar] [CrossRef]
- Auricchio, F.; Ferrara, A.; Lanzarone, E.; Morganti, S.; Totaro, P. A Regression Method Based on Noninvasive Clinical Data to Predict the Mechanical Behavior of Ascending Aorta Aneurysmal Tissue. IEEE Trans. Biomed. Eng. 2016, 64, 2607–2617. [Google Scholar] [CrossRef]
- Ferrara, A.; Totaro, P.; Morganti, S.; Auricchio, F. Effects of clinico-pathological risk factors on in-vivo mechanical properties of human dilated ascending aorta. J. Mech. Behav. Biomed. Mater. 2018, 77, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Totaro, P.; Morganti, S.; Auricchio, F.; Pelenghi, S. Aortic wall thickness in dilated ascending aorta: Comparison between tricuspid and bicuspid aortic valve. Arch. Cardiovasc. Dis. 2023, 116, 498–505. [Google Scholar] [CrossRef] [PubMed]
- Benedik, J.; Dohle, D.S.; Wendt, D.; Pilarczyk, K.; Price, V.; Mourad, F.; Zykina, E.; Stebner, F.; Tsagakis, K.; Jakob, H. Comparison of ascending aortic cohesion between patients with bicuspid aortic valve stenosis and regurgitation. Eur. J. Cardio-Thorac. Surg. 2014, 46, e89–e93. [Google Scholar] [CrossRef] [PubMed]
- Kreibich, M.; Rylski, B.; Czerny, M.; Pingpoh, C.; Siepe, M.; Beyersdorf, F.; Khurshan, F.; Vallabhajosyula, P.; Szeto, W.Y.; Bavaria, J.E.; et al. Type A Aortic Dissection in Patients with Bicuspid Aortic Valve Aortopathy. Ann. Thorac. Surg. 2020, 109, 94–100. [Google Scholar] [CrossRef] [PubMed]
- Brecs, I.; Skuja, S.; Kasyanov, V.; Groma, V.; Kalejs, M.; Svirskis, S.; Ozolanta, I.; Stradins, P. From Biomechanical Properties to Morphological Variations: Exploring the Interplay between Aortic Valve Cuspidity and Ascending Aortic Aneurysm. J. Clin. Med. 2024, 13, 4225. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Deveja, R.P.; Iliopoulos, D.C.; Kritharis, E.P.; Angouras, D.C.; Sfyris, D.; Papadodima, S.A.; Sokolis, D.P. Effect of Aneurysm and Bicuspid Aortic Valve on Layer-Specific Ascending Aorta Mechanics. Ann. Thorac. Surg. 2018, 106, 1692–1701. [Google Scholar] [CrossRef] [PubMed]
- Trabelsi, O.; Davis, F.M.; Rodriguez-Matas, J.F.; Duprey, A.; Avril, S. Patient specific stress and rupture analysis of ascending thoracic aneurysms. J. Biomech. 2015, 48, 1836–1843. [Google Scholar] [CrossRef] [PubMed]
- Angouras, D.C.; Kritharis, E.P.; Sokolis, D.P. Regional distribution of delamination strength in ascending thoracic aortic aneurysms. J. Mech. Behav. Biomed. Mater. 2019, 98, 58–70. [Google Scholar] [CrossRef] [PubMed]
- Salmasi, M.Y.; Sasidharan, S.; Frattolin, J.; Edgar, L.; Stock, U.; Athanasiou, T.; Moore, J., Jr. Regional variation in biomechanical properties of ascending thoracic aortic aneurysms. Eur. J. Cardio-Thorac. Surg. 2022, 62, ezac392. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tong, J.; Abudupataer, M.; Xu, X.; Zhang, Z.; Li, J.; Lai, H.; Wang, C.; Zhu, K. Gender differences in the dissection properties of ascending thoracic aortic aneurysms. Interact. Cardiovasc. Thorac. Surg. 2022, 35, ivac068. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Emmott, A.; Alzahrani, H.; Alreshidan, M.; Therrien, J.; Leask, R.L.; Lachapelle, K. Transesophageal echocardiographic strain imaging predicts aortic biomechanics: Beyond diameter. J. Thorac. Cardiovasc. Surg. 2018, 156, 503–512.e1. [Google Scholar] [CrossRef] [PubMed]
- Markodimitrakis, E.; Lin, S.; Koutoulakis, E.; Marín-Castrillón, D.M.; Sáez, F.A.T.; Leclerc, S.; Bernard, C.; Boucher, A.; Presles, B.; Bouchot, O.; et al. Comparison of In-Vivo and Ex-Vivo Ascending Aorta Elastic Properties through Automatic Deep Learning Segmentation of Cine-MRI and Biomechanical Testing. J. Clin. Med. 2023, 12, 402. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
Patients Characteristics | Overall (n.110) | BAV (n.33) | TAV (n.77) | p |
---|---|---|---|---|
Age (years) >70 | 63 ± 14 39 (35) | 58 ± 15 6 (18) | 64 ± 13 33 (42) | 0.0294 0.0164 |
Gender Male Female | 74 (67) 36 (23) | 22 (66) 11 (34) | 52 (67) 25 (23) | 0.898 |
Weight (Kg) | 76 ± 15 | 74 ± 16 | 76 ± 15 | 0.409 |
Height (m) | 1.70 ± 0.09 | 1.68 ± 0.09 | 1.71 ± 0.10 | 0.156 |
BSA (m2) | 1.88 ± 0.22 | 1.85 ± 0.23 | 1.90 ± 0.22 | 0.321 |
BMI >28 | 26 ± 4 33 (30) | 25 ± 4 6 (18) | 26 ± 4 27 (35) | 0.837 0.111 |
Hypertension | 72 (66) | 20 (60) | 52 (67) | 0.510 |
Expected Aortic Diameter (mm) Calculated Aortic Ratio | 3.31 ± 0.16 1.60 ± 0.20 | 3.29 ± 0.17 1.58 ± 0.14 | 3.32 ± 0.16 1.61 ± 0.23 | 0.316 0.424 |
Max Diameter (mm) >50 mm | 53 ± 7 66 (60) | 52 ± 4 20 (60) | 54 ± 7 46 (59) | 0.223 0.924 |
Indexed Diameter (mm/m2) >27.5 mm/m2 | 28.5 ± 4.7 63 (57) | 28.4 ± 3.8 17 (51) | 28.5 ± 5.1 46 (59) | 0.864 0.528 |
Area/Height (cm2/m) >10 cm2/m | 13.2 ± 3.4 99 (90) | 12.6 ± 2.0 30 (90) | 13.4 ± 3.9 69 (89) | 0.287 0.941 |
Area/BSA (cm2/m2) >10 cm2/m2 | 12.0 ± 3.5 79 (71) | 11.6 ± 2.2 24 (72) | 12.2 ± 3.9 55 (71) | 0.404 0.981 |
AAP Phenotype RP Phenotype | 78 (70) 32 (30) | 27 (81) 6 (19) | 51 (66) 26 (34) | 0.113 |
Combined AVR Aortic Regurgitation Aortic Stenosis | 72 (65) 52 (70) 20 (30) | 27 (81) 10 (37) 17 (63) | 45 (58) 42 (93) 3 (7) | 0.027 0.001 |
Aortic Specimens Characteristics | Overall (n.462) | BAV (n.138) | TAV (n.324) | p |
Anterior Aortic Wall Posterior Aortic wall | 313 (68) 149 (32) | 103 (74) 35 (26) | 210 (64) 114 (36) | 0.051 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Totaro, P.; Caimi, A.; Formenton, G.; Musto, M.; Schembri, M.; Morganti, S.; Pelenghi, S.; Auricchio, F. Bicuspid Valve Aortopathy: Is It Reasonable to Define a Different Surgical Cutoff Based on Different Aortic Wall Mechanical Properties Compared to Those of the Tricuspid Valve? J. Cardiovasc. Dev. Dis. 2024, 11, 312. https://doi.org/10.3390/jcdd11100312
Totaro P, Caimi A, Formenton G, Musto M, Schembri M, Morganti S, Pelenghi S, Auricchio F. Bicuspid Valve Aortopathy: Is It Reasonable to Define a Different Surgical Cutoff Based on Different Aortic Wall Mechanical Properties Compared to Those of the Tricuspid Valve? Journal of Cardiovascular Development and Disease. 2024; 11(10):312. https://doi.org/10.3390/jcdd11100312
Chicago/Turabian StyleTotaro, Pasquale, Alessandro Caimi, Giulia Formenton, Martina Musto, Martina Schembri, Simone Morganti, Stefano Pelenghi, and Ferdinando Auricchio. 2024. "Bicuspid Valve Aortopathy: Is It Reasonable to Define a Different Surgical Cutoff Based on Different Aortic Wall Mechanical Properties Compared to Those of the Tricuspid Valve?" Journal of Cardiovascular Development and Disease 11, no. 10: 312. https://doi.org/10.3390/jcdd11100312
APA StyleTotaro, P., Caimi, A., Formenton, G., Musto, M., Schembri, M., Morganti, S., Pelenghi, S., & Auricchio, F. (2024). Bicuspid Valve Aortopathy: Is It Reasonable to Define a Different Surgical Cutoff Based on Different Aortic Wall Mechanical Properties Compared to Those of the Tricuspid Valve? Journal of Cardiovascular Development and Disease, 11(10), 312. https://doi.org/10.3390/jcdd11100312