Association of Cardiovascular Risk Factors and Coronary Calcium Burden with Epicardial Adipose Tissue Volume Obtained from PET–CT Imaging in Oncological Patients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. PET/CT Imaging
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer statistics, 2022. CA Cancer J. Clin. 2022, 72, 7–33. [Google Scholar] [CrossRef]
- Martin, S.S.; Aday, A.W.; Almarzooq, Z.I.; Anderson, C.A.M.; Arora, P.; Avery, C.L.; Baker-Smith, C.M.; Barone Gibbs, B.; Beaton, A.Z.; Boehme, A.K.; et al. 2024 Heart Disease and Stroke Statistics: A Report of US and Global Data From the American Heart Association. Circulation 2024, 149, 8. [Google Scholar] [CrossRef]
- Velusamy, R.; Nolan, M.; Murphy, A.; Thavendiranathan, P.; Marwick, T.H. Screening for Coronary Artery Disease in Cancer Survivors. JACC CardioOncology 2023, 5, 22–38. [Google Scholar] [CrossRef]
- Megna, R.; Petretta, M.; Nappi, C.; Assante, R.; Zampella, E.; Gaudieri, V.; Mannarino, T.; D’Antonio, A.; Green, R.; Cantoni, V.; et al. Age-Specific Cardiovascular Risk Factors for Major Adverse Cardiac Events in Patients Undergoing Myocardial Perfusion Imaging. J. Cardiovasc. Dev. Dis. 2023, 10, 395. [Google Scholar] [CrossRef]
- O’Sullivan, J.W.; Ashley, E.A.; Elliott, P.M. Polygenic risk scores for the prediction of cardiometabolic disease. Eur. Heart J. 2023, 44, 89–99. [Google Scholar] [CrossRef]
- Mensah, G.A.; Brown, D.W.; Croft, J.B.; Greenlund, K.J. Major Coronary Risk Factors and Death from Coronary Heart Disease. Am. J. Prev. Med. 2005, 29, 68–74. [Google Scholar] [CrossRef]
- Budoff, M.J.; Young, R.; Burke, G.; Jeffrey Carr, J.; Detrano, R.C.; Folsom, A.R.; Kronmal, R.; Lima, J.A.C.; Liu, K.J.; McClelland, R.L.; et al. Ten-year association of coronary artery calcium with atherosclerotic cardiovascular disease (ASCVD) events: The multi-ethnic study of atherosclerosis (MESA). Eur. Heart J. 2018, 39, 2401–2408. [Google Scholar] [CrossRef]
- Arad, Y.; Goodman, K.J.; Roth, M.; Newstein, D.; Guerci, A.D. Coronary calcification, coronary disease risk factors, C-reactive protein, and atherosclerotic cardiovascular disease events: The St. Francis Heart Study. J. Am. Coll. Cardiol. 2005, 46, 158–165. [Google Scholar] [CrossRef]
- Lyon, A.R.; López-Fernández, T.; Couch, L.S.; Asteggiano, R.; Aznar, M.C.; Bergler-Klein, J.; Boriani, G.; Cardinale, D.; Cordoba, R.; Cosyns, B.; et al. 2022 ESC Guidelines on cardio-oncology developed in collaboration with the European Hematology Association (EHA), the European Society for Therapeutic Radiology and Oncology (ESTRO) and the International Cardio-Oncology Society (IC-OS). Eur. Heart J. 2022, 43, 4229–4361. [Google Scholar] [CrossRef]
- Bell, K.J.L.; White, S.; Hassan, O.; Zhu, L.; Scott, A.M.; Clark, J.; Glasziou, P. Evaluation of the Incremental Value of a Coronary Artery Calcium Score Beyond Traditional Cardiovascular Risk Assessment: A Systematic Review and Meta-analysis. JAMA Intern Med. 2022, 182, 634–642. [Google Scholar] [CrossRef]
- Iacobellis, G. Epicardial adipose tissue in contemporary cardiology. Nat. Rev. Cardiol. 2022, 19, 593–606. [Google Scholar] [CrossRef]
- Nappi, C.; Ponsiglione, A.; Acampa, W.; Gaudieri, V.; Zampella, E.; Assante, R.; Cuocolo, R.; Mannarino, T.; Dell’Aversana, S.; Petretta, M.; et al. Relationship between epicardial adipose tissue and coronary vascular function in patients with suspected coronary artery disease and normal myocardial perfusion imaging. Eur. Heart J. Cardiovasc. Imaging 2019, 20, 1379–1387. [Google Scholar] [CrossRef]
- Miller, R.J.H.; Shanbhag, A.; Killekar, A.; Lemley, M.; Bednarski, B.; Van Kriekinge, S.D.; Kavanagh, P.B.; Feher, A.; Miller, E.J.; Einstein, A.J.; et al. AI-derived epicardial fat measurements improve cardiovascular risk prediction from myocardial perfusion imaging. NPJ Digit. Med. 2024, 7, 24. [Google Scholar] [CrossRef]
- Nappi, C.; Megna, R.; Volpe, F.; Ponsiglione, A.; Caiazzo, E.; Piscopo, L.; Mainolfi, C.G.; Vergara, E.; Imbriaco, M.; Klain, M.; et al. Quantification of Coronary Artery Atherosclerotic Burden and Muscle Mass: Exploratory Comparison of Two Freely Available Software Programs. Appl. Sci. 2022, 12, 5468. [Google Scholar] [CrossRef]
- Si, N.; Shi, K.; Li, N.; Dong, X.; Zhu, C.; Guo, Y.; Hu, J.; Cui, J.; Yang, F.; Zhang, T. Identification of patients with acute myocardial infarction based on coronary CT angiography: The value of pericoronary adipose tissue radiomics. Eur. Radiol. 2022, 32, 6868–6877. [Google Scholar] [CrossRef]
- Lee, K.C.; Yong, H.S.; Lee, J.; Kang, E.Y.; Na, J.O. Is the epicardial adipose tissue area on non-ECG gated low-dose chest CT useful for predicting coronary atherosclerosis in an asymptomatic population considered for lung cancer screening? Eur. Radiol. 2019, 29, 932–940. [Google Scholar] [CrossRef]
- Monti, C.B.; Schiaffino, S.; Galimberti Ortiz, M.D.M.; Capra, D.; Zanardo, M.; De Benedictis, E.; Luporini, A.G.; Spagnolo, P.; Secchi, F.; Sardanelli, F. Potential role of epicardial adipose tissue as a biomarker of anthracycline cardiotoxicity. Insights Imaging 2021, 12, 161. [Google Scholar] [CrossRef]
- Esposito, F.; Mezzanotte, V.; Tesei, C.; Luciano, A.; Gigliotti, P.E.; Nunzi, A.; Secchi, R.; Angeloni, C.; Pitaro, M.; Meconi, F.; et al. CT Images in Follicular Lymphoma: Changes after Treatment Are Predictive of Cardiac Toxicity in Patients Treated with Anthracycline-Based or R-B Regimens. Cancers 2024, 16, 563. [Google Scholar] [CrossRef]
- Figtree, G.A.; Vernon, S.T.; Hadziosmanovic, N.; Sundström, J.; Alfredsson, J.; Arnott, C.; Delatour, V.; Leósdóttir, M.; Hagström, E. Mortality in STEMI patients without standard modifiable risk factors: A sex-disaggregated analysis of SWEDEHEART registry data. Lancet 2021, 397, 1085–1094. [Google Scholar] [CrossRef]
- Williams, B.; Mancia, G.; Spiering, W.; Agabiti Rosei, E.; Azizi, M.; Burnier, M.; Clement, D.L.; Coca, A.; de Simone, G.; Dominiczak, A.; et al. 2018 ESC/ESH Guidelines for the management of arterial hypertension. Eur. Heart J. 2018, 39, 3021–3104. [Google Scholar] [CrossRef]
- Scheuner, M.T.; Whitworth, W.C.; McGruder, H.; Yoon, P.W.; Khoury, M.J. Expanding the definition of a positive family history for early-onset coronary heart disease. Genet. Med. 2006, 8, 491–501. [Google Scholar] [CrossRef]
- Gibbons, R.J.; Balady, G.J.; Bricker, J.T.; Chaitman, B.R.; Fletcher, G.F.; Froelicher, V.F.; Mark, D.B.; McCallister, B.D.; Mooss, A.N.; O’Reilly, M.G.; et al. ACC/AHA 2002 guideline update for exercise testing: Summary article. J. Am. Coll. Cardiol. 2002, 40, 1531–1540. [Google Scholar] [CrossRef]
- Boellaard, R.; Delgado-Bolton, R.; Oyen, W.J.; Giammarile, F.; Tatsch, K.; Eschner, W.; Verzijlbergen, F.J.; Barrington, S.F.; Pike, L.C.; Weber, W.A.; et al. FDG PET/CT: EANM procedure guidelines for tumour imaging: Version 2.0. Eur. J. Nucl. Med. Mol. Imaging 2015, 42, 328–354. [Google Scholar] [CrossRef]
- Petranović Ovčariček, P.; Giovanella, L.; Carrió Gasset, I.; Hindié, E.; Huellner, M.W.; Luster, M.; Piccardo, A.; Weber, T.; Talbot, J.N.; Verburg, F.A. The EANM practice guidelines for parathyroid imaging. Eur. J. Nucl. Med. Mol. Imaging 2021, 48, 2801–2822. [Google Scholar] [CrossRef]
- Megna, R.; Petretta, M.; Assante, R.; Zampella, E.; Nappi, C.; Gaudieri, V.; Mannarino, T.; D’Antonio, A.; Green, R.; Cantoni, V.; et al. A Comparison among Different Machine Learning Pretest Approaches to Predict Stress-Induced Ischemia at PET/CT Myocardial Perfusion Imaging. Comput. Math. Methods Med. 2021, 2021, 3551756. [Google Scholar] [CrossRef]
- Agatston, A.S.; Janowitz, W.R.; Hildner, F.J.; Zusmer, N.R.; Viamonte, M.; Detrano, R. Quantification of coronary artery calcium using ultrafast computed tomography. J. Am. Coll. Cardiol. 1990, 15, 827–832. [Google Scholar] [CrossRef]
- Yoshizumi, T.; Nakamura, T.; Yamane, M.; Islam, A.H.; Menju, M.; Yamasaki, K.; Arai, T.; Kotani, K.; Funahashi, T.; Yamashita, S.; et al. Abdominal Fat: Standardized Technique for Measurement at CT. Radiology 1999, 211, 283–286. [Google Scholar] [CrossRef]
- Nardone, O.M.; Ponsiglione, A.; de Sire, R.; Calabrese, G.; Liuzzi, R.; Testa, A.; Guarino, A.D.; Olmo, O.; Rispo, A.; Camera, L.; et al. Impact of Sarcopenia on Clinical Outcomes in a Cohort of Caucasian Active Crohn’s Disease Patients Undergoing Multidetector CT-Enterography. Nutrients 2022, 14, 3460. [Google Scholar] [CrossRef]
- Wang, T.D.; Lee, W.J.; Shih, F.Y.; Huang, C.H.; Chang, Y.C.; Chen, W.J.; Lee, Y.T.; Chen, M.F. Relations of Epicardial Adipose Tissue Measured by Multidetector Computed Tomography to Components of the Metabolic Syndrome Are Region-Specific and Independent of Anthropometric Indexes and Intraabdominal Visceral Fat. J. Clin. Endocrinol. Metab. 2009, 94, 662–669. [Google Scholar] [CrossRef]
- Boccalini, S.; Teulade, M.; Paquet, E.; Si-Mohamed, S.; Rapallo, F.; Moreau-Triby, C.; Charrière, S.; Mewton, N.; Boussel, L.; Bergerot, C.; et al. Silent myocardial infarction fatty scars detected by coronary calcium score CT scan in diabetic patients without history of coronary heart disease. Eur. Radiol. 2024, 34, 214–225. [Google Scholar] [CrossRef]
- Greenland, P.; LaBree, L.; Azen, S.P.; Doherty, T.M.; Detrano, R.C. Coronary Artery Calcium Score Combined With Framingham Score for Risk Prediction in Asymptomatic Individuals. JAMA 2004, 291, 210–215. [Google Scholar] [CrossRef]
- Acquah, I.; Cainzos-Achirica, M.; Taha, M.B.; Lahan, S.; Blaha, M.J.; Al-Kindi, S.G.; Khan, S.U.; Sharma, G.; Budoff, M.J.; Nasir, K. Social disadvantage, coronary artery calcium, and their interplay in the prediction of atherosclerotic cardiovascular disease events. Atherosclerosis 2024, 388, 117355. [Google Scholar] [CrossRef]
- McClelland, R.L.; Nasir, K.; Budoff, M.; Blumenthal, R.S.; Kronmal, R.A. Arterial Age as a Function of Coronary Artery Calcium (from the Multi-Ethnic Study of Atherosclerosis [MESA]). Am. J. Cardiol. 2009, 103, 59–63. [Google Scholar] [CrossRef]
- Nappi, C.; Gaudieri, V.; Acampa, W.; Arumugam, P.; Assante, R.; Zampella, E.; Mannarino, T.; Mainolfi, C.G.; Imbriaco, M.; Petretta, M.; et al. Coronary vascular age: An alternate means for predicting stress-induced myocardial ischemia in patients with suspected coronary artery disease. J. Nucl. Cardiol. 2019, 26, 1348–1355. [Google Scholar] [CrossRef]
- Jensen, S.M.; Prescott, E.I.B.; Abdulla, J. The prognostic value of coronary flow reserve in patients with non-obstructive coronary artery disease and microvascular dysfunction: A systematic review and meta-analysis with focus on imaging modality and sex difference. Int. J. Cardiovasc. Imaging 2023, 39, 2545–2556. [Google Scholar] [CrossRef]
- Ahmed, A.I.; Saad, J.M.; Han, Y.; Malahfji, M.; Al-Mallah, M.H. Incremental prognostic value of positron emission tomography derived left ventricular mass. J. Nucl. Cardiol. 2023, 30, 254–263. [Google Scholar] [CrossRef]
- Akşit, E.; Kırılmaz, B.; Özdemir, S. The importance of myocardial perfusion imaging in patients with ischemia and nonobstructive coronary arteries. J. Nucl. Cardiol. 2023, 33, 101791. [Google Scholar] [CrossRef]
- Bakkum, M.J.; Danad, I.; Romijn, M.A.; Stuijfzand, W.J.; Leonora, R.M.; Tulevski, I.I.; Somsen, G.A.; Lammertsma, A.A.; van Kuijk, C.; van Rossum, A.C.; et al. The impact of obesity on the relationship between epicardial adipose tissue, left ventricular mass and coronary microvascular function. Eur. J. Nucl. Med. Mol. Imaging 2015, 42, 1562–1573. [Google Scholar] [CrossRef]
- Nerlekar, N.; Muthalaly, R.G.; Wong, N.; Thakur, U.; Wong, D.T.L.; Brown, A.J.; Marwick, T.H. Association of Volumetric Epicardial Adipose Tissue Quantification and Cardiac Structure and Function. J. Am. Heart Assoc. 2018, 7, e009975. [Google Scholar] [CrossRef]
- Cosson, E.; Nguyen, M.T.; Rezgani, I.; Berkane, N.; Pinto, S.; Bihan, H.; Tatulashvili, S.; Taher, M.; Sal, M.; Soussan, M.; et al. Epicardial adipose tissue volume and myocardial ischemia in asymptomatic people living with diabetes: A cross-sectional study. Cardiovasc. Diabetol. 2021, 20, 224. [Google Scholar] [CrossRef]
- Wang, C.P.; Hsu, H.L.; Hung, W.C.; Yu, T.H.; Chen, Y.H.; Chiu, C.A.; Lu, L.F.; Chung, F.M.; Shin, S.J.; Lee, Y.J. Increased epicardial adipose tissue (EAT) volume in type 2 diabetes mellitus and association with metabolic syndrome and severity of coronary atherosclerosis. Clin. Endocrinol. 2009, 70, 876–882. [Google Scholar] [CrossRef]
- Wang, X.; Tan, Y.; Liu, D.; Shen, H.; Deng, Y.; Tan, Y.; Wang, L.; Zhang, Y.; Ma, X.; Zeng, X.; et al. Chemotherapy-associated steatohepatitis was concomitant with epicardial adipose tissue volume increasing in breast cancer patients who received neoadjuvant chemotherapy. Eur. Radiol. 2022, 32, 4898–4908. [Google Scholar] [CrossRef]
- Verdecchia, A.; Guzzinati, S.; Francisci, S.; De Angelis, R.; Bray, F.; Allemani, C.; Tavilla, A.; Santaquilani, M.; Sant, M. Survival trends in European cancer patients diagnosed from 1988 to 1999. Eur. J. Cancer 2009, 45, 1042–1066. [Google Scholar] [CrossRef]
- Herrmann, J.; Lerman, A.; Sandhu, N.P.; Villarraga, H.R.; Mulvagh, S.L.; Kohli, M. Evaluation and Management of Patients With Heart Disease and Cancer: Cardio-Oncology. Mayo Clin. Proc. 2014, 89, 1287–1306. [Google Scholar] [CrossRef]
- Abbema, D.V.; Vissers, P.; de Vos-Geelen, J.; Lemmens, V.; Janssen-Heijnen, M.; Tjan-Heijnen, V. Trends in Overall Survival and Treatment Patterns in Two Large Population-Based Cohorts of Patients with Breast and Colorectal Cancer. Cancers 2019, 11, 1239. [Google Scholar] [CrossRef]
- Available online: https://cancercontrol.cancer.gov/ocs/statistics (accessed on 15 February 2024).
- Choi, D.; Choi, S.; Kim, K.H.; Kim, K.; Chang, J.; Kim, S.M.; Kim, S.R.; Cho, Y.; Lee, G.; Son, J.S.; et al. Combined Associations of Physical Activity and Particulate Matter With Subsequent Cardiovascular Disease Risk Among 5-Year Cancer Survivors. J. Am. Heart Assoc. 2022, 11, e022806. [Google Scholar] [CrossRef]
- Yang, L.; Zhang, N.; Yue, Q.; Song, W.; Zheng, Y.; Huang, S.; Qiu, J.; Tse, G.; Li, G.; Wu, S.; et al. Long-Term Atherosclerotic Cardiovascular Disease Risk in Patients With Cancer: A Population-Based Study. Curr. Probl. Cardiol. 2023, 48, 101693. [Google Scholar] [CrossRef]
- Raisi-Estabragh, Z.; Kobo, O.; Freeman, P.; Petersen, S.E.; Kolman, L.; Miller, R.J.H.; Roguin, A.; Van Spall, H.G.C.; Vuong, J.; Yang, E.H.; et al. Temporal trends in disease-specific causes of cardiovascular mortality amongst patients with cancer in the USA between 1999 and 2019. Eur. Heart J. Qual. Care Clin. Outcomes 2022, 9, 54–63. [Google Scholar] [CrossRef]
- Sturgeon, K.M.; Deng, L.; Bluethmann, S.M.; Zhou, S.; Trifiletti, D.M.; Jiang, C.; Kelly, S.P.; Zaorsky, N.G. A population-based study of cardiovascular disease mortality risk in US cancer patients. Eur. Heart J. 2019, 40, 3889–3897. [Google Scholar] [CrossRef]
- Zhang, S.; Liu, L.; Shi, S.; He, H.; Shen, Q.; Wang, H.; Qin, S.; Chang, J.; Zhong, R. Bidirectional Association Between Cardiovascular Disease and Lung Cancer in a Prospective Cohort Study. J. Thorac. Oncol. 2024, 19, 80–93. [Google Scholar] [CrossRef]
- Barish, R.; Lynce, F.; Unger, K.; Barac, A. Management of Cardiovascular Disease in Women With Breast Cancer. Circulation 2019, 139, 1110–1120. [Google Scholar] [CrossRef]
- Melson, J.W.; Koethe, B.; Mohanty, S.; Babroudi, S.; Bao, C.; Chunduru, A.; Dwaah, H.; Finn, M.; Jain, A.; Lalla, M.; et al. Atherosclerotic Cardiovascular Disease Risk and Longitudinal Risk Factor Management Among Patients With Breast Cancer. Clin. Breast Cancer 2024, 24, e71–e79.e4. [Google Scholar] [CrossRef]
- El-Sabbagh, A.; Osman, M.M.; Fesler, M.; Helmy, T.; Parker, N.; Muzaffar, R. Chemotherapy-induced coronary arteries calcium score deterioration as detected with unenhanced CT portion of FDG PET/CT. Am. J. Nucl. Med. Mol. Imaging 2018, 8, 303–310. [Google Scholar]
- Shen, H.; Lian, Y.; Yin, J.; Zhu, M.; Yang, C.; Tu, C.; Peng, Y.; Li, X.; Zhang, J. Cardiovascular Risk Stratification by Automatic Coronary Artery Calcium Scoring on Pretreatment Chest Computed Tomography in Diffuse Large B-Cell Lymphoma Receiving Anthracycline-Based Chemotherapy: A Multicenter Study. Circ. Cardiovasc. Imaging 2023, 16, e014829. [Google Scholar] [CrossRef]
- Emami, H.; Singh, P.; MacNabb, M.; Vucic, E.; Lavender, Z.; Rudd, J.H.; Fayad, Z.A.; Lehrer-Graiwer, J.; Korsgren, M.; Figueroa, A.L.; et al. Splenic metabolic activity predicts risk of future cardiovascular events: Demonstration of a cardiosplenic axis in humans. JACC Cardiovasc. Imaging 2015, 8, 121–130. [Google Scholar] [CrossRef]
- Rämö, J.T.; Kany, S.; Hou, C.R.; Friedman, S.F.; Roselli, C.; Nauffal, V.; Koyama, S.; Karjalainen, J.; Maddah, M.; Palotie, A.; et al. Cardiovascular Significance and Genetics of Epicardial and Pericardial Adiposity. JAMA Cardiol. 2024, 9, 418–427. [Google Scholar] [CrossRef]
- Sarwar, A.; Shaw, L.J.; Shapiro, M.D.; Blankstein, R.; Hoffman, U.; Cury, R.C.; Abbara, S.; Brady, T.J.; Budoff, M.J.; Blumenthal, R.S.; et al. Diagnostic and prognostic value of absence of coronary artery calcification. JACC Cardiovasc. Imaging 2009, 2, 675–688. [Google Scholar] [CrossRef]
- Hashemy, H.; Nguyen, A.; Khafagy, R.; Roshandel, D.; Paterson, A.D.; Dash, S. Analyses of potential causal contributors to increased waist/hip ratio-associated cardiometabolic disease: A combined and sex-stratified Mendelian randomization study. Diabetes Obes. Metab. 2024, 26, 2284–2291. [Google Scholar] [CrossRef]
Tumor | Patients (n = 109) |
---|---|
Hematological, n (%) | 43 (39) |
Urogenital, n (%) | 22 (21) |
Lung, n (%) | 13 (12) |
Breast, n (%) | 8 (7) |
Gastrointestinal, n (%) | 7 (6) |
Thyroid, n (%) | 6 (6) |
Melanoma, n (%) | 3 (3) |
Others, n (%) | 7 (6) |
All Patients (n = 109) | Without CAC (n = 38) | With CAC (n = 71) | p Value | |
---|---|---|---|---|
Age (years) | 58 ± 5 | 45 ± 17 | 64 ± 10 | <0.001 |
Male gender, n (%) | 53 (49) | 19 (50) | 37 (52) | 0.83 |
Diabetes, n (%) | 10 (9) | 2 (5) | 8 (11) | 0.30 |
Hypertension, n (%) | 47 (43) | 9 (23) | 38 (51) | <0.005 |
Hypercholesterolemia, n (%) | 18 (17) | 4 (11) | 14 (20) | 0.22 |
Smoking, n (%) | 34 (31) | 9 (23) | 25 (35) | 0.22 |
Family history of CAD, n (%) | 18 (17) | 6 (16) | 15 (21) | 0.50 |
Body mass index (kg/m2) | 26.0 ± 4.1 | 25.6 ± 4.5 | 25.6 ± 4.5 | 0.99 |
Univariable Analysis | Multivariable Analysis | |||||
---|---|---|---|---|---|---|
SE | ß Coefficient | p Value | SE | ß Coefficient | p Value | |
Age | 0.27 | 0.47 | <0.001 | 0.32 | 0.45 | <0.001 |
Male gender | 9.3 | −0.12 | 0.21 | |||
Body mass index | 0.99 | 0.31 | <0.001 | 0.9 | 0.06 | <0.001 |
Diabetes | 16.1 | 0.13 | 0.18 | |||
Hypertension | 9.1 | 0.28 | 0.003 | 8.7 | 0.30 | 0.61 |
Hypercholesterolemia | 12.4 | 0.17 | 0.70 | |||
Smoking | 10 | 0.14 | 0.14 | |||
Family history of CAD | 11.8 | 0.11 | 0.24 | |||
Ln(CAC +1) | 1.67 | 0.35 | <0.001 | 1.83 | 0.12 | 0.25 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nappi, C.; Ponsiglione, A.; Vallone, C.; Lepre, R.; Basile, L.; Green, R.; Cantoni, V.; Mainolfi, C.G.; Imbriaco, M.; Petretta, M.; et al. Association of Cardiovascular Risk Factors and Coronary Calcium Burden with Epicardial Adipose Tissue Volume Obtained from PET–CT Imaging in Oncological Patients. J. Cardiovasc. Dev. Dis. 2024, 11, 331. https://doi.org/10.3390/jcdd11100331
Nappi C, Ponsiglione A, Vallone C, Lepre R, Basile L, Green R, Cantoni V, Mainolfi CG, Imbriaco M, Petretta M, et al. Association of Cardiovascular Risk Factors and Coronary Calcium Burden with Epicardial Adipose Tissue Volume Obtained from PET–CT Imaging in Oncological Patients. Journal of Cardiovascular Development and Disease. 2024; 11(10):331. https://doi.org/10.3390/jcdd11100331
Chicago/Turabian StyleNappi, Carmela, Andrea Ponsiglione, Carlo Vallone, Roberto Lepre, Luigi Basile, Roberta Green, Valeria Cantoni, Ciro Gabriele Mainolfi, Massimo Imbriaco, Mario Petretta, and et al. 2024. "Association of Cardiovascular Risk Factors and Coronary Calcium Burden with Epicardial Adipose Tissue Volume Obtained from PET–CT Imaging in Oncological Patients" Journal of Cardiovascular Development and Disease 11, no. 10: 331. https://doi.org/10.3390/jcdd11100331
APA StyleNappi, C., Ponsiglione, A., Vallone, C., Lepre, R., Basile, L., Green, R., Cantoni, V., Mainolfi, C. G., Imbriaco, M., Petretta, M., & Cuocolo, A. (2024). Association of Cardiovascular Risk Factors and Coronary Calcium Burden with Epicardial Adipose Tissue Volume Obtained from PET–CT Imaging in Oncological Patients. Journal of Cardiovascular Development and Disease, 11(10), 331. https://doi.org/10.3390/jcdd11100331