The Roles of Septins in Regulating Fission Yeast Cytokinesis
Abstract
:1. Septins in General
2. Septins in Fission Yeast
3. Septin Localization during the Cell Cycle
4. The Roles of Fission Yeast Septins in the Assembly, Maintenance, and Constriction of the Contractile Actomyosin Ring
5. The Roles of Fission Yeast Septins in Septum Degradation
6. The Proteins Regulating Septin Assembly during Cytokinesis
7. Septin Localization Is Regulated by Posttranslational Modifications
8. Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pan, F.; Malmberg, R.L.; Momany, M. Analysis of septins across kingdoms reveals orthology and new motifs. BMC Evol. Biol. 2007, 7, 103. [Google Scholar] [CrossRef] [PubMed]
- Mostowy, S.; Cossart, P. Septins: The fourth component of the cytoskeleton. Nat. Rev. Mol. Cell. Biol. 2012, 13, 183–194. [Google Scholar] [CrossRef] [PubMed]
- Hannibal, M.C.; Ruzzo, E.K.; Miller, L.R.; Betz, B.; Buchan, J.G.; Knutzen, D.M.; Barnett, K.; Landsverk, M.L.; Brice, A.; LeGuern, E.; et al. SEPT9 gene sequencing analysis reveals recurrent mutations in hereditary neuralgic amyotrophy. Neurology 2009, 72, 1755–1759. [Google Scholar] [CrossRef] [PubMed]
- Sorensen, A.B.; Lund, A.H.; Ethelberg, S.; Copeland, N.G.; Jenkins, N.A.; Pedersen, F.S. Sint1, a common integration site in SL3-3-induced T-cell lymphomas, harbors a putative proto-oncogene with homology to the septin gene family. J. Virol. 2000, 74, 2161–2168. [Google Scholar] [CrossRef] [PubMed]
- Kalikin, L.M.; Sims, H.L.; Petty, E.M. Genomic and expression analyses of alternatively spliced transcripts of the MLL septin-like fusion gene (MSF) that map to a 17q25 region of loss in breast and ovarian tumors. Genomics 2000, 63, 165–172. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.R.; Wang, H.Y.; Kuo, Y.C.; Shih, S.C.; Hsu, C.H.; Chen, Y.R.; Wu, S.R.; Wang, C.Y.; Kuo, P.L. SEPT12 phosphorylation results in loss of the septin ring/sperm annulus, defective sperm motility and poor male fertility. PLoS Genet. 2017, 13, e1006631. [Google Scholar] [CrossRef] [PubMed]
- Trimble, W.S. Septins: A highly conserved family of membrane-associated GTPases with functions in cell division and beyond. J. Membr. Biol. 1999, 169, 75–81. [Google Scholar] [CrossRef] [PubMed]
- Casamayor, A.; Snyder, M. Molecular dissection of a yeast septin: Distinct domains are required for septin interaction, localization, and function. Mol. Cell. Biol. 2003, 23, 2762–2777. [Google Scholar] [CrossRef]
- Bertin, A.; McMurray, M.A.; Thai, L.; Garcia, G.; Votin, V., 3rd; Grob, P.; Allyn, T.; Thorner, J.; Nogales, E. Phosphatidylinositol-4,5-bisphosphate promotes budding yeast septin filament assembly and organization. J. Mol. Biol. 2010, 404, 711–731. [Google Scholar] [CrossRef]
- Sheffield, P.J.; Oliver, C.J.; Kremer, B.E.; Sheng, S.; Shao, Z.; Macara, I.G. Borg/septin interactions and the assembly of mammalian septin heterodimers, trimers, and filaments. J. Biol. Chem. 2003, 278, 3483–3488. [Google Scholar] [CrossRef]
- Woods, B.L.; Gladfelter, A.S. The state of the septin cytoskeleton from assembly to function. Curr. Opin. Cell Biol. 2020, 68, 105–112. [Google Scholar] [CrossRef]
- Bridges, A.A.; Zhang, H.; Mehta, S.B.; Occhipinti, P.; Tani, T.; Gladfelter, A.S. Septin assemblies form by diffusion-driven annealing on membranes. Proc. Natl. Acad. Sci. USA 2014, 111, 2146–2151. [Google Scholar] [CrossRef] [PubMed]
- Bridges, A.A.; Gladfelter, A.S. Septin Form and Function at the Cell Cortex. J. Biol. Chem. 2015, 290, 17173–17180. [Google Scholar] [CrossRef] [PubMed]
- John, C.M.; Hite, R.K.; Weirich, C.S.; Fitzgerald, D.J.; Jawhari, H.; Faty, M.; Schlapfer, D.; Kroschewski, R.; Winkler, F.K.; Walz, T.; et al. The Caenorhabditis elegans septin complex is nonpolar. EMBO J. 2007, 26, 3296–3307. [Google Scholar] [CrossRef] [PubMed]
- Sirajuddin, M.; Farkasovsky, M.; Hauer, F.; Kuhlmann, D.; Macara, I.G.; Weyand, M.; Stark, H.; Wittinghofer, A. Structural insight into filament formation by mammalian septins. Nature 2007, 449, 311–315. [Google Scholar] [CrossRef] [PubMed]
- Garcia, G.; Bertin, A.; Li, Z.; Song, Y.; McMurray, M.A.; Thorner, J.; Nogales, E. Subunit-dependent modulation of septin assembly: Budding yeast septin Shs1 promotes ring and gauze formation. J. Cell Biol. 2011, 195, 993–1004. [Google Scholar] [CrossRef] [PubMed]
- Bridges, A.A.; Jentzsch, M.S.; Oakes, P.W.; Occhipinti, P.; Gladfelter, A.S. Micron-scale plasma membrane curvature is recognized by the septin cytoskeleton. J. Cell Biol. 2016, 213, 23–32. [Google Scholar] [CrossRef] [PubMed]
- Beber, A.; Taveneau, C.; Nania, M.; Tsai, F.C.; di Cicco, A.; Bassereau, P.; Levy, D.; Cabral, J.T.; Isambert, H.; Mangenot, S.; et al. Membrane reshaping by micrometric curvature sensitive septin filaments. Nat. Commun. 2019, 10, 420. [Google Scholar] [CrossRef] [PubMed]
- Bhavsar-Jog, Y.P.; Bi, E. Mechanics and regulation of cytokinesis in budding yeast. Semin. Cell Dev. Biol. 2016, 66, 107–118. [Google Scholar] [CrossRef]
- Caudron, F.; Barral, Y. Septins and the lateral compartmentalization of eukaryotic membranes. Dev. Cell 2009, 16, 493–506. [Google Scholar] [CrossRef]
- Trimble, W.S.; Grinstein, S. Barriers to the free diffusion of proteins and lipids in the plasma membrane. J. Cell Biol. 2015, 208, 259–271. [Google Scholar] [CrossRef]
- Mostowy, S.; Janel, S.; Forestier, C.; Roduit, C.; Kasas, S.; Pizarro-Cerda, J.; Cossart, P.; Lafont, F. A role for septins in the interaction between the Listeria monocytogenes INVASION PROTEIN InlB and the Met receptor. Biophys. J. 2011, 100, 1949–1959. [Google Scholar] [CrossRef] [PubMed]
- Gilden, J.K.; Peck, S.; Chen, Y.C.; Krummel, M.F. The septin cytoskeleton facilitates membrane retraction during motility and blebbing. J. Cell Biol. 2012, 196, 103–114. [Google Scholar] [CrossRef]
- Gladfelter, A.S.; Pringle, J.R.; Lew, D.J. The septin cortex at the yeast mother-bud neck. Curr. Opin. Microbiol. 2001, 4, 681–689. [Google Scholar] [CrossRef]
- Kozubowski, L.; Larson, J.R.; Tatchell, K. Role of the septin ring in the asymmetric localization of proteins at the mother-bud neck in Saccharomyces cerevisiae. Mol. Biol. Cell 2005, 16, 3455–3466. [Google Scholar] [CrossRef] [PubMed]
- McMurray, M.A.; Thorner, J. Septins: Molecular partitioning and the generation of cellular asymmetry. Cell Div. 2009, 4, 18. [Google Scholar] [CrossRef]
- An, H.; Morrell, J.L.; Jennings, J.L.; Link, A.J.; Gould, K.L. Requirements of fission yeast septins for complex formation, localization, and function. Mol. Biol. Cell 2004, 15, 5551–5564. [Google Scholar] [CrossRef]
- Zheng, S.; Zheng, B.; Liu, Z.; Ma, X.; Liu, X.; Yao, X.; Wei, W.; Fu, C. The Cdc42 GTPase-activating protein Rga6 promotes the cortical localization of septin. J. Cell Sci. 2022, 135, jcs259228. [Google Scholar] [CrossRef] [PubMed]
- Hartwell, L.H. Genetic control of the cell division cycle in yeast. IV. Genes controlling bud emergence and cytokinesis. Exp. Cell Res. 1971, 69, 265–276. [Google Scholar] [CrossRef]
- Glomb, O.; Gronemeyer, T. Septin Organization and Functions in Budding Yeast. Front. Cell Dev. Biol. 2016, 4, 123. [Google Scholar] [CrossRef]
- Oh, Y.; Bi, E. Septin structure and function in yeast and beyond. Trends. Cell Biol. 2011, 21, 141–148. [Google Scholar] [CrossRef] [PubMed]
- Hayles, J.; Nurse, P. Introduction to Fission Yeast as a Model System. Cold Spring Harb. Protoc. 2018, 2018, top079749. [Google Scholar] [CrossRef] [PubMed]
- Hachet, O.; Bendezu, F.O.; Martin, S.G. Fission yeast: In shape to divide. Curr. Opin. Cell Biol. 2012, 24, 858–864. [Google Scholar] [CrossRef] [PubMed]
- Huisman, S.M.; Brunner, D. Cell polarity in fission yeast: A matter of confining, positioning, and switching growth zones. Semin. Cell Dev. Biol. 2011, 22, 799–805. [Google Scholar] [CrossRef] [PubMed]
- He, J.; Liu, K.; Wu, Y.; Zhao, C.; Yan, S.; Chen, J.H.; Hu, L.; Wang, D.; Zheng, F.; Wei, W.; et al. The AAA-ATPase Yta4/ATAD1 interacts with the mitochondrial divisome to inhibit mitochondrial fission. PLoS Biol. 2023, 21, e3002247. [Google Scholar] [CrossRef]
- Dong, F.; Zhu, M.; Zheng, F.; Fu, C. Mitochondrial fusion and fission are required for proper mitochondrial function and cell proliferation in fission yeast. FEBS J. 2022, 289, 262–278. [Google Scholar] [CrossRef] [PubMed]
- Cortes, J.C.; Konomi, M.; Martins, I.M.; Munoz, J.; Moreno, M.B.; Osumi, M.; Duran, A.; Ribas, J.C. The (1,3)beta-D-glucan synthase subunit Bgs1p is responsible for the fission yeast primary septum formation. Mol. Microbiol. 2007, 65, 201–217. [Google Scholar] [CrossRef] [PubMed]
- Cortes, J.C.; Sato, M.; Munoz, J.; Moreno, M.B.; Clemente-Ramos, J.A.; Ramos, M.; Okada, H.; Osumi, M.; Duran, A.; Ribas, J.C. Fission yeast Ags1 confers the essential septum strength needed for safe gradual cell abscission. J. Cell Biol. 2012, 198, 637–656. [Google Scholar] [CrossRef]
- Dekker, N.; Speijer, D.; Grun, C.H.; van den Berg, M.; de Haan, A.; Hochstenbach, F. Role of the alpha-glucanase Agn1p in fission-yeast cell separation. Mol. Biol. Cell 2004, 15, 3903–3914. [Google Scholar] [CrossRef]
- Martin-Cuadrado, A.B.; Duenas, E.; Sipiczki, M.; Vazquez de Aldana, C.R.; del Rey, F. The endo-beta-1,3-glucanase eng1p is required for dissolution of the primary septum during cell separation in Schizosaccharomyces pombe. J. Cell Sci. 2003, 116, 1689–1698. [Google Scholar] [CrossRef]
- Rincon, S.A.; Paoletti, A. Molecular control of fission yeast cytokinesis. Semin. Cell Dev. Biol. 2016, 53, 28–38. [Google Scholar] [CrossRef]
- Gu, Y.; Oliferenko, S. Comparative biology of cell division in the fission yeast clade. Curr. Opin. Microbiol. 2015, 28, 18–25. [Google Scholar] [CrossRef]
- Pollard, T.D. The value of mechanistic biophysical information for systems-level understanding of complex biological processes such as cytokinesis. Biophys. J. 2014, 107, 2499–2507. [Google Scholar] [CrossRef] [PubMed]
- Martin-Cuadrado, A.B.; Morrell, J.L.; Konomi, M.; An, H.; Petit, C.; Osumi, M.; Balasubramanian, M.; Gould, K.L.; del Rey, F.; de Aldana, C.R. Role of septins and the exocyst complex in the function of hydrolytic enzymes responsible for fission yeast cell separation. Mol. Biol. Cell 2005, 16, 4867–4881. [Google Scholar] [CrossRef] [PubMed]
- Berlin, A.; Paoletti, A.; Chang, F. Mid2p stabilizes septin rings during cytokinesis in fission yeast. J. Cell Biol. 2003, 160, 1083–1092. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.Q.; Ye, Y.; Wang, N.; Pollard, T.D.; Pringle, J.R. Cooperation between the septins and the actomyosin ring and role of a cell-integrity pathway during cell division in fission yeast. Genetics 2010, 186, 897–915. [Google Scholar] [CrossRef] [PubMed]
- Zheng, S.; Dong, F.; Rasul, F.; Yao, X.; Jin, Q.W.; Zheng, F.; Fu, C. Septins regulate the equatorial dynamics of the separation initiation network kinase Sid2p and glucan synthases to ensure proper cytokinesis. FEBS J. 2018, 285, 2468–2480. [Google Scholar] [CrossRef] [PubMed]
- Onishi, M.; Koga, T.; Hirata, A.; Nakamura, T.; Asakawa, H.; Shimoda, C.; Bahler, J.; Wu, J.Q.; Takegawa, K.; Tachikawa, H.; et al. Role of septins in the orientation of forespore membrane extension during sporulation in fission yeast. Mol. Cell. Biol. 2010, 30, 2057–2074. [Google Scholar] [CrossRef] [PubMed]
- Tasto, J.J.; Morrell, J.L.; Gould, K.L. An anillin homologue, Mid2p, acts during fission yeast cytokinesis to organize the septin ring and promote cell separation. J. Cell Biol. 2003, 160, 1093–1103. [Google Scholar] [CrossRef] [PubMed]
- Arbizzani, F.; Mavrakis, M.; Hoya, M.; Ribas, J.C.; Brasselet, S.; Paoletti, A.; Rincon, S.A. Septin filament compaction into rings requires the anillin Mid2 and contractile ring constriction. Cell Rep. 2022, 39, 110722. [Google Scholar] [CrossRef]
- Wloka, C.; Nishihama, R.; Onishi, M.; Oh, Y.; Hanna, J.; Pringle, J.R.; Krauss, M.; Bi, E.F. Evidence that a septin diffusion barrier is dispensable for cytokinesis in budding yeast. Biol. Chem. 2011, 392, 813–829. [Google Scholar] [CrossRef]
- Wu, J.Q.; Kuhn, J.R.; Kovar, D.R.; Pollard, T.D. Spatial and temporal pathway for assembly and constriction of the contractile ring in fission yeast cytokinesis. Dev. Cell 2003, 5, 723–734. [Google Scholar] [CrossRef]
- Liu, M.H.; Heimlicher, M.B.; Bächler, M.; Ibeneche-Nnewihe, C.C.; Florin, E.L.; Brunner, D.; Hoenger, A. Glucose starvation triggers filamentous septin assemblies in an septin-2 deletion mutant. Biol. Open 2019, 8, bio037622. [Google Scholar] [CrossRef]
- Petit, C.S.; Mehta, S.; Roberts, R.H.; Gould, K.L. Ace2p contributes to fission yeast septin ring assembly by regulating mid2+ expression. J. Cell Sci. 2005, 118, 5731–5742. [Google Scholar] [CrossRef]
- Munoz, S.; Manjon, E.; Sanchez, Y. The putative exchange factor Gef3p interacts with Rho3p GTPase and the septin ring during cytokinesis in fission yeast. J. Biol. Chem. 2014, 289, 21995–22007. [Google Scholar] [CrossRef] [PubMed]
- Perez, P.; Portales, E.; Santos, B. Rho4 interaction with exocyst and septins regulates cell separation in fission yeast. Microbiology 2015, 161, 948–959. [Google Scholar] [CrossRef] [PubMed]
- Morrell, J.L.; Nichols, C.B.; Gould, K.L. The GIN4 family kinase, Cdr2p, acts independently of septins in fission yeast. J. Cell Sci. 2004, 117, 5293–5302. [Google Scholar] [CrossRef] [PubMed]
- Wang, N.; Wang, M.; Zhu, Y.H.; Grosel, T.W.; Sun, D.; Kudryashov, D.S.; Wu, J.Q. The Rho-GEF Gef3 interacts with the septin complex and activates the GTPase Rho4 during fission yeast cytokinesis. Mol. Biol. Cell 2015, 26, 238–255. [Google Scholar] [CrossRef]
- Zhang, D.L.; Glotzer, M. The RhoGAP activity of CYK-4/MgcRacGAP functions non-canonically by promoting RhoA activation during cytokinesis. Elife 2015, 4, e08898. [Google Scholar] [CrossRef] [PubMed]
- Renshaw, M.J.; Liu, J.H.; Lavoie, B.D.; Wilde, A. Anillin-dependent organization of septin filaments promotes intercellular bridge elongation and Chmp4B targeting to the abscission site. Open Biol. 2014, 4, 130190. [Google Scholar] [CrossRef]
- Wang, K.; Wloka, C.; Bi, E. Non-muscle myosin-II is required for the generation of a constriction site for subsequent abscission. iScience 2019, 13, 69–81. [Google Scholar] [CrossRef]
- Russo, G.; Krauss, M. Septin Remodeling During Mammalian Cytokinesis. Front. Cell Dev. Biol. 2021, 9, 768309. [Google Scholar] [CrossRef]
- Kechad, A.; Jananji, S.; Ruella, Y.; Hickson, G.R. Anillin acts as a bifunctional linker coordinating midbody ring biogenesis during cytokinesis. Curr. Biol. 2012, 22, 197–203. [Google Scholar] [CrossRef]
- Wloka, C.; Bi, E. Mechanisms of cytokinesis in budding yeast. Cytoskeleton 2012, 69, 710–726. [Google Scholar] [CrossRef]
- Mulvihill, D.P.; Barretto, C.; Hyams, J.S. Localization of fission yeast type II myosin, Myo2, to the cytokinetic actin ring is regulated by phosphorylation of a C-terminal coiled-coil domain and requires a functional septation initiation network. Mol. Biol. Cell 2001, 12, 4044–4053. [Google Scholar] [CrossRef]
- Willet, A.H.; McDonald, N.A.; Gould, K.L. Regulation of contractile ring formation and septation in Schizosaccharomyces pombe. Curr. Opin. Microbiol. 2015, 28, 46–52. [Google Scholar] [CrossRef]
- Proctor, S.A.; Minc, N.; Boudaoud, A.; Chang, F. Contributions of turgor pressure, the contractile ring, and septum assembly to forces in cytokinesis in fission yeast. Curr. Biol. 2012, 22, 1601–1608. [Google Scholar]
- Versele, M.; Thorner, J. Some assembly required: Yeast septins provide the instruction manual. Trends. Cell Biol. 2005, 15, 414–424. [Google Scholar] [CrossRef] [PubMed]
- Bi, E.; Maddox, P.; Lew, D.J.; Salmon, E.D.; McMillan, J.N.; Yeh, E.; Pringle, J.R. Involvement of an actomyosin contractile ring in cytokinesis. J. Cell Biol. 1998, 142, 1301–1312. [Google Scholar] [CrossRef] [PubMed]
- Tamborrini, D.; Juanes, M.A.; Ibanes, S.; Rancati, G.; Piatti, S. Recruitment of the mitotic exit network to yeast centrosomes couples septin displacement to actomyosin constriction. Nat. Commun. 2018, 9, 4308. [Google Scholar] [CrossRef] [PubMed]
- Joo, E.; Surka, M.C.; Trimble, W.S. Mammalian SEPT2 is required for scaffolding nonmuscle myosin II and its kinases. Dev. Cell 2007, 13, 677–690. [Google Scholar] [CrossRef] [PubMed]
- Mavrakis, M.; Azou-Gros, Y.; Tsai, F.C.; Alvarado, J.; Bertin, A.; Iv, F.; Kress, A.; Brasselet, S.; Koenderink, G.H.; Lecuit, T. Septins promote F-actin ring formation by crosslinking actin filaments into curved bundles. Nat. Cell Biol. 2014, 16, 322–334. [Google Scholar] [CrossRef]
- Garcia Cortes, J.C.; Ramos, M.; Osumi, M.; Perez, P.; Ribas, J.C. The Cell Biology of Fission Yeast Septation. Microbiol. Mol. Biol. Rev. 2016, 80, 779–791. [Google Scholar] [CrossRef] [PubMed]
- Cortes, J.C.; Ramos, M.; Osumi, M.; Perez, P.; Ribas, J.C. Fission yeast septation. Commun. Integr. Biol. 2016, 9, e1189045. [Google Scholar] [CrossRef] [PubMed]
- King, L.; Butler, G. Ace2p, a regulator of (chitinase) expression, affects pseudohyphal production in. Curr. Genet. 1998, 34, 183–191. [Google Scholar] [CrossRef] [PubMed]
- Kovacech, B.; Nasmyth, K.; Schuster, T. EGT2 gene transcription is induced predominantly by Swi5 in early G1. Mol. Cell. Biol. 1996, 16, 3264–3274. [Google Scholar] [CrossRef] [PubMed]
- Addi, C.; Bai, J.; Echard, A. Actin, microtubule, septin and ESCRT filament remodeling during late steps of cytokinesis. Curr. Opin. Cell Biol. 2018, 50, 27–34. [Google Scholar] [CrossRef]
- Karasmanis, E.P.; Hwang, D.; Nakos, K.; Bowen, J.R.; Angelis, D.; Spiliotis, E.T. A Septin Double Ring Controls the Spatiotemporal Organization of the ESCRT Machinery in Cytokinetic Abscission. Curr. Biol. 2019, 29, 2174–2182.e2177. [Google Scholar] [CrossRef]
- Miller, K.G.; Field, C.M.; Alberts, B.M. Actin-Binding Proteins from Drosophila Embryos—A Complex Network of Interacting Proteins Detected by F-Actin Affinity-Chromatography. J. Cell Biol. 1989, 109, 2963–2975. [Google Scholar] [CrossRef]
- Longtine, M.S.; DeMarini, D.J.; Valencik, M.L.; Al-Awar, O.S.; Fares, H.; de Virgilio, C.; Pringle, J.R. The septins: Roles in cytokinesis and other processes. Curr. Opin. Cell Biol. 1996, 8, 106–119. [Google Scholar] [CrossRef]
- Rezig, I.M.; Yaduma, W.G.; Gould, G.W.; McInerny, C.J. The role of anillin/Mid1p during medial division and cytokinesis: From fission yeast to cancer cells. Cell Cycle 2023, 22, 633–644. [Google Scholar] [CrossRef]
- Chen, X.; Wang, K.; Svitkina, T.; Bi, E. Critical Roles of a RhoGEF-Anillin Module in Septin Architectural Remodeling during Cytokinesis. Curr. Biol. 2020, 30, 1477–1490.e3. [Google Scholar] [CrossRef]
- Ong, K.; Wloka, C.; Okada, S.; Svitkina, T.; Bi, E. Architecture and dynamic remodelling of the septin cytoskeleton during the cell cycle. Nat. Commun. 2014, 5, 5698. [Google Scholar] [CrossRef]
- Lei, B.; Zhou, N.; Guo, Y.; Zhao, W.; Tan, Y.W.; Yu, Y.; Lu, H. Septin ring assembly is regulated by Spt20, a structural subunit of the SAGA complex. J. Cell Sci. 2014, 127, 4024–4036. [Google Scholar] [CrossRef]
- Versele, M.; Thorner, J. Septin collar formation in budding yeast requires GTP binding and direct phosphorylation by the PAK Cla4. J. Cell Biol. 2004, 164, 701–715. [Google Scholar] [CrossRef]
- Mortensen, E.M.; McDonald, H.; Yates, J.; Kellogg, D.R. Cell cycle-dependent assembly of a Gin4-septin complex. Mol. Biol. Cell 2002, 13, 2091–2105. [Google Scholar] [CrossRef]
- Okuzaki, D.; Nojima, H. Kcc4 associates with septin proteins of. FEBS Lett. 2001, 489, 197–201. [Google Scholar] [CrossRef]
- Longtine, M.S.; Theesfeld, C.L.; McMillan, J.N.; Weaver, E.; Pringle, J.R.; Lew, D.J. Septin-dependent assembly of a cell cycle-regulatory module in Saccharomyces cerevisiae. Mol. Cell. Biol. 2000, 20, 4049–4061. [Google Scholar] [CrossRef]
- Kang, H.; Tsygankov, D.; Lew, D.J. Sensing a bud in the yeast morphogenesis checkpoint: A role for Elm1. Mol. Biol. Cell 2016, 27, 1764–1775. [Google Scholar] [CrossRef]
- Marquardt, J.; Yao, L.L.; Okada, H.; Svitkina, T.; Bi, E. The LKB1-like kinase Elm1 controls septin hourglass assembly and stability by regulating filament pairing. Curr. Biol. 2020, 12, 2386–2394. [Google Scholar] [CrossRef]
- Sharma, K.; Menon, M.B. Decoding post-translational modifications of mammalian septins. Cytoskeleton 2023, 80, 169–181. [Google Scholar] [CrossRef]
- Chahwan, R.; Gravel, S.; Matsusaka, T.; Jackson, S.P. Dma/RNF8 proteins are evolutionarily conserved E3 ubiquitin ligases that target septins. Cell Cycle 2013, 12, 1000–1008. [Google Scholar] [CrossRef]
- Ribet, D.; Boscaini, S.; Cauvin, C.; Siguier, M.; Mostowy, S.; Echard, A.; Cossart, P. SUMOylation of human septins is critical for septin filament bundling and cytokinesis. J. Cell Biol. 2017, 216, 4041–4052. [Google Scholar] [CrossRef]
- Johnson, E.S.; Blobel, G. Cell cycle-regulated attachment of the ubiquitin-related protein SUMO to the yeast septins. J. Cell Biol. 1999, 147, 981–993. [Google Scholar] [CrossRef]
- Alonso, A.; Greenlee, M.; Matts, J.; Kline, J.; Davis, K.J.; Miller, R.K. Emerging roles of sumoylation in the regulation of actin, microtubules, intermediate filaments, and septins. Cytoskeleton 2015, 72, 305–339. [Google Scholar] [CrossRef]
- Mendoza, M.; Hyman, A.A.; Glotzer, M. GTP Binding Induces Filament Assembly of a Recombinant Septin. Curr. Biol. 2002, 12, 1858–1863. [Google Scholar] [CrossRef]
- Huang, Y.-W.; Surka, M.C.; Reynaud, D.; Pace-Asciak, C.; Trimble, W.S. GTP binding and hydrolysis kinetics of human septin 2. FEBS J. 2006, 273, 3248–3260. [Google Scholar] [CrossRef]
- Caviston, J.P.; Longtine, M.; Pringle, J.R.; Bi, E. The role of Cdc42p GTPase-activating proteins in assembly of the septin ring in yeast. Mol. Biol. Cell 2003, 14, 4051–4066. [Google Scholar] [CrossRef]
- Kang, N.; Matsui, T.S.; Liu, S.; Deguchi, S. ARHGAP4-SEPT2-SEPT9 complex enables both up- and down-modulation of integrin-mediated focal adhesions, cell migration, and invasion. Mol. Biol. Cell 2021, 32, ar28. [Google Scholar] [CrossRef]
- Chao, J.T.; Wong, A.K.O.; Tavassoli, S.; Young, B.P.; Chruscicki, A.; Fang, N.N.; Howe, L.J.; Mayor, T.; Foster, L.J.; Loewen, C.J.R. Polarization of the Endoplasmic Reticulum by ER-Septin Tethering. Cell 2014, 158, 620–632. [Google Scholar] [CrossRef]
- Pagliuso, A.; Tham, T.N.; Stevens, J.K.; Lagache, T.; Persson, R.; Salles, A.; Olivo-Marin, J.C.; Oddos, S.; Spang, A.; Cossart, P.; et al. A role for septin 2 in Drp1-mediated mitochondrial fission. Embo Rep. 2016, 17, 858–873. [Google Scholar] [CrossRef] [PubMed]
- Krokowski, S.; Lobato-Márquez, D.; Mostowy, S. Mitochondria promote septin assembly into cages that entrap for autophagy. Autophagy 2018, 14, 913–914. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, S.; Zheng, B.; Fu, C. The Roles of Septins in Regulating Fission Yeast Cytokinesis. J. Fungi 2024, 10, 115. https://doi.org/10.3390/jof10020115
Zheng S, Zheng B, Fu C. The Roles of Septins in Regulating Fission Yeast Cytokinesis. Journal of Fungi. 2024; 10(2):115. https://doi.org/10.3390/jof10020115
Chicago/Turabian StyleZheng, Shengnan, Biyu Zheng, and Chuanhai Fu. 2024. "The Roles of Septins in Regulating Fission Yeast Cytokinesis" Journal of Fungi 10, no. 2: 115. https://doi.org/10.3390/jof10020115
APA StyleZheng, S., Zheng, B., & Fu, C. (2024). The Roles of Septins in Regulating Fission Yeast Cytokinesis. Journal of Fungi, 10(2), 115. https://doi.org/10.3390/jof10020115