Cryo-Electron Tomography of Candida glabrata Plasma Membrane Proteins
Abstract
:1. Introduction
2. Materials and Methods
2.1. Strains
2.2. RNA Extraction and Quantitative RT-PCR
2.3. Western Blotting
2.4. Isolation of Enriched Plasma Membrane Fractions
2.5. Preparation of EM Grids
2.6. Tomography Data Collection
2.7. Tomography Data Processing
2.8. Spatial Distribution Analysis
3. Results
3.1. Identification of Two Populations of Ring-like Structures in C. glabrata Plasma Membranes
3.2. Structural Determination of the Ring-like Structures by Subtomogram Averaging
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bongomin, F.; Gago, S.; Oladele, R.O.; Denning, D.W. Global and Multi-National Prevalence of Fungal Diseases-Estimate Precision. J. Fungi 2017, 3, 57. [Google Scholar] [CrossRef] [PubMed]
- Limper, A.H.; Adenis, A.; Le, T.; Harrison, T.S. Fungal infections in HIV/AIDS. Lancet Infect. Dis. 2017, 17, e334–e343. [Google Scholar] [CrossRef] [PubMed]
- GAFFI. Fungal Diseases Frequency. Global Action Fund for Fungal Infections. 2020. Available online: https://www.gaffi.org/why/fungal-disease-frequency (accessed on 14 October 2020).
- Belmann, R.; Smuszkiewicz, P. Pharmacokinetics of antifungal drugs: Practical implications for optimized treatment of patients. Infection 2017, 45, 737–779. [Google Scholar] [CrossRef] [PubMed]
- Cortés, J.C.G.; Curto, M.A.; Carvalho, V.S.D.; Pérez, P.; Ribas, J.C. The fungal cell wall as a target for the development of new antifungal therapies. Biotechnol. Adv. 2019, 37, 107352. [Google Scholar] [CrossRef] [PubMed]
- Gow, N.A.R.; Latge, J.-P.; Munro, C.A. The fungal cell wall: Structure, biosynthesis, and function. Microbiol. Spectrum. 2017, 5. [Google Scholar] [CrossRef] [PubMed]
- Douglas, C.M. Fungal beta(1,3)-D-glucan synthesis. Med. Mycol. 2001, 39, 55–66. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Rubio, R.; de Oliveira, H.C.; Rivera, J.; Trevijano-Contador, N. The Fungal Cell Wall: Candida, Cryptococcus, and Aspergillus Species. Front. Microbiol. 2020, 10, 2993. [Google Scholar] [CrossRef]
- Serrano, R. Structure and function of proton translocating ATPase in plasma membranes of plants and fungi. Biochim. Biophys. Acta 1988, 947, 1–28. [Google Scholar] [CrossRef]
- Pappas, P.; Lionakis, M.; Arendrup, M.; Ostrosky-Zeichner, L.; Kullberg, B.J. Invasive candidiasis. Nat. Rev. Dis. Primers 2018, 4, 18026. [Google Scholar] [CrossRef]
- Pappas, P.G.; Kauffman, C.A.; Andes, D.R.; Clancy, C.J.; Marr, K.A.; Ostrosky-Zeichner, L.; Reboli, A.C.; Schuster, M.G.; Vazquez, J.A.; Walsh, T.J.; et al. Clinical Practice Guideline for the Management of Candidiasis: 2016 Update by the Infectious Diseases Society of America. Clin. Infect. Dis. 2016, 62, e1–e50. [Google Scholar] [CrossRef]
- Wiederhold, N.P. The antifungal arsenal: Alternative drugs and future targets. Int. J. Antimicrob. Agents 2018, 51, 333–339. [Google Scholar] [CrossRef] [PubMed]
- Merzendorfer, H. Chitin synthesis inhibitors: Old molecules and new developments. Insect Sci. 2013, 20, 121–138. [Google Scholar] [CrossRef]
- Bublitz, M.; Kjellerup, L.; Cohrt, K.O.; Gordon, S.; Mortensen, A.L.; Clausen, J.D.; Pallin, T.D.; Hansen, J.B.; Fuglsang, A.T.; Dalby-Brown, W.; et al. Tetrahydrocarbazoles are a novel class of potent P-type ATPase inhibitors with antifungal activity. PLoS ONE 2018, 13, e0188620. [Google Scholar] [CrossRef] [PubMed]
- Seto-Young, D.; Perlin, D.S. Effect of membrane voltage on the plasma membrane H(+)-ATPase of Saccharomyces cerevisiae. J. Biol. Chem. 1991, 266, 1383–1389. [Google Scholar] [CrossRef] [PubMed]
- Shen, H.; Lithgow, T.; Martin, L. Reconstitution of Membrane Proteins into Model Membranes: Seeking Better Ways to Retain Protein Activities. Int. J. Mol. Sci. 2013, 14, 1589–1607. [Google Scholar] [CrossRef] [PubMed]
- Goers, R.; Thoma, J.; Ritzmann, N.; Di Silvestro, A.; Alter, C.; Gunkel-Grabole, G.; Fotiadis, D.; Muller, D.J.; Meier, W. Optimized reconstitution of membrane proteins into synthetic membranes. Commun. Chem. 2018, 1, 35. [Google Scholar] [CrossRef]
- Lučić, V.; Rigort, A.; Baumeister, W. Cryo-electron tomography: The challenge of doing structural biology in situ. J. Cell Biol. 2013, 202, 407–419. [Google Scholar] [CrossRef] [PubMed]
- Dunstone, M.A.; de Marco, A. Cryo-electron tomography: An ideal method to study membrane-associated proteins. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2017, 372, 20160210. [Google Scholar] [CrossRef]
- Zhu, P.; Liu, J.; Bess, J., Jr.; Chertova, E.; Lifson, J.D.; Grisé, H.; Ofek, G.A.; Taylor, K.A.; Roux, K.H. Distribution and three-dimensional structure of AIDS virus envelope spikes. Nature 2006, 441, 847–852. [Google Scholar] [CrossRef]
- Hampton, C.M.; Strauss, J.D.; Ke, Z.; Dillard, R.S.; Hammonds, J.E.; Alonas, E.; Desai, T.M.; Marin, M.; Storms, R.E.; Leon, F.; et al. Correlated fluorescence microscopy and cryo-electron tomography of virus-infected or transfected mammalian cells. Nat. Protoc. 2017, 12, 150–167. [Google Scholar] [CrossRef]
- Levitan, O.; Chen, M.; Kuang, X.; Cheong, K.Y.; Jiang, J.; Banal, M.; Nambiar, N.; Gorbunov, M.Y.; Ludtke, S.J.; Falkowski, P.G.; et al. Structural and functional analyses of photosystem II in the marine diatom Phaeodactylum tricornutum. Proc. Natl. Acad. Sci. USA 2019, 116, 17316–17322. [Google Scholar] [CrossRef] [PubMed]
- Cai, S.; Chen, C.; Tan, Z.Y.; Huang, Y.; Shi, J.; Gan, L. Cryo-ET reveals the macromolecular reorganization of S. pombe mitotic chromosomes in vivo. Proc. Natl. Acad. Sci. USA 2018, 115, 10977–10982. [Google Scholar] [CrossRef]
- Gan, L.; Ng, C.T.; Chen, C.; Cai, S. A collection of yeast cellular electron cryotomography data. GigaScience 2019, 8, giz077. [Google Scholar] [CrossRef] [PubMed]
- Ng, C.T.; Gan, L. Investigating eukaryotic cells with cryo-ET. Mol. Biol. Cell 2020, 31, 87–100. [Google Scholar] [CrossRef] [PubMed]
- Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Žídek, A.; Potapenko, A.; et al. Highly accurate protein structure prediction with AlphaFold. Nature 2021, 596, 583–589. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Yang, P.; Chai, C.; Liu, J.; Sun, H.; Wu, Y.; Zhang, M.; Zhang, M.; Liu, X.; Yu, H. Structural and mechanistic insights into fungal β-1,3-glucan synthase FKS1. Nature 2023, 616, 190–198. [Google Scholar] [CrossRef]
- Zhao, C.-R.; You, Z.-L.; Chen, D.-D.; Hang, J.; Wang, Z.-B.; Ji, M.; Wang, L.-X.; Zhao, P.; Qiao, J.; Yun, C.-H.; et al. Structure of a fungal 1,3-β-glucan synthase. Sci. Adv. 2023, 9, eadh7820. [Google Scholar] [CrossRef] [PubMed]
- Ren, Z.; Chhetri, A.; Guan, Z.; Suo, Y.; Yokoyama, K.; Lee, S.-Y. Structural basis for inhibition and regulation of a chitin synthase from Candida albicans. Nat. Struct. Mol. Biol. 2022, 29, 653–664. [Google Scholar] [CrossRef] [PubMed]
- Zhao, P.; Zhao, C.; Chen, D.; Yun, C.; Li, H.; Bai, L. Structure and activation mechanism of the hexameric plasma membrane H+-ATPase. Nat. Commun. 2021, 12, 6439. [Google Scholar] [CrossRef] [PubMed]
- Heit, S.; Geurts, M.M.G.; Murphy, B.J.; Corey, R.A.; Mills, D.J.; Kühlbrandt, W.; Bublitz, M. Structure of the hexameric fungal plasma membrane proton pump in its autoinhibited state. Sci. Adv. 2021, 7, eabj5255. [Google Scholar] [CrossRef]
- Katiyar, S.K.; Alastruey-Izquierdo, A.; Healey, K.R.; Johnson, M.E.; Perlin, D.S.; Edlind, T.D. Fks1 and Fks2 are functionally redundant but differentially regulated in Candida glabrata: Implications for echinocandin resistance. Antimicrob. Agents Chemother. 2012, 56, 6304–6309. [Google Scholar] [CrossRef] [PubMed]
- Healey, K.R.; Paderu, P.; Hou, X.; Jimenez-Ortigosa, C.; Bagley, N.; Patel, B.; Zhao, Y.; Perlin, D.S. Differential Regulation of Echinocandin Targets Fks1 and Fks2 in Candida glabrata by the Post-Transcriptional Regulator Ssd1. J. Fungi 2020, 6, 143. [Google Scholar] [CrossRef] [PubMed]
- Zordan, R.E.; Ren, Y.; Pan, S.J.; Rotondo, G.; De Las Penas, A.; Iluore, J.; Cormack, B.P. Expression plasmids for use in Candida glabrata. G3 Genes Genomes Genet. 2013, 3, 1675–1686. [Google Scholar] [CrossRef] [PubMed]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Skinner, J.; Bennett, J.E. Evaluation of reference genes for real-time quantitative PCR studies in Candida glabrata following azole treatment. BMC Mol. Biol. 2012, 13, 22. [Google Scholar] [CrossRef] [PubMed]
- Hou, X.; Healey, K.R.; Shor, E.; Kordalewska, M.; Jimenez-Ortigosa, C.; Paderu, P.; Xiao, M.; Wang, H.; Zhao, Y.; Lin, L.Y.; et al. Novel FKS1 and FKS2 modifications in a high-level echinocandin resistant clinical isolate of Candida glabrata. Emerg. Microbes Infect. 2019, 8, 1619–1625. [Google Scholar] [CrossRef] [PubMed]
- Mastronarde, D.N. Automated electron microscope tomography using robust prediction of specimen movements. J. Struct. Biol. 2005, 152, 36–51. [Google Scholar] [CrossRef] [PubMed]
- Zheng, S.Q.; Palovcak, E.; Armache, J.P.; Verba, K.A.; Cheng, Y.; Agard, D.A. MotionCor2: Anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat. Methods 2017, 14, 331–332. [Google Scholar] [CrossRef]
- Chen, M.; Bell, J.M.; Shi, X.; Sun, S.Y.; Wang, Z.; Ludtke, S.J. A complete data processing workflow for cryo-ET and subtomogram averaging. Nat. Methods 2019, 16, 1161–1168. [Google Scholar] [CrossRef] [PubMed]
- Rosenthal, P.B.; Henderson, R. Optimal Determination of Particle Orientation, Absolute Hand, and Contrast Loss in Single-particle Electron Cryomicroscopy. J. Mol. Biol. 2003, 333, 721–745. [Google Scholar] [CrossRef] [PubMed]
- Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera—A visualization system for exploratory research and analysis. J. Comput. Chem. 2004, 25, 1605–1612. [Google Scholar] [CrossRef]
- Malínská, K.; Malínský, J.; Opekarová, M.; Tanner, W. Visualization of Protein Compartmentation within the Plasma Membrane of Living Yeast Cells. Mol. Biol. Cell 2003, 14, 4427–4436. [Google Scholar] [CrossRef]
- Malinska, K.; Malinsky, J.; Opekarova, M.; Tanner, W. Distribution of Can1p into stable domains reflects lateral protein segregation within the plasma membrane of living S. cerevisiae cells. J. Cell Sci. 2004, 117, 6031–6041. [Google Scholar] [CrossRef]
- Merzendorfer, H.; Heinisch, J. Microcompartments within the yeast plasma membrane. Biol. Chem. 2013, 394, 189–202. [Google Scholar] [CrossRef]
- Hippe, S.; Lüth, H. A simple physical model for fungicide induced hexagonal clustering of intramembrane particles in the plasmalemma of Ustilago avenae. J. Theor. Biol. 1986, 121, 351–366. [Google Scholar] [CrossRef]
- Kübler, O.; Gross, H.; Moor, H. Complementary structures of membrane fracture faces obtained by ultrahigh vacuum freeze-fracturing at −196 degrees C and digital image processing. Ultramicroscopy 1978, 3, 161–168. [Google Scholar] [CrossRef]
- Grossman, G.; Opekarová, M.; Malinsky, J.; Weig-Meckl, I.; Tanner, W. Membrane potential governs lateral segregation of plasma membrane proteins and lipids in yeast. EMBO J. 2007, 26, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Grossman, G.; Malinsky, J.; Stahlschmidt, W.; Loibl, M.; Weig-Meckl, I.; Frommer, W.B.; Opekarová, M.; Tanner, W. Plasma membrane microdomains regulate turnover of transport proteins in yeast. J. Cell Biol. 2008, 183, 1075–1088. [Google Scholar] [CrossRef] [PubMed]
- Bianchi, F.; Syga, Ł.; Moiset, G.; Spakman, D.; Schavemaker, P.E.; Punter, C.M.; Seinen, A.-B.; van Oijen, A.M.; Robinson, A.; Poolman, B. Steric exclusion and protein conformation determine the localization of plasma membrane transporters. Nat. Commun. 2018, 9, 501. [Google Scholar] [CrossRef] [PubMed]
- Spira, F.; Mueller, N.S.; Beck, G.; von Olshausen, P.; Beig, J.; Wedlich-Söldner, R. Patchwork organization of the yeast plasma membrane into numerous coexisting domains. Nat. Cell Biol. 2012, 14, 640–648. [Google Scholar] [CrossRef] [PubMed]
Primer † | Application | Sequence (5′-3′) ‡ |
---|---|---|
pCN-PDC1-FKS1F | Gap-repair | CAATTGCCAAAAAACATTAACATCTAGAACTAGTGGATCCCCCGGGCTGCAGGAATTCATGTCTTACAATAATAACGGAC |
pCN-PDC1-FKS1R | Gap-repair | AATATTGTTGATGGTGGTAGCTGTGGGTTGTGTTCTCGAGGTCGACGGTATCGATAAGCTTTTATTTGATTGTAGACCAGG |
pCN-PDC1F | PCR/sequence | GAGACCAGACTAATACAACTG |
pCN-reverse | PCR/sequence | GTTGCCTGCTACGTAAAGTG |
CgFKS1c128R | Sequence | GCCATAGCGATGGCATTAGG |
CgFKS1c207F | Sequence | CAAGAAATGGTACTTCGCCG |
CgFKS1c594F | Sequence | CCTCCTTTGCACCTTTGCAT |
CgFKS1c828F | Sequence | TTTACCGTTTTGACTCCTCAC |
CgFKS1c999F | Sequence | CCACATGAACTGGAAAACGC |
CgFKS1c1214F | Sequence | GAATGCCCTATTACGTGGTG |
CgFKS1c1446F | Sequence | GTTGCTTTTCGGTACCGTTG |
CgFKS1c1649F | Sequence | GGGTTCTTGAAGGTTTCAACT |
CgFKS1expF | qRT-PCR | CAATTGGCAGAACACCGATCCCAA |
CgFKS1expR | qRT-PCR | AGTTGGGTTGTCCGTACTCATCGT |
CgFKS2expF | qRT-PCR | TACCAACCAGAAGACCAACAGAATGG |
CgFKS2expR | qRT-PCR | TCACCACCGCTGATGTTTGGGT |
CgRDN5.8F | qRT-PCR | CTTGGTTCTCGCATCGATGA |
CgRDN5.8R | qRT-PCR | GGCGCAATGTGCGTTCA |
Strain | FKS1 Fold-Change | FKS2 Fold-Change |
---|---|---|
200989 Δfks1 | 0 | 2.16 ± 0.22 |
200989 + pCN-PDC1-FKS1 | 2.72 ± 0.14 | 1.85 ± 0.46 |
200989 Δfks1 + pCN-PDC1-FKS1 (KH238) | 4.22 ± 0.72 | 2.40 ± 0.82 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiménez-Ortigosa, C.; Jiang, J.; Chen, M.; Kuang, X.; Healey, K.R.; Castellano, P.; Boparai, N.; Ludtke, S.J.; Perlin, D.S.; Dai, W. Cryo-Electron Tomography of Candida glabrata Plasma Membrane Proteins. J. Fungi 2021, 7, 120. https://doi.org/10.3390/jof7020120
Jiménez-Ortigosa C, Jiang J, Chen M, Kuang X, Healey KR, Castellano P, Boparai N, Ludtke SJ, Perlin DS, Dai W. Cryo-Electron Tomography of Candida glabrata Plasma Membrane Proteins. Journal of Fungi. 2021; 7(2):120. https://doi.org/10.3390/jof7020120
Chicago/Turabian StyleJiménez-Ortigosa, Cristina, Jennifer Jiang, Muyuan Chen, Xuyuan Kuang, Kelley R. Healey, Paul Castellano, Nikpreet Boparai, Steven J. Ludtke, David S. Perlin, and Wei Dai. 2021. "Cryo-Electron Tomography of Candida glabrata Plasma Membrane Proteins" Journal of Fungi 7, no. 2: 120. https://doi.org/10.3390/jof7020120
APA StyleJiménez-Ortigosa, C., Jiang, J., Chen, M., Kuang, X., Healey, K. R., Castellano, P., Boparai, N., Ludtke, S. J., Perlin, D. S., & Dai, W. (2021). Cryo-Electron Tomography of Candida glabrata Plasma Membrane Proteins. Journal of Fungi, 7(2), 120. https://doi.org/10.3390/jof7020120