Text Correction
We made additional minor edits to improve clarity. These changes do not affect the scientific content. Modifications in specific sections of the publication are shown below.
1. We replaced “putative GS” with “ring-like” throughout the publication.
Text Correction in Introduction
2. In the sentence “Cryo-electron tomography (cryoET) has become a preferred method to characterize the structure of membrane proteins, particularly those that are difficult to purify or crystallize [18,19].”, we changed “the preferred method” to “a preferred method”.
3. We updated the last sentence to read “Here, we apply cryoET and subtomogram analysis to determine the structure and spatial distribution of plasma membrane proteins in C. glabrata with an initial focus on GS.”
Text Correction in Methods and Methods
4. In the sentence “Plunge-frozen grids were stored in a liquid nitrogen dewar until imaging.”, we deleted the word “flask”.
5. In the sentence “Plasma membranes isolated from Fks1-overexpressing cells featured an apparent increase in the abundance of the larger ring-like structures.”, we replaced “greater” with “an apparent increase in the”.
6. We updated the title of Section 2.8 to “Spatial Distribution Analysis” to align with the corrected annotation.
Text Correction in Results
7. In Figures 2 and 3, we replaced “arrows” with “arrowheads”.
8. In the sentence “To determine whether the large or small ring-like structures corresponded to β-(1,3)-glucan synthase (GS), we constructed strains that constitutively express the FKS1 gene.”, we deleted “the uncharacterized”, since the 3D structure of GS has already been published.
9. We updated the sentence “Notably, the relative abundance of the large ring structure increased significantly in the KH238 strain compared to the wild type.” to “Notably, we observed an apparent increase in the abundance of the large ring structure within plasma membranes from the KH238 strain compared to the wild type”.
10. In the sentence “Taken together, biochemical and structural data suggest that these large ring-like structures could be putative GS complexes.”, we replaced the word “are” with “could be”.
11. In the legend of Figure 3, we revised the abbreviation “YDP” to “YPD”. We also modified the sentence to read “Slice view showing clusters of the large ring-like structures in membranes from the strain overexpressing Fks1 (KH238) (orange arrowheads).”
Text Correction in Supplementary Materials
12. Changed “putative GS complex” to “Pma1 hexamer”.
References Correction
Newly added references show below:
8. Garcia-Rubio, R.; de Oliveira, H.C.; Rivera, J.; Trevijano-Contador, N. The Fungal Cell Wall: Candida, Cryptococcus, and Aspergillus Species. Front. Microbiol. 2020, 10, 2993.
9. Serrano, R. Structure and function of proton translocating ATPase in plasma membranes of plants and fungi. Biochim. Biophys. Acta 1988, 947, 1–28.
13. Merzendorfer, H. Chitin synthesis inhibitors: old molecules and new developments. Insect Sci. 2013, 20, 121–138.
14. Bublitz, M.; Kjellerup, L.; Cohrt, K.O.; Gordon, S.; Mortensen, A.L.; Clausen, J.D.; Pallin, T.D.; Hansen, J.B.; Fuglsang, A.T.; Dalby-Brown, W.; et al. Tetrahydrocarbazoles are a novel class of potent P-type ATPase inhibitors with antifungal activity. PLoS ONE 2018, 13, e0188620.
26. Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Žídek, A.; Potapenko, A.; et al. Highly accurate protein structure prediction with AlphaFold. Nature 2021, 596, 583–589.
27. Hu, X.; Yang, P.; Chai, C.; Liu, J.; Sun, H.; Wu, Y.; Zhang, M.; Zhang, M.; Liu, X.; Yu, H. Structural and mechanistic insights into fungal β-1,3-glucan synthase FKS1. Nature 2023, 616, 190–198.
28. Zhao, C.-R.; You, Z.-L.; Chen, D.-D.; Hang, J.; Wang, Z.-B.; Ji, M.; Wang, L.-X.; Zhao, P.; Qiao, J.; Yun, C.-H.; et al. Structure of a fungal 1,3-β-glucan synthase. Sci. Adv. 2023, 9, eadh7820.
29. Ren, Z.; Chhetri, A.; Guan, Z.; Suo, Y.; Yokoyama, K.; Lee, S.-Y. Structural basis for inhibition and regulation of a chitin synthase from Candida albicans. Nat. Struct. Mol. Biol. 2022, 29, 653–664.
30. Zhao, P.; Zhao, C.; Chen, D.; Yun, C.; Li, H.; Bai, L. Structure and activation mechanism of the hexameric plasma membrane H+-ATPase. Nat. Commun. 2021, 12, 6439.
31. Heit, S.; Geurts, M.M.G.; Murphy, B.J.; Corey, R.A.; Mills, D.J.; Kühlbrandt, W.; Bublitz, M. Structure of the hexameric fungal plasma membrane proton pump in its autoinhibited state. Sci. Adv. 2021, 7, eabj5255.
43. Malínská, K.; Malínský, J.; Opekarová, M.; Tanner, W. Visualization of Protein Compartmentation within the Plasma Membrane of Living Yeast Cells. Mol. Biol. Cell. 2003, 14, 4427–4436.
44. Malinska, K.; Malinsky, J.; Opekarova, M.; Tanner, W. Distribution of Can1p into stable domains reflects lateral protein segregation within the plasma membrane of living S. cerevisiae cells. J. Cell Sci. 2004, 117, 6031–6041.
45. Merzendorfer, H.; Heinisch, J. Microcompartments within the yeast plasma membrane. Biol. Chem. 2013, 394, 189–202.
46. Hippe, S.; Lüth, H. A simple physical model for fungicide induced hexagonal clustering of intramembrane particles in the plasmalemma of Ustilago avenae. J. Theor. Biol. 1986, 121, 351–366.
47. Kübler, O.; Gross, H.; Moor, H. Complementary structures of membrane fracture faces obtained by ultrahigh vacuum freeze-fracturing at -196 degrees C and digital image processing. Ultramicroscopy 1978, 3, 161–168.
48. Grossman, G.; Opekarová, M.; Malinsky, J.; Weig-Meckl, I.; Tanner, W. Membrane potential governs lateral segregation of plasma membrane proteins and lipids in yeast. EMBO J. 2007, 26, 1–8.
49. Grossman, G.; Malinsky, J.; Stahlschmidt, W.; Loibl, M.; Weig-Meckl, I.; Frommer, W.B.; Opekarová, M.; Tanner, W. Plasma membrane microdomains regulate turnover of transport proteins in yeast. J. Cell Biol. 2008, 183, 1075–1088.
50. Bianchi, F.; Syga, Ł.; Moiset, G.; Spakman, D.; Schavemaker, P.E.; Punter, C.M.; Seinen, A.-B.; van Oijen, A.M.; Robinson, A.; Poolman, B. Steric exclusion and protein conformation determine the localization of plasma membrane transporters. Nat. Commun. 2018, 9, 501.
51. Spira, F.; Mueller, N.S.; Beck, G.; von Olshausen, P.; Beig, J.; Wedlich-Söldner, R. Patchwork organization of the yeast plasma membrane into numerous coexisting domains. Nat. Cell Biol. 2012, 14, 640–648.
These references removed, the list show below:
11. Pfaller, M.A.; Castanheira, M.; Lockhart, S.R.; Ahlquist, A.M.; Messer, S.A.; Jones, R.N. Frequency of decreased susceptibility and resistance to echinocandins among fluconazole-resistant bloodstream isolates of Candida glabrata. J. Clin. Microbiol. 2012, 50, 1199–203.
12. Alexander, B.D.; Johnson, M.D.; Pfeiffer, C.D.; Jiménez-Ortigosa, C.; Catania, J.; Booker, R.; Castanheira, M.; Messer, S.A.; Perlin, D.S.; Pfaller, M.A. Increasing echinocandin resistance in Candida glabrata: Clinical failure correlates with presence of FKS mutations and elevated minimum inhibitory concentrations. Clin. Infect. Dis. 2013, 56, 1724–1732.
13. Perlin, D.S. Echinocandin Resistance in Candida. Clin. Infect. Dis. 2015, 61, S612–617.
14. Johnson, M.E.; Edlind, T.D. Topological and mutational analysis of Saccharomyces cerevisiae Fks1. Eukaryot. Cell 2012, 11, 952–960.
37. Rico, H.; Carrillo, C.; Aguado, C.; Mormeneo, S.; Sentandreu, R. Initial steps of wall protoplast regeneration in Candida albicans. Res. Microbiol. 1997, 148, 593–603.
38. Okada, H.; Abe, M.; Asakawa-Minemura, M.; Hirata, A.; Qadota, H.; Morishita, K.; Ohnuki, S.; Satoru Nogami, S.; Ohya, Y. Multiple Functional Domains of the Yeast l,3-β-Glucan Synthase Subunit Fks1p Revealed by Quantitative Phenotypic Analysis of Temperature-Sensitive Mutants. Genetics 2010, 184, 1013–1024.
39. Okada, H.; Ohnuki, S.; Roncero, C.; Konopka, J.B.; Ohya, Y. Distinct roles of cell wall biogenesis in yeast morphogenesis as revealed by multivariate analysis of high-dimensional morphometric data. Mol. Biol. Cell. 2014, 25, 222–233.
40. Purushotham, P.; Ruoya, H.; Zimmer, J. Architecture of a catalytically active homotrimeric plant cellulose synthase complex. Science 2020, 369, 1089–1094.
The order of citations will be adjusted accordingly according to the addition and deletion.
The authors state that the scientific conclusions are unaffected. This correction was approved by the Academic Editor. The original publication has also been updated.