The Role of Risk Factor Modification in Atrial Fibrillation: Outcomes in Catheter Ablation
Abstract
:1. Introduction
2. Early Detection and Treatment of Risk Factors
3. Hypertension
4. Obesity
Study | Year | Patient Number | Median Follow-Up (Months) | Study Design | Intervention | Results |
---|---|---|---|---|---|---|
ARREST-AF | 2014 | 149 | 42 | Prospective observational cohort study | Risk factor management was offered to patients with BMI > 27 kg/m2 and one other cardiac risk factor, after AF ablation. Target of weight loss > 10% or BMI < 27 kg/m2. | AF frequency, duration, symptoms, and symptom severity was significantly reduced in the risk factor management group (p < 0.001). Arrhythmia-free survival following a single procedure of AADs was also greater in the risk factor management group compared to the control group (p < 0.001) [43]. |
Glover et al. | 2016 | 3333 | 12 | Prospective observational cohort study | Evaluation of BMI impact on AF recurrence at 12 months following AF ablation | Patients with BMI ≥ 30 kg/m2 at baseline had a higher recurrence of AF following ablation [37]. |
Sivasambu et al. | 2017 | 701 | 12 | Prospective observational cohort study | Impact of obesity on patients undergoing PVI AF ablation. | Arrhythmia recurrence was significantly associated with increasing BMI with 39.9% in the control group with higher rates in all-high BMI groups (overweight, 51.3%; obese, 57%; morbidly obese, 58.1%; p = 0.007). Higher BMI was also associated with increased radiofrequency application time (p ≤ 0.001) and incidence of persistent AF (p ≤ 0.001) [39]. |
Mohanty et al. | 2018 | 90 | 12 | Prospective observational cohort study | Evaluation of weight loss interventions in patients with long-standing persistent AF versus control group undergoing AF ablation (PVI with posterior wall isolation and non-PV triggers). | Weight reduction improved quality of life but there was no improvement in symptom severity or long-term ablation outcomes. At 12 months follow up, 63.8% of patients in group 1 were arrhythmia free compared to 59.3% in group 2 off AADs (p = 0.68) [41]. |
SORT-AF | 2021 | 133 | 12 | Randomised control trial | Obese patients undergoing AF ablation were randomised to a structured weight loss programme or usual care to assess the impact of weight reduction on AF outcomes. All patients underwent OSA screening and ILR implantation. | The primary endpoint was AF burden between 3 and 12 months after ablation. Although AF burden decreased significantly after ablation, there was no significant difference between groups. Further subgroup analyses did show a significant correlation between BMI and AF recurrence for the persistent AF population (p = 0.032) [40] |
5. Obstructive Sleep Apnoea and Ablation
Study | Year | Patient Number | Median Follow Up (Months) | Study Design | Intervention | Results |
---|---|---|---|---|---|---|
Fein et al. | 2013 | 62 | 12 | Prospective observational cohort study | Evaluation of impact of CPAP therapy on AF recurrence in patients with polysomnography confirmed OSA undergoing AF ablation. | Patients receiving CPAP therapy had increased likelihood of freedom from AF/AT/AFL occurrence compared to patients that did not receive CPAP (71.9% vs. 36.7%, p = 0.01). The AF recurrence rate in the CPAP treated population was similar to patients without a diagnosis of OSA [46]. |
Congrete et al. | 2018 | 4.572 | 12 | Meta-analysis (7 observational studies) | Evaluation of AF recurrence in patients with OSA after AF ablation and the effect of CPAP on recurrence of AF. | AF recurrence was higher in patients with a diagnosis of OSA than without (pooled OR 1.70 (95% CI, 1.40–2.06)). The use of CPAP in patients with OSA was associated with a reduced risk of AF recurrence after catheter ablation (pooled OR of 0.28 (95% CI, 0.19–0.40)) [48]. |
Hunt et al. | 2022 | 83 | 12 | Randomised control trial | Impact of CPAP treatment on AF recurrence following PVI ablation in patients with PAF and OSA. | AF burden decreased in both cohorts but there was no significant different between groups (p = 0.69) [51]. |
6. Diabetes Mellitus and Ablation Outcomes
Study | Year | Patient Number | Median Follow-Up (Months) | Study Design | Intervention | Results |
---|---|---|---|---|---|---|
Anselmino et al. | 2015 | 1464 patients | 27 months | Meta analysis (15 studies) | Assess impact of diabetes mellitus on AF outcomes and predictors of AF recurrence | Higher basal glycated haemoglobin level was associated with a higher incidence of arrhythmia recurrences (p < 0.001) [61]. |
Donnellan et al. | 2019 | 298 | 25.9 | Prospective observational study | Impact of pre-ablation glycaemic control on AF recurrence rates | Arrhythmia recurrence was higher in patients with a higher HbA1c level, particularly those with values > 9 (p < 0.0001) [62]. |
Wang et al. | 2020 | 351 | 29.5 | Retrospective analysis | Comparison of AF outcomes in patients with and without DM | Arrhythmia recurrence was significantly higher in the group with DM (HR 2.24, 95% CI 1.42–3.55, p = 0.001) [59]. |
Creta et al. | 2020 | 2504 | 17 | Prospective observational study | Impact of type II diabetes mellitus on AF ablation outcomes and recurrence | Arrhythmia recurrence was higher 12 months post ablation in patients with DM than without (32.0% versus 25.3%, p = 0.031). Atrial arrhythmia survival was lower in patients with persistent AF and DM (p = 0.003) [60]. |
7. Alcohol Consumption
Study | Year | Patient Number | Median Follow-Up (Months) | Study Design | Intervention | Results |
---|---|---|---|---|---|---|
Takigawa et al. | 2016 | 1361 | 44 | Prospective observational cohort study | Evaluation of impact of alcohol consumption on outcome of catheter ablation for paroxysmal AF. | The outcome between the two groups was similar (patients who consumed alcohol: 17.7% versus patients who did not consume alcohol 18.7%; p = 0.67). However, the frequency of alcohol consumption was significantly associated with AF recurrence after AF ablation (p = 0.04) [65]. |
Takahashi et al. | 2021 | 1720 | 12 | Prospective observational cohort study | Impact of alcohol abstinence on reduction in AF burden following AF ablation. | Alcohol reduction of ≥1% from baseline to 1-year follow up correlated with a lower risk of AF/AT recurrence (HR 0.630 [95% CI, 0.518–0.768], p < 0.001), as compared with alcohol reduction of <1% [66]. |
Barmano et al. | 2019 | 192 | 12 | Prospective observational study | Impact of alcohol intake using ethyl glucuronide in hair as a marker of long-term consumption, on AF ablation outcomes. | Male AF patients with hEtG ≥ 7 pg/mg, indicative of repeated alcohol consumption, experienced higher rates of re-ablation compared to patients with hEtG < 7 pg/mg (p = 0.017), although there was no significant different amongst females [67]. |
8. Implementation Strategies for Clinical Practice
9. Risk Factor Modification Clinics
10. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Schnabel, R.B.; Yin, X.; Gona, P.; Larson, M.G.; Beiser, A.S.; McManus, D.D.; Newton-Cheh, C.; Lubitz, S.A.; Magnani, J.W.; Ellinor, P.T.; et al. 50 year trends in atrial fibrillation prevalence, incidence, risk factors, and mortality in the Framingham Heart Study: A cohort study. Lancet 2015, 386, 154–162. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Nadarajah, R.; Nakao, Y.M.; Nakao, K.; Wilkinson, C.; Cowan, J.C.; Camm, A.J.; Gale, C.P. Temporal trends of cause-specific mortality after diagnosis of atrial fibrillation. Eur. Heart J. 2023, 44, 4422–4431. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Nadarajah, R.; Nakao, Y.M.; Nakao, K.; Wilkinson, C.; Mamas, M.A.; Camm, A.J.; Gale, C.P. Temporal trends and patterns in atrial fibrillation incidence: A population-based study of 3·4 million individuals. Lancet Reg. Health Eur. 2022, 17, 100386. [Google Scholar] [CrossRef]
- January, C.T.; Wann, L.S.; Calkins, H.; Chen, L.Y.; Cigarroa, J.E.; Cleveland, J.C., Jr.; Ellinor, P.T.; Ezekowitz, M.D.; Field, M.E.; Furie, K.L.; et al. 2019 AHA/ACC/HRS Focused Update of the 2014 AHA/ACC/HRS Guideline for the Management of Patients with Atrial Fibrillation: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Rhythm Society. J. Am. Coll. Cardiol. 2019, 74, 104–132. [Google Scholar] [CrossRef]
- Hindricks, G.; Potpara, T.; Dagres, N.; Arbelo, E.; Bax, J.J.; Blomström-Lundqvist, C.; Boriani, G.; Castella, M.; Dan, G.-A.; Dilaveris, P.E.; et al. 2020 ESC Guidelines for the diagnosis and management of atrial fibrillation developed in collaboration with the European Association for Cardio-Thoracic Surgery (EACTS): The Task Force for the diagnosis and management of atrial fibrillation of the European Society of Cardiology (ESC) Developed with the special contribution of the European Heart Rhythm Association (EHRA) of the ESC. Eur. Heart J. 2021, 42, 373–498. [Google Scholar] [CrossRef] [PubMed]
- Kerr, C.R.; Humphries, K.H.; Talajic, M.; Klein, G.J.; Connolly, S.J.; Green, M.; Boone, J.; Sheldon, R.; Dorian, P.; Newman, D. Progression to chronic atrial fibrillation after the initial diagnosis of paroxysmal atrial fibrillation: Results from the Canadian Registry of Atrial Fibrillation. Am. Heart J. 2005, 149, 489–496. [Google Scholar] [CrossRef]
- de Vos, C.B.; Pisters, R.; Nieuwlaat, R.; Prins, M.H.; Tieleman, R.G.; Coelen, R.J.; van den Heijkant, A.C.; Allessie, M.A.; Crijns, H.J. Progression from paroxysmal to persistent atrial fibrillation clinical correlates and prognosis. J. Am. Coll. Cardiol. 2010, 55, 725–731. [Google Scholar] [CrossRef]
- De Vos, C.B.; Breithardt, G.; Camm, A.J.; Dorian, P.; Kowey, P.R.; Le Heuzey, J.Y.; Naditch-Brûlé, L.; Prystowsky, E.N.; Schwartz, P.J.; Torp-Pedersen, C.; et al. Progression of atrial fibrillation in the REgistry on Cardiac rhythm disORDers assessing the control of Atrial Fibrillation cohort: Clinical correlates and the effect of rhythm-control therapy. Am. Heart J. 2012, 163, 887–893. [Google Scholar] [CrossRef]
- Wong, C.X.; Sullivan, T.; Sun, M.T.; Mahajan, R.; Pathak, R.K.; Middeldorp, M.; Twomey, D.; Ganesan, A.N.; Rangnekar, G.; Roberts-Thomson, K.C.; et al. Obesity and the Risk of Incident, Post-Operative, and Post-Ablation Atrial Fibrillation: A Meta-Analysis of 626,603 Individuals in 51 Studies. JACC Clin. Electrophysiol. 2015, 1, 139–152. [Google Scholar] [CrossRef]
- Mozaffarian, D.; Furberg, C.D.; Psaty, B.M.; Siscovick, D. Physical activity and incidence of atrial fibrillation in older adults: The cardiovascular health study. Circulation 2008, 118, 800–807. [Google Scholar] [CrossRef]
- Youssef, I.; Kamran, H.; Yacoub, M.; Patel, N.; Goulbourne, C.; Kumar, S.; Kane, J.; Hoffner, H.; Salifu, M.; McFarlane, S.I. Obstructive Sleep Apnea as a Risk Factor for Atrial Fibrillation: A Meta-Analysis. J. Sleep Disord. Ther. 2018, 7, 282. [Google Scholar] [CrossRef]
- Aune, D.; Feng, T.; Schlesinger, S.; Janszky, I.; Norat, T.; Riboli, E. Diabetes mellitus, blood glucose and the risk of atrial fibrillation: A systematic review and meta-analysis of cohort studies. J. Diabetes Complicat. 2018, 32, 501–511. [Google Scholar] [CrossRef]
- Aubin, H.J.; Bouajila, N.; Thomas, D.; Naassila, M. Alcohol and atrial fibrillation. Rev. Med. Liege 2022, 77, 565–570. [Google Scholar] [PubMed]
- Voskoboinik, A.; Prabhu, S.; Ling, L.H.; Kalman, J.M.; Kistler, P.M. Alcohol and Atrial Fibrillation: A Sobering Review. J. Am. Coll. Cardiol. 2016, 68, 2567–2576. [Google Scholar] [CrossRef] [PubMed]
- Lau, D.H.; Shipp, N.J.; Kelly, D.J.; Thanigaimani, S.; Neo, M.; Kuklik, P.; Lim, H.S.; Zhang, Y.; Drury, K.; Wong, C.X.; et al. Atrial arrhythmia in ageing spontaneously hypertensive rats: Unraveling the substrate in hypertension and ageing. PLoS ONE 2013, 8, e72416. [Google Scholar] [CrossRef]
- Otsuka, N.; Okumura, Y.; Arai, M.; Kurokawa, S.; Nagashima, K.; Watanabe, R.; Wakamatsu, Y.; Yagyu, S.; Ohkubo, K.; Nakai, T.; et al. Effect of obesity and epicardial fat/fatty infiltration on electrical and structural remodeling associated with atrial fibrillation in a novel canine model of obesity and atrial fibrillation: A comparative study. J. Cardiovasc. Electrophysiol. 2021, 32, 889–899. [Google Scholar] [CrossRef] [PubMed]
- Mahajan, R.; Lau, D.H.; Brooks, A.G.; Shipp, N.J.; Manavis, J.; Wood, J.P.; Finnie, J.W.; Samuel, C.S.; Royce, S.G.; Twomey, D.J.; et al. Electrophysiological, Electroanatomical, and Structural Remodeling of the Atria as Consequences of Sustained Obesity. J. Am. Coll. Cardiol. 2015, 66, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Lau, D.H.; Mackenzie, L.; Kelly, D.J.; Psaltis, P.J.; Worthington, M.; Rajendram, A.; Kelly, D.R.; Nelson, A.J.; Zhang, Y.; Kuklik, P.; et al. Short-term hypertension is associated with the development of atrial fibrillation substrate: A study in an ovine hypertensive model. Heart Rhythm 2010, 7, 396–404. [Google Scholar] [CrossRef]
- Marcus, G.M.; Dukes, J.W.; Vittinghoff, E.; Nah, G.; Badhwar, N.; Moss, J.D.; Lee, R.J.; Lee, B.K.; Tseng, Z.H.; Walters, T.E.; et al. A Randomized, Double-Blind, Placebo-Controlled Trial of Intravenous Alcohol to Assess Changes in Atrial Electrophysiology. JACC Clin. Electrophysiol. 2021, 7, 662–670. [Google Scholar] [CrossRef]
- Voskoboinik, A.; Wong, G.; Lee, G.; Nalliah, C.; Hawson, J.; Prabhu, S.; Sugumar, H.; Ling, L.H.; McLellan, A.; Morton, J.; et al. Moderate alcohol consumption is associated with atrial electrical and structural changes: Insights from high-density left atrial electroanatomic mapping. Heart Rhythm 2019, 16, 251–259. [Google Scholar] [CrossRef]
- Iwasaki, Y.K.; Kato, T.; Xiong, F.; Shi, Y.F.; Naud, P.; Maguy, A.; Mizuno, K.; Tardif, J.C.; Comtois, P.; Nattel, S. Atrial fibrillation promotion with long-term repetitive obstructive sleep apnea in a rat model. J. Am. Coll. Cardiol. 2014, 64, 2013–2023. [Google Scholar] [CrossRef]
- Cosio, F.G.; Aliot, E.; Botto, G.L.; Heidbüchel, H.; Geller, C.J.; Kirchhof, P.; De Haro, J.C.; Frank, R.; Villacastin, J.P.; Vijgen, J.; et al. Delayed rhythm control of atrial fibrillation may be a cause of failure to prevent recurrences: Reasons for change to active antiarrhythmic treatment at the time of the first detected episode. Europace 2008, 10, 21–27. [Google Scholar] [CrossRef]
- Wright, J.T., Jr.; Williamson, J.D.; Whelton, P.K.; Snyder, J.K.; Sink, K.M.; Rocco, M.V.; Reboussin, D.M.; Rahman, M.; Oparil, S.; Lewis, C.E.; et al. A Randomized Trial of Intensive versus Standard Blood-Pressure Control. N. Engl. J. Med. 2015, 373, 2103–2116. [Google Scholar] [CrossRef] [PubMed]
- Kannel, W.B.; Wolf, P.A.; Benjamin, E.J.; Levy, D. Prevalence, incidence, prognosis, and predisposing conditions for atrial fibrillation: Population-based estimates. Am. J. Cardiol. 1998, 82, 2n–9n. [Google Scholar] [CrossRef]
- Berruezo, A.; Tamborero, D.; Mont, L.; Benito, B.; Tolosana, J.M.; Sitges, M.; Vidal, B.; Arriagada, G.; Méndez, F.; Matiello, M.; et al. Pre-procedural predictors of atrial fibrillation recurrence after circumferential pulmonary vein ablation. Eur. Heart J. 2007, 28, 836–841. [Google Scholar] [CrossRef] [PubMed]
- Santoro, F.; Di Biase, L.; Trivedi, C.; Burkhardt, J.D.; Paoletti Perini, A.; Sanchez, J.; Horton, R.; Mohanty, P.; Mohanty, S.; Bai, R.; et al. Impact of Uncontrolled Hypertension on Atrial Fibrillation Ablation Outcome. JACC Clin. Electrophysiol. 2015, 1, 164–173. [Google Scholar] [CrossRef] [PubMed]
- Ambrosius, W.T.; Sink, K.M.; Foy, C.G.; Berlowitz, D.R.; Cheung, A.K.; Cushman, W.C.; Fine, L.J.; Goff, D.C., Jr.; Johnson, K.C.; Killeen, A.A.; et al. The design and rationale of a multicenter clinical trial comparing two strategies for control of systolic blood pressure: The Systolic Blood Pressure Intervention Trial (SPRINT). Clin. Trials 2014, 11, 532–546. [Google Scholar] [CrossRef] [PubMed]
- Soliman, E.Z.; Rahman, A.F.; Zhang, Z.M.; Rodriguez, C.J.; Chang, T.I.; Bates, J.T.; Ghazi, L.; Blackshear, J.L.; Chonchol, M.; Fine, L.J.; et al. Effect of Intensive Blood Pressure Lowering on the Risk of Atrial Fibrillation. Hypertension 2020, 75, 1491–1496. [Google Scholar] [CrossRef]
- Zhang, W.; Wang, J.G. Prevention of Atrial Fibrillation by Intensive Antihypertensive Treatment. Hypertension 2020, 75, 1414–1416. [Google Scholar] [CrossRef]
- Zylla, M.M.; Hochadel, M.; Andresen, D.; Brachmann, J.; Eckardt, L.; Hoffmann, E.; Kuck, K.H.; Lewalter, T.; Schumacher, B.; Spitzer, S.G.; et al. Ablation of Atrial Fibrillation in Patients with Hypertension-An Analysis from the German Ablation Registry. J. Clin. Med. 2020, 9, 2402. [Google Scholar] [CrossRef]
- Parkash, R.; Wells, G.A.; Sapp, J.L.; Healey, J.S.; Tardif, J.C.; Greiss, I.; Rivard, L.; Roux, J.F.; Gula, L.; Nault, I.; et al. Effect of Aggressive Blood Pressure Control on the Recurrence of Atrial Fibrillation After Catheter Ablation: A Randomized, Open-Label Clinical Trial (SMAC-AF [Substrate Modification with Aggressive Blood Pressure Control]). Circulation 2017, 135, 1788–1798. [Google Scholar] [CrossRef] [PubMed]
- Steinberg, J.S.; Shabanov, V.; Ponomarev, D.; Losik, D.; Ivanickiy, E.; Kropotkin, E.; Polyakov, K.; Ptaszynski, P.; Keweloh, B.; Yao, C.J.; et al. Effect of Renal Denervation and Catheter Ablation vs Catheter Ablation Alone on Atrial Fibrillation Recurrence Among Patients with Paroxysmal Atrial Fibrillation and Hypertension: The ERADICATE-AF Randomized Clinical Trial. JAMA 2020, 323, 248–255. [Google Scholar] [CrossRef] [PubMed]
- Heradien, M.; Mahfoud, F.; Greyling, C.; Lauder, L.; van der Bijl, P.; Hettrick, D.A.; Stilwaney, W.; Sibeko, S.; van Rensburg, R.J.; Peterson, D.; et al. Renal denervation prevents subclinical atrial fibrillation in patients with hypertensive heart disease: Randomized, sham-controlled trial. Heart Rhythm 2022, 19, 1765–1773. [Google Scholar] [CrossRef]
- Rienstra, M.; Hobbelt, A.H.; Alings, M.; Tijssen, J.G.P.; Smit, M.D.; Brügemann, J.; Geelhoed, B.; Tieleman, R.G.; Hillege, H.L.; Tukkie, R.; et al. Targeted therapy of underlying conditions improves sinus rhythm maintenance in patients with persistent atrial fibrillation: Results of the RACE 3 trial. Eur. Heart J. 2018, 39, 2987–2996. [Google Scholar] [CrossRef]
- Huxley, R.R.; Lopez, F.L.; Folsom, A.R.; Agarwal, S.K.; Loehr, L.R.; Soliman, E.Z.; Maclehose, R.; Konety, S.; Alonso, A. Absolute and attributable risks of atrial fibrillation in relation to optimal and borderline risk factors: The Atherosclerosis Risk in Communities (ARIC) study. Circulation 2011, 123, 1501–1508. [Google Scholar] [CrossRef]
- Wilson, P.W.; D’Agostino, R.B.; Sullivan, L.; Parise, H.; Kannel, W.B. Overweight and obesity as determinants of cardiovascular risk: The Framingham experience. Arch. Intern. Med. 2002, 162, 1867–1872. [Google Scholar] [CrossRef] [PubMed]
- Glover, B.M.; Hong, K.L.; Dagres, N.; Arbelo, E.; Laroche, C.; Riahi, S.; Bertini, M.; Mikhaylov, E.N.; Galvin, J.; Kiliszek, M.; et al. Impact of body mass index on the outcome of catheter ablation of atrial fibrillation. Heart 2019, 105, 244–250. [Google Scholar] [CrossRef]
- Pathak, R.K.; Middeldorp, M.E.; Meredith, M.; Mehta, A.B.; Mahajan, R.; Wong, C.X.; Twomey, D.; Elliott, A.D.; Kalman, J.M.; Abhayaratna, W.P.; et al. Long-Term Effect of Goal-Directed Weight Management in an Atrial Fibrillation Cohort: A Long-Term Follow-Up Study (LEGACY). J. Am. Coll. Cardiol. 2015, 65, 2159–2169. [Google Scholar] [CrossRef]
- Sivasambu, B.; Balouch, M.A.; Zghaib, T.; Bajwa, R.J.; Chrispin, J.; Berger, R.D.; Ashikaga, H.; Nazarian, S.; Marine, J.E.; Calkins, H.; et al. Increased rates of atrial fibrillation recurrence following pulmonary vein isolation in overweight and obese patients. J. Cardiovasc. Electrophysiol. 2018, 29, 239–245. [Google Scholar] [CrossRef]
- Gessler, N.; Willems, S.; Steven, D.; Aberle, J.; Akbulak, R.O.; Gosau, N.; Hoffmann, B.A.; Meyer, C.; Sultan, A.; Tilz, R.; et al. Supervised Obesity Reduction Trial for AF ablation patients: Results from the SORT-AF trial. Europace 2021, 23, 1548–1558. [Google Scholar] [CrossRef]
- Mohanty, S.; Mohanty, P.; Natale, V.; Trivedi, C.; Gianni, C.; Burkhardt, J.D.; Sanchez, J.E.; Horton, R.; Gallinghouse, G.J.; Hongo, R.; et al. Impact of weight loss on ablation outcome in obese patients with longstanding persistent atrial fibrillation. J. Cardiovasc. Electrophysiol. 2018, 29, 246–253. [Google Scholar] [CrossRef]
- Jamaly, S.; Carlsson, L.; Peltonen, M.; Jacobson, P.; Sjöström, L.; Karason, K. Bariatric Surgery and the Risk of New-Onset Atrial Fibrillation in Swedish Obese Subjects. J. Am. Coll. Cardiol. 2016, 68, 2497–2504. [Google Scholar] [CrossRef] [PubMed]
- Pathak, R.K.; Middeldorp, M.E.; Lau, D.H.; Mehta, A.B.; Mahajan, R.; Twomey, D.; Alasady, M.; Hanley, L.; Antic, N.A.; McEvoy, R.D.; et al. Aggressive risk factor reduction study for atrial fibrillation and implications for the outcome of ablation: The ARREST-AF cohort study. J. Am. Coll. Cardiol. 2014, 64, 2222–2231. [Google Scholar] [CrossRef] [PubMed]
- Gami, A.S.; Pressman, G.; Caples, S.M.; Kanagala, R.; Gard, J.J.; Davison, D.E.; Malouf, J.F.; Ammash, N.M.; Friedman, P.A.; Somers, V.K. Association of atrial fibrillation and obstructive sleep apnea. Circulation 2004, 110, 364–367. [Google Scholar] [CrossRef] [PubMed]
- Ng, C.Y.; Liu, T.; Shehata, M.; Stevens, S.; Chugh, S.S.; Wang, X. Meta-analysis of obstructive sleep apnea as predictor of atrial fibrillation recurrence after catheter ablation. Am. J. Cardiol. 2011, 108, 47–51. [Google Scholar] [CrossRef]
- Fein, A.S.; Shvilkin, A.; Shah, D.; Haffajee, C.I.; Das, S.; Kumar, K.; Kramer, D.B.; Zimetbaum, P.J.; Buxton, A.E.; Josephson, M.E.; et al. Treatment of obstructive sleep apnea reduces the risk of atrial fibrillation recurrence after catheter ablation. J. Am. Coll. Cardiol. 2013, 62, 300–305. [Google Scholar] [CrossRef]
- Moula, A.I.; Parrini, I.; Tetta, C.; Lucà, F.; Parise, G.; Rao, C.M.; Mauro, E.; Parise, O.; Matteucci, F.; Gulizia, M.M.; et al. Obstructive Sleep Apnea and Atrial Fibrillation. J. Clin. Med. 2022, 11, 1242. [Google Scholar] [CrossRef]
- Congrete, S.; Bintvihok, M.; Thongprayoon, C.; Bathini, T.; Boonpheng, B.; Sharma, K.; Chokesuwattanaskul, R.; Srivali, N.; Tanawuttiwat, T.; Cheungpasitporn, W. Effect of obstructive sleep apnea and its treatment of atrial fibrillation recurrence after radiofrequency catheter ablation: A meta-analysis. J. Evid. Based Med. 2018, 11, 145–151. [Google Scholar] [CrossRef]
- Traaen, G.M.; Aakerøy, L.; Hunt, T.E.; Øverland, B.; Bendz, C.; Sande, L.; Aakhus, S.; Fagerland, M.W.; Steinshamn, S.; Anfinsen, O.G.; et al. Effect of Continuous Positive Airway Pressure on Arrhythmia in Atrial Fibrillation and Sleep Apnea: A Randomized Controlled Trial. Am. J. Respir. Crit. Care Med. 2021, 204, 573–582. [Google Scholar] [CrossRef]
- McEvoy, R.D.; Antic, N.A.; Heeley, E.; Luo, Y.; Ou, Q.; Zhang, X.; Mediano, O.; Chen, R.; Drager, L.F.; Liu, Z.; et al. CPAP for Prevention of Cardiovascular Events in Obstructive Sleep Apnea. N. Engl. J. Med. 2016, 375, 919–931. [Google Scholar] [CrossRef]
- Hunt, T.E.; Traaen, G.M.; Aakerøy, L.; Bendz, C.; Øverland, B.; Akre, H.; Steinshamn, S.; Loennechen, J.P.; Hegbom, F.; Broch, K.; et al. Effect of continuous positive airway pressure therapy on recurrence of atrial fibrillation after pulmonary vein isolation in patients with obstructive sleep apnea: A randomized controlled trial. Heart Rhythm 2022, 19, 1433–1441. [Google Scholar] [CrossRef]
- Holmqvist, F.; Guan, N.; Zhu, Z.; Kowey, P.R.; Allen, L.A.; Fonarow, G.C.; Hylek, E.M.; Mahaffey, K.W.; Freeman, J.V.; Chang, P.; et al. Impact of obstructive sleep apnea and continuous positive airway pressure therapy on outcomes in patients with atrial fibrillation-Results from the Outcomes Registry for Better Informed Treatment of Atrial Fibrillation (ORBIT-AF). Am. Heart J. 2015, 169, 647–654.e2. [Google Scholar] [CrossRef] [PubMed]
- Huxley, R.R.; Filion, K.B.; Konety, S.; Alonso, A. Meta-analysis of cohort and case-control studies of type 2 diabetes mellitus and risk of atrial fibrillation. Am. J. Cardiol. 2011, 108, 56–62. [Google Scholar] [CrossRef] [PubMed]
- Dublin, S.; Glazer, N.L.; Smith, N.L.; Psaty, B.M.; Lumley, T.; Wiggins, K.L.; Page, R.L.; Heckbert, S.R. Diabetes mellitus, glycemic control, and risk of atrial fibrillation. J. Gen. Intern. Med. 2010, 25, 853–858. [Google Scholar] [CrossRef] [PubMed]
- Devereux, R.B.; Roman, M.J.; Paranicas, M.; O’Grady, M.J.; Lee, E.T.; Welty, T.K.; Fabsitz, R.R.; Robbins, D.; Rhoades, E.R.; Howard, B.V. Impact of diabetes on cardiac structure and function: The strong heart study. Circulation 2000, 101, 2271–2276. [Google Scholar] [CrossRef] [PubMed]
- Pallisgaard, J.L.; Schjerning, A.M.; Lindhardt, T.B.; Procida, K.; Hansen, M.L.; Torp-Pedersen, C.; Gislason, G.H. Risk of atrial fibrillation in diabetes mellitus: A nationwide cohort study. Eur. J. Prev. Cardiol. 2016, 23, 621–627. [Google Scholar] [CrossRef]
- Huxley, R.R.; Alonso, A.; Lopez, F.L.; Filion, K.B.; Agarwal, S.K.; Loehr, L.R.; Soliman, E.Z.; Pankow, J.S.; Selvin, E. Type 2 diabetes, glucose homeostasis and incident atrial fibrillation: The Atherosclerosis Risk in Communities study. Heart 2012, 98, 133–138. [Google Scholar] [CrossRef] [PubMed]
- Patel, M.R.; Conte, M.S.; Cutlip, D.E.; Dib, N.; Geraghty, P.; Gray, W.; Hiatt, W.R.; Ho, M.; Ikeda, K.; Ikeno, F.; et al. Evaluation and treatment of patients with lower extremity peripheral artery disease: Consensus definitions from Peripheral Academic Research Consortium (PARC). J. Am. Coll. Cardiol. 2015, 65, 931–941. [Google Scholar] [CrossRef] [PubMed]
- Wang, A.; Truong, T.; Black-Maier, E.; Green, C.; Campbell, K.B.; Barnett, A.S.; Febre, J.; Loring, Z.; Al-Khatib, S.M.; Atwater, B.D.; et al. Catheter ablation of atrial fibrillation in patients with diabetes mellitus. Heart Rhythm O2 2020, 1, 180–188. [Google Scholar] [CrossRef]
- Creta, A.; Providência, R.; Adragão, P.; de Asmundis, C.; Chun, J.; Chierchia, G.; Defaye, P.; Schmidt, B.; Anselme, F.; Finlay, M.; et al. Impact of Type-2 Diabetes Mellitus on the Outcomes of Catheter Ablation of Atrial Fibrillation (European Observational Multicentre Study). Am. J. Cardiol. 2020, 125, 901–906. [Google Scholar] [CrossRef]
- Anselmino, M.; Matta, M.; D’Ascenzo, F.; Pappone, C.; Santinelli, V.; Bunch, T.J.; Neumann, T.; Schilling, R.J.; Hunter, R.J.; Noelker, G.; et al. Catheter ablation of atrial fibrillation in patients with diabetes mellitus: A systematic review and meta-analysis. Europace 2015, 17, 1518–1525. [Google Scholar] [CrossRef]
- Donnellan, E.; Aagaard, P.; Kanj, M.; Jaber, W.; Elshazly, M.; Hoosien, M.; Baranowski, B.; Hussein, A.; Saliba, W.; Wazni, O. Association between Pre-Ablation Glycemic Control and Outcomes Among Patients with Diabetes Undergoing Atrial Fibrillation Ablation. JACC Clin. Electrophysiol. 2019, 5, 897–903. [Google Scholar] [CrossRef] [PubMed]
- Djoussé, L.; Levy, D.; Benjamin, E.J.; Blease, S.J.; Russ, A.; Larson, M.G.; Massaro, J.M.; D’Agostino, R.B.; Wolf, P.A.; Ellison, R.C. Long-term alcohol consumption and the risk of atrial fibrillation in the Framingham Study. Am. J. Cardiol. 2004, 93, 710–713. [Google Scholar] [CrossRef] [PubMed]
- Larsson, S.C.; Drca, N.; Wolk, A. Alcohol consumption and risk of atrial fibrillation: A prospective study and dose-response meta-analysis. J. Am. Coll. Cardiol. 2014, 64, 281–289. [Google Scholar] [CrossRef] [PubMed]
- Takigawa, M.; Takahashi, A.; Kuwahara, T.; Takahashi, Y.; Okubo, K.; Nakashima, E.; Watari, Y.; Nakajima, J.; Yamao, K.; Osaka, Y.; et al. Impact of Alcohol Consumption on the Outcome of Catheter Ablation in Patients with Paroxysmal Atrial Fibrillation. J. Am. Heart Assoc. 2016, 5, e004149. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, Y.; Nitta, J.; Kobori, A.; Sakamoto, Y.; Nagata, Y.; Tanimoto, K.; Matsuo, S.; Yamane, T.; Morita, N.; Satomi, K.; et al. Alcohol Consumption Reduction and Clinical Outcomes of Catheter Ablation for Atrial Fibrillation. Circ. Arrhythm. Electrophysiol. 2021, 14, e009770. [Google Scholar] [CrossRef] [PubMed]
- Barmano, N.; Charitakis, E.; Kronstrand, R.; Walfridsson, U.; Karlsson, J.E.; Walfridsson, H.; Nystrom, F.H. The association between alcohol consumption, cardiac biomarkers, left atrial size and re-ablation in patients with atrial fibrillation referred for catheter ablation. PLoS ONE 2019, 14, e0215121. [Google Scholar] [CrossRef] [PubMed]
- Joglar, J.A.; Chung, M.K.; Armbruster, A.L.; Benjamin, E.J.; Chyou, J.Y.; Cronin, E.M.; Deswal, A.; Eckhardt, L.L.; Goldberger, Z.D.; Gopinathannair, R.; et al. 2023 ACC/AHA/ACCP/HRS Guideline for the Diagnosis and Management of Atrial Fibrillation: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation 2024, 149, e1–e156. [Google Scholar] [CrossRef] [PubMed]
- Elliott, A.D.; Middeldorp, M.E.; Van Gelder, I.C.; Albert, C.M.; Sanders, P. Epidemiology and modifiable risk factors for atrial fibrillation. Nat. Rev. Cardiol. 2023, 20, 404–417. [Google Scholar] [CrossRef]
- Lip, G.Y.H. The ABC pathway: An integrated approach to improve AF management. Nat. Rev. Cardiol. 2017, 14, 627–628. [Google Scholar] [CrossRef]
- Romiti, G.F.; Proietti, M.; Bonini, N.; Ding, W.Y.; Boriani, G.; Huisman, M.V.; Lip, G.Y.H. Adherence to the Atrial Fibrillation Better Care (ABC) pathway and the risk of major outcomes in patients with atrial fibrillation: A post-hoc analysis from the prospective GLORIA-AF Registry. EClinicalMedicine 2023, 55, 101757. [Google Scholar] [CrossRef]
- Bucci, T.; Proietti, M.; Shantsila, A.; Romiti, G.F.; Teo, W.S.; Park, H.W.; Shimizu, W.; Tse, H.F.; Lip, G.Y.H.; Chao, T.F. Integrated Care for Atrial Fibrillation Using the ABC Pathway in the Prospective APHRS-AF Registry. JACC Asia 2023, 3, 580–591. [Google Scholar] [CrossRef]
- Guo, Y.; Lane, D.A.; Wang, L.; Zhang, H.; Wang, H.; Zhang, W.; Wen, J.; Xing, Y.; Wu, F.; Xia, Y.; et al. Mobile Health Technology to Improve Care for Patients with Atrial Fibrillation. J. Am. Coll. Cardiol. 2020, 75, 1523–1534. [Google Scholar] [CrossRef]
- Romiti, G.F.; Guo, Y.; Corica, B.; Proietti, M.; Zhang, H.; Lip, G.Y.H. Mobile Health-Technology-Integrated Care for Atrial Fibrillation: A Win Ratio Analysis from the mAFA-II Randomized Clinical Trial. Thromb. Haemost. 2023, 123, 1042–1048. [Google Scholar] [CrossRef] [PubMed]
- Hendriks, J.M.; de Wit, R.; Crijns, H.J.; Vrijhoef, H.J.; Prins, M.H.; Pisters, R.; Pison, L.A.; Blaauw, Y.; Tieleman, R.G. Nurse-led care vs. usual care for patients with atrial fibrillation: Results of a randomized trial of integrated chronic care vs. routine clinical care in ambulatory patients with atrial fibrillation. Eur. Heart J. 2012, 33, 2692–2699. [Google Scholar] [CrossRef] [PubMed]
- Vanharen, Y.; Abugattas de Torres, J.P.; Adriaenssens, B.; Convens, C.; Schwagten, B.; Tijskens, M.; Wolf, M.; Goossens, E.; Van Bogaert, P.; de Greef, Y. Nurse-led care after ablation of atrial fibrillation: A randomized controlled trial. Eur. J. Prev. Cardiol. 2023, 30, 1599–1607. [Google Scholar] [CrossRef] [PubMed]
Study | Year | Patient Number | Median Follow Up (Months) | Study Design | Paroxysmal-AF Cases | Intervention | Results |
---|---|---|---|---|---|---|---|
German Ablation Registry | 2020 | 626 | 42 | Registry | 64.5% in hypertensive group 72.5% in non-hypertensive group | Analysis of patients undergoing PVI AF ablation (RFA and cryoballoon was included) in patients with and without hypertension | Rates of AF recurrence, freedom from AADs and repeat ablation was not statistically significant amongst groups [30] |
SMAC-AF | 2017 | 184 | 14 | Randomised open-label trial | 57% | Participants assigned to aggressive BP target (<120/80) or standard BP (<140/90) prior to ablation. Primary outcome was >30 s of AF/AT/AFL occurrence | There was no significant difference between the groups (61.4% of aggressive BP control vs. 61.2% in standard treatment group) p = 0.763 [31] |
Santoro et al. | 2015 | 531 | 19 | Prospective observational study | 66% | Patients undergoing AF ablation in three groups:
| Uncontrolled hypertension pre-procedure was associated with significant arrhythmia recurrence (p = 0.045), presence of non-PV triggers (58.8%, p < 0.001) as well as the presence of non-PAF (p = 0.002) [26] |
ERADICATE-AF | 2020 | 302 | 12 | Randomised controlled trial | 100% | Patients with hypertension and PAF were randomised to either PVI or PVI with renal denervation | Patients undergoing PVI with renal denervation had increased likelihood of freedom from AF/AT/AFL occurrence (72.1% vs. 56.5%, p = 0.006) [32] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hussain, S.; Srinivasan, N.; Ahsan, S.; Papageorgiou, N. The Role of Risk Factor Modification in Atrial Fibrillation: Outcomes in Catheter Ablation. J. Cardiovasc. Dev. Dis. 2024, 11, 97. https://doi.org/10.3390/jcdd11040097
Hussain S, Srinivasan N, Ahsan S, Papageorgiou N. The Role of Risk Factor Modification in Atrial Fibrillation: Outcomes in Catheter Ablation. Journal of Cardiovascular Development and Disease. 2024; 11(4):97. https://doi.org/10.3390/jcdd11040097
Chicago/Turabian StyleHussain, Shahana, Neil Srinivasan, Syed Ahsan, and Nikolaos Papageorgiou. 2024. "The Role of Risk Factor Modification in Atrial Fibrillation: Outcomes in Catheter Ablation" Journal of Cardiovascular Development and Disease 11, no. 4: 97. https://doi.org/10.3390/jcdd11040097
APA StyleHussain, S., Srinivasan, N., Ahsan, S., & Papageorgiou, N. (2024). The Role of Risk Factor Modification in Atrial Fibrillation: Outcomes in Catheter Ablation. Journal of Cardiovascular Development and Disease, 11(4), 97. https://doi.org/10.3390/jcdd11040097