Diversity of Genetic and Vegetative Compatibility Group of Colletotrichum coccodes Isolates from Chile Using Amplified Fragment Length Polymorphism Markers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Colletotrichum coccodes Isolates
2.2. DNA Extraction
2.3. Molecular Confirmation
2.4. AFLP Assays
2.5. Cluster Analysis
2.6. Population Genetics Statistics
3. Results
3.1. AFLP Analysis
3.2. Cluster Analysis
3.3. Population Genetics Statistics of C. coccodes Populations
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lees, A.K.; Hilton, A.J. Black dot (Colletotrichum coccodes): An increasingly important disease of potato. Plant Pathol. 2003, 52, 3–12. [Google Scholar] [CrossRef]
- Cano, J.; Guarro, J.; Gene, J. Molecular and morphological identification of Colletotrichum species of clinical interest. J. Microb. 2004, 42, 2450–2454. [Google Scholar]
- Johnson, D.A.; Geary, B.; Tsror, L. Potato Black Dot—The Elusive Pathogen, Disease Development and Management. Am. J. Potato Res. 2018, 95, 340–350. [Google Scholar] [CrossRef]
- Pasche, J.S.; Taylor, R.J.; Gudmestad, N.C. Colonization of potato by Colletotrichum coccodes: Effect of soil infestation, seed and foliar inoculation. Plant Dis. 2010, 94, 905–914. [Google Scholar] [CrossRef]
- McIntyre, G.A.; Rusanowski, C. Scanning electron microscope observations of the development of sporophores of Colletotrichum atrementarium on infected potato periderm. Am. Potato J. 1975, 52, 269–275. [Google Scholar] [CrossRef]
- Davis, J.R.; Johnson, D.A. Diseases caused by fungi—Black dot. In Compendium of Potato Diseases; Stevenson, W.R., Loria, R., Franc, G.D., Weingartner, D.P., Eds.; APS Press: St Paul, MN, USA, 2002; pp. 16–18. [Google Scholar]
- Leslie, J.F. Fungal vegetative compatibility. Annu. Rev. Phytopathol. 1993, 31, 127–150. [Google Scholar] [CrossRef]
- Ben-Daniel, B.; Bar-Zvi, D.; Johnson, D.; Harding, R.; Hazanovsky, M.; Tsror Lahkim, L. Vegetative compatibility groups in Colletotrichum coccodes subpopulations from Australia and genetic links with subpopulations from Europe/Israel and North America. Phytopathology 2010, 100, 271–278. [Google Scholar] [CrossRef] [PubMed]
- Nitzan, N.; Hazanovsky, M.; Tal, M.; Tsror Lahkim, L. Vegetative compatibility groups in Colletotrichum coccodes, the causal agent of black dot on potato. Phytopathology 2002, 92, 827–832. [Google Scholar] [CrossRef] [PubMed]
- Nitzan, N.; Tsror (Lahkim), L.; Johnson, D.A. Vegetative compatibility groups and aggressiveness of North American isolates of Colletotrichum coccodes, the causal agent of potato black dot. Plant Dis. 2006, 90, 1287–1292. [Google Scholar] [CrossRef] [PubMed]
- Shcolnick, S.; Dinoor, A.; Tsror Lahkim, L. Additional vegetative compatibility groups in Colletotrichum coccodes subpopulations from Europe and Israel. Plant Dis. 2007, 91, 805–808. [Google Scholar] [CrossRef] [PubMed]
- Heilmann, L.; Nitzan, N.; Johnson, D.A.; Pasche, J.S.; Doetkott, C.; Gudmestad, N.C. Genetic variability in the potato pathogen Colletotrichum coccodes as determined by Amplified Fragment Length Polymorphism and vegetative compatibility group analyses. Phytopathology 2006, 96, 1097–1107. [Google Scholar] [CrossRef]
- Alananbeh, K.M.; Lahkim, L.T.; Gudmestad, N.C. Genetic Diversity of a Global Population of Colletotrichum Coccodes using amplified fragment length polymorphism markers. Am. J. Potato Res. 2014, 91, 75–87. [Google Scholar] [CrossRef]
- Alananbeh, K.M.; Gudmestad, N.C. Genetic diversity of Colletotrichum coccodes in the United States using amplified fragment length polymorphism analysis. J. Gen. Plant Pathol. 2016, 82, 199–211. [Google Scholar] [CrossRef]
- Strausbaugh, C.A.; Schroth, M.N.; Weinhold, A.R.; Hancock, J.G. Assessment of vegetative compatibility of Verticillium dahliae tester strains and isolates from California potatoes. Phytopathology 1992, 82, 61–68. [Google Scholar] [CrossRef]
- Joaquim, T.R.; Rowe, R.C. Reassessment of vegetative compatibility relationships among strains of Verticillium dahliae using nitrate nonutilizing mutants. Phytopathology 1990, 80, 1160–1166. [Google Scholar] [CrossRef]
- Ames, M.; Spooner, D.M. DNA from herbarium specimens settles a controversy about origins of the European potato. Am. J. Bot. 2008, 95, 252–257. [Google Scholar] [CrossRef]
- Smith, D. Maintenance of Fungi. In Maintenance of Microorganisms; Kirsop, B.E., Snell, J.J.S., Eds.; Academic Press: London, UK, 2005; pp. 83–107. [Google Scholar]
- Rivera-Varas, V.V.; Freeman, T.A.; Gudmestad, N.C.; Secor, G.A. Mycoparasitism of Helminthosporium solani by Acremonium strictum. Phytopathology 2007, 97, 1331–1337. [Google Scholar] [CrossRef] [PubMed]
- Xu, M.; Huaracha, E.; Korban, S.S. Development of sequence characterized amplified regions (SCARs) from amplified fragment length polymorphism (AFLP) markers tightly linked to the Vf gene in apple. Genome 2001, 44, 63–70. [Google Scholar] [CrossRef] [PubMed]
- Doyle, J.J.; Doyle, J.L. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem. Bull. 1987, 19, 11–15. [Google Scholar]
- Cullen, D.W.; Lees, A.K.; Toth, I.K.; Duncan, J.M. Detection of Colletotrichum coccodes from soil and potato tubers by conventional and quantitative real-time PCR. Plant Pathol. 2002, 51, 281–292. [Google Scholar] [CrossRef]
- White, T.J.; Bruns, T.; Lee, S.; Taylor, J.W. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR Protocols: A Guide to Methods and Applications; Innis, M.A., Gelfand, D.H., Sninsky, J.J., White, T.J., Eds.; Academic Press, Inc.: New York, NY, USA, 1990; pp. 315–322. [Google Scholar]
- Hall, T.A. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 1999, 41, 95–98. [Google Scholar]
- Corpet, F. Multiple sequence alignment with hierarchical clustering. Nucleic Acids Res. 1988, 16, 10881–10890. [Google Scholar] [CrossRef] [PubMed]
- Lobo, I. Basic local alignment search tool (BLAST). Nat. Educ. 2008, 1. [Google Scholar] [CrossRef]
- Vos, P.; Hogers, R.; Bleeker, M.; Reijans, M.; van de Lee, T.; Hornes, M.; Frijters, A.; Pot, J.; Peleman, J.; Kuiper, M. AFLP: A new technique for DNA fingerprinting. Nucleic Acid. Res. 1995, 23, 4407–4414. [Google Scholar] [CrossRef] [PubMed]
- Yab, I.; Nelson, R.J. WinBoot: A Program for Performing Bootstrap Analysis of Binary Data to Determine the Confidence Limits of UPGMA-Based Dendograms; IRRI Discussion Paper Series No. 14; International Rice Research Institute: Manila, Philippines, 1996. [Google Scholar]
- Peakall, R.; Smouse, P.E. GenAlex 6: Genetic analysis in Excel. Population genetic software for teaching and research. Mol. Ecol. Notes 2006, 6, 288–295. [Google Scholar] [CrossRef]
- Yeh, F.C.; Yang, R.C.; Boyle, T.B.; Ye, Z.H.; Mao, J.X. POPGENE, the User-Friendly Shareware for Population Genetic Analysis; Molecular Biology and Biotechnology Center, University of Alberta: Edmonton, AB, Canada, 1997. [Google Scholar]
- Agapow, P.M.; Burt, A. Indices of multilocus linkage disequilibrium. Mol. Ecol. Notes 2001, 1, 101–102. [Google Scholar] [CrossRef]
- Excoffier, L.; Smouse, P.E.; Quattro, J.M. Analysis of molecular variance inferred from metric distances among DNA haplotypes: Application to human mitochondrial DNA restriction data. Genetics 1992, 131, 479–491. [Google Scholar] [CrossRef] [PubMed]
- Halkett, F.; Plantegenest, M.; Prunier-Leterme, N.; Mieuzet, L.; Delmotte, F.; Simon, J.C. Admixed sexual and facultatively asexual aphid lineages at mating sites. Mol. Ecol. 2005, 14, 325–336. [Google Scholar] [CrossRef]
- Comont, G.; Corio-Costet, M.; Larignon, P.; Delmotte, F. AFLP markers reveal two genetic groups in the French population of the grapevine fungal pathogen Phaeomoniella chlamydospora. Europ J. Plant Pathol. 2010, 127, 451–464. [Google Scholar] [CrossRef]
- Durán, A.; Gryzenhout, M.; Drenth, A.; Slippers, B.; Ahumada, R.; Wingfield, B.D.; Wingfield, M.I. AFLP analysis reveals a clonal population of Phytophthora pinifolia in Chile. Fungal Biol. 2010, 114, 746–752. [Google Scholar] [CrossRef]
- Giraud, T.; Fortini, D.; Levis, C.; Leroux, P.; Brygoo, Y. RFLP markers show genetic recombination in Botryotinia fuckeliana (Botrytis cinerea) and transposable elements reveal two sympatric species. Mol. Biol. Evol. 1997, 14, 1177–1185. [Google Scholar] [CrossRef] [PubMed]
- Linde, C.C.; Zala, M.; Ceccarelli, S.; McDonald, B.A. Further evidence for sexual reproduction in Rhynchosporium secalis based on distribution and frequency of mating-type alleles. Fungal Genet. Biol. 2003, 40, 115–125. [Google Scholar] [CrossRef] [PubMed]
- Kerenyi, Z.; Moretti, A.; Waalwijk, C.; Olah, B.; Hornok, L. Mating type sequences in asexually reproducing Fusarium species. Appl. Environ. Microbiol. 2004, 70, 4419–4423. [Google Scholar] [CrossRef] [PubMed]
- Paoletti, M.; Rydholm, C.; Schwier, E.U.; Anderson, M.J.; Szakacs, G.; Lutzoni, F.; Debeaupuis, J.; Latge, J.; Denning, D.W.; Dyer, P.S. Evidence for sexuality in the opportunistic fungal pathogen Aspergillus fumigatus. Curr. Biol. 2005, 15, 1242–1248. [Google Scholar] [CrossRef] [PubMed]
- Milgroom, M.G.; Sotirovski, K.; Risteski, M.; Talbot Brewer, M. Heterokaryons and parasexual recombinants of Cryphonectria parasitica in two clonal populations in southeastern Europe. Fungal Genet. Biol. 2009, 46, 849–854. [Google Scholar] [CrossRef] [PubMed]
- Linde, C.; Drenth, A.; Kemp, G.H.J.; Wingfield, M.J.; von Broembsen, S.L. Population structure of Phytophthora cinnamomi in South Africa. Phytopathology 1997, 87, 822–827. [Google Scholar] [CrossRef]
- Ivors, K.L.; Garbelotto, M.; Vries, I.D.E.; RuyterSpira, C.; Hekkert, B.; Rosenzweig, N.; Bonants, P.J.M. Microsatellite markers identify three lineages of Phytophthora ramorum in US nurseries, yet single lineages in US forest and European nursery populations. Mol. Ecol. 2006, 15, 1493–1505. [Google Scholar] [CrossRef]
- Prospero, S.; Hansen, E.M.; Grunwald, N.J.; Winton, L.M. Population dynamics of the sudden oak death pathogen Phytophthora ramorum in Oregon from 2001 to 2004. Mol. Ecol. 2007, 16, 2958–2973. [Google Scholar] [CrossRef]
Country | Location | Cultivar | No. Isolates |
---|---|---|---|
Chile, South America 1 | Coñab, Achao, Chiloe Island | Clavela | 3 |
Coñab, Achao, Chiloe Island | Desirée | 9 | |
Coñab, Achao, Chiloe Island | Michuña negra | 5 | |
Coñab, Achao, Chiloe Island | Michuña roja | 1 | |
Coñab, Achao, Chiloe Island | Murta | 3 | |
Coñab, Achao, Chiloe Island | Pie | 5 | |
Coñab, Achao, Chiloe Island | Pukará | 9 | |
Coñab, Achao, Chiloe Island | Romano | 9 | |
Remehue, Osorno | Asterix | 10 | |
Remehue, Osorno | Cardinal | 8 | |
Remehue, Osorno | Desirée | 6 | |
Remehue, Osorno | Karú | 7 | |
Remehue, Osorno | Patagonia | 9 | |
Remehue, Osorno | Yagana | 13 | |
Rapaco, La Union | Desirée | 1 | |
Nueva Braunau, Puerto Montt | Rosara | 1 | |
USA, North America 2 | 20 | ||
Australia 3 | 5 | ||
South Africa | 3 | ||
Europe | 8 | ||
Testers 4 | 13 | ||
Total | 148 |
Source of Variation | df | Est. Var. a | % | Ф Value | p (Rand ≥ Data) b |
---|---|---|---|---|---|
Based on geographic origin c | |||||
Among populations (ФPT) d | 4 | 9.99 | 13% | 0.134 | 0.006 |
Within populations | 130 | 64.80 | 87% | ||
Chile population | |||||
| |||||
Among locations (ФPT) | 1 | 0.34 | 1 | 0.006 | 0.203 |
Within locations | 95 | 65.94 | 99 | ||
| |||||
Among cultivars (ФPT) | 11 | 1.46 | 2 | 0.022 | 0.043 |
Within cultivars | 85 | 64.67 | 98 | ||
For clusters | |||||
Among clusters (ФPT) | 4 | 34.38 | 43 | 0.434 | 0.001 |
Within clusters | 130 | 44.8 | 57 |
VCG | Geographic Origin | |||||
---|---|---|---|---|---|---|
Chile | USA | Australia | South Africa | Europe | Total | |
NA-VCG1 | 13 | 3 | 0 | 0 | 2 | 18 |
NA-VCG2 | 58 | 5 | 0 | 0 | 0 | 63 |
NA-VCG3 | 12 | 2 | 0 | 0 | 0 | 14 |
NA-VCG4/5 | 9 | 3 | 5 | 2 | 5 | 24 |
NA-VCG6/7 | 7 | 7 | 0 | 1 | 1 | 16 |
Total | 99 | 20 | 5 | 3 | 8 | 135 |
Country | Sample Size | No. Polymorphic Loci a | % a | h b | G c | GD d | LD e | No. Unique Bands f | |
---|---|---|---|---|---|---|---|---|---|
One population h | 135 g | 449 | 98.46 | 0.21 | 122 | 0.99 | 0.06 | - | |
Australia | 5 | 26 | 5.70 | 0.02 | 4 | 0.90 | 0.27 | 0 | |
Europe | 8 | 283 | 62.06 | 0.19 | 8 | 1 | 0.29 | 0 | |
South Africa | 3 | 206 | 45.18 | 0.20 | 3 | 1 | 0.76 | 0 | |
USA, North America | 20 | 420 | 92.11 | 0.31 | 16 | 0.97 | 0.08 | 21 | |
Chile, South America | 99 | 426 | 93.42 | 0.28 | 94 | 0.99 | 0.06 | 15 | |
Based on location | Chiloe island | 35 | 365 | 80.04 | 0.25 | 35 | 1 | 0.06 | 7 |
Osorno | 62 | 418 | 91.67 | 0.29 | 57 | 0.99 | 0.06 | 59 | |
La Union | 1 | - | - | - | - | - | - | - | |
Puerto Montt | 1 | - | - | - | - | - | - | - | |
Based on cultivar | Asterix | 10 | 345 | 75.66 | 0.28 | 10 | 1 | 0.08 | 5 |
Cardinal | 8 | 313 | 68.64 | 0.24 | 7 | 0.96 | 0.13 | 0 | |
Clavela | 3 | 209 | 45.83 | 0.20 | 3 | 1 | 0.30 | 1 | |
Desiree | 16 | 341 | 74.78 | 0.26 | 16 | 1 | 0.09 | 1 | |
Karu | 7 | 308 | 67.54 | 0.27 | 6 | 0.95 | 0.17 | 0 | |
Michuna negra | 5 | 242 | 53.07 | 0.22 | 5 | 1 | 0.03 | 1 | |
Michuna roja | 1 | - | - | - | - | - | - | - | |
Murta | 3 | 189 | 41.15 | 0.18 | 3 | 1 | -0.002 | 0 | |
Patagonia | 9 | 275 | 60.31 | 0.21 | 9 | 1 | 0.09 | 1 | |
Pie | 5 | 291 | 63.82 | 0.25 | 5 | 1 | 0.06 | 0 | |
Pukara | 9 | 373 | 81.80 | 0.29 | 8 | 0.97 | 0.12 | 0 | |
Romano | 9 | 271 | 59.43 | 0.20 | 9 | 1 | 0.09 | 0 | |
Rosara | 1 | - | - | - | - | - | - | - | |
Yagana | 13 | 325 | 71.27 | 0.27 | 11 | 0.97 | 0.12 | 1 |
Potato Cultivar | Asterix | Cardinal | Clavela | Desiree | Karu | Michuna Negra | Michuna Roja | Murta | Patagonia | Pie | Pukara | Romano | Rosara | Yagana |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Asterix | **** | 0.95 | 0.93 | 0.98 | 0.93 | 0.95 | 0.82 | 0.95 | 0.95 | 0.97 | 0.94 | 0.96 | 0.83 | 0.97 |
Cardinal | 0.06 | **** | 0.92 | 0.95 | 0.94 | 0.93 | 0.81 | 0.93 | 0.95 | 0.94 | 0.94 | 0.95 | 0.84 | 0.95 |
Clavela | 0.07 | 0.08 | **** | 0.94 | 0.88 | 0.92 | 0.83 | 0.92 | 0.93 | 0.93 | 0.91 | 0.93 | 0.84 | 0.92 |
Desiree | 0.02 | 0.05 | 0.06 | **** | 0.93 | 0.95 | 0.81 | 0.95 | 0.95 | 0.96 | 0.93 | 0.96 | 0.83 | 0.97 |
Karu | 0.07 | 0.06 | 0.13 | 0.07 | **** | 0.89 | 0.74 | 0.90 | 0.89 | 0.91 | 0.92 | 0.90 | 0.76 | 0.93 |
Michuna Negra | 0.05 | 0.07 | 0.09 | 0.06 | 0.12 | **** | 0.81 | 0.94 | 0.96 | 0.96 | 0.94 | 0.93 | 0.88 | 0.96 |
Michuna Roja | 0.20 | 0.21 | 0.19 | 0.21 | 0.30 | 0.21 | **** | 0.78 | 0.86 | 0.86 | 0.82 | 0.85 | 0.77 | 0.78 |
Murta | 0.05 | 0.07 | 0.09 | 0.05 | 0.11 | 0.07 | 0.25 | **** | 0.95 | 0.93 | 0.93 | 0.95 | 0.86 | 0.94 |
Patagonia | 0.06 | 0.05 | 0.07 | 0.06 | 0.11 | 0.05 | 0.16 | 0.05 | **** | 0.96 | 0.95 | 0.95 | 0.91 | 0.94 |
Pie | 0.03 | 0.06 | 0.07 | 0.04 | 0.09 | 0.04 | 0.15 | 0.07 | 0.04 | **** | 0.94 | 0.95 | 0.84 | 0.96 |
Pukara | 0.06 | 0.06 | 0.10 | 0.07 | 0.08 | 0.06 | 0.20 | 0.07 | 0.05 | 0.06 | **** | 0.93 | 0.88 | 0.94 |
Romano | 0.04 | 0.05 | 0.07 | 0.04 | 0.10 | 0.07 | 0.17 | 0.05 | 0.05 | 0.05 | 0.07 | **** | 0.85 | 0.93 |
Rosara | 0.19 | 0.17 | 0.18 | 0.18 | 0.27 | 0.13 | 0.26 | 0.15 | 0.09 | 0.17 | 0.13 | 0.16 | **** | 0.84 |
Yagana | 0.03 | 0.05 | 0.08 | 0.03 | 0.07 | 0.04 | 0.25 | 0.06 | 0.06 | 0.04 | 0.07 | 0.07 | 0.18 | **** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alananbeh, K.M.; Rivera, V.; Bravo, I.A.; Secor, G.; Gudmestad, N.C. Diversity of Genetic and Vegetative Compatibility Group of Colletotrichum coccodes Isolates from Chile Using Amplified Fragment Length Polymorphism Markers. J. Fungi 2024, 10, 200. https://doi.org/10.3390/jof10030200
Alananbeh KM, Rivera V, Bravo IA, Secor G, Gudmestad NC. Diversity of Genetic and Vegetative Compatibility Group of Colletotrichum coccodes Isolates from Chile Using Amplified Fragment Length Polymorphism Markers. Journal of Fungi. 2024; 10(3):200. https://doi.org/10.3390/jof10030200
Chicago/Turabian StyleAlananbeh, Kholoud M., Viviana Rivera, Ivette Acuña Bravo, Gary Secor, and Neil C. Gudmestad. 2024. "Diversity of Genetic and Vegetative Compatibility Group of Colletotrichum coccodes Isolates from Chile Using Amplified Fragment Length Polymorphism Markers" Journal of Fungi 10, no. 3: 200. https://doi.org/10.3390/jof10030200
APA StyleAlananbeh, K. M., Rivera, V., Bravo, I. A., Secor, G., & Gudmestad, N. C. (2024). Diversity of Genetic and Vegetative Compatibility Group of Colletotrichum coccodes Isolates from Chile Using Amplified Fragment Length Polymorphism Markers. Journal of Fungi, 10(3), 200. https://doi.org/10.3390/jof10030200