Secondary Metabolites and Antioxidant Activity of the Solid-State Fermentation in Apple (Pirus malus L.) and Agave Mezcalero (Agave angustifolia H.) Bagasse
Abstract
:1. Introduction
2. Materials and Methods
2.1. Obtaining Plant Material
2.2. Solid-State Fermentation
2.3. Solid Waste Extraction
2.4. Quantification of Total Phenolic Compounds (TPC)
2.5. Total Flavonoid Quantification (TF)
2.6. Total Triterpenes Quantification (TT)
2.7. Antioxidant Activity by 1,1-Diphenyl-2-Picril Hydracil (DPPH•)
2.8. Antioxidant Activity by 2,2′-Azino-Bis-3-Ethylbenzothiazoline-6-Sulfonic Acid Radical Cation (ABTS●+)
2.9. Statistic Analysis
3. Results
3.1. Physicochemical Characterization
3.2. Secondary Metabolites
3.2.1. Quantification of Total Phenolic Compounds (TPC)
3.2.2. Total Flavonoid Quantification (TF)
3.2.3. Total Triterpenes Quantification (TT)
3.3. Antioxidant Activites
3.3.1. Antioxidant Activity by 1,1-Diphenyl-2-Picril Hydracil (DPPH•)
3.3.2. Antioxidant Activity by 2,2′-Azino-Bis-3-Ethylbenzothiazoline-6-Sulfonic Acid Radical Cation (ABTS●+)
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Vargas, Y.A.; Peréz, L.I. Aprovechamiento de Residuos Agroindustriales Para El Mejoramiento de La Calidad Del Ambiente. Rev. Fac. Cienc. Básicas 2018, 14, 59–72. [Google Scholar] [CrossRef] [Green Version]
- SIAP. Servicio de Información Agroalimentaria y Pesquera SIAP. Available online: https://www.gob.mx/agricultura/articulos/la-sidra-mexicana-invitada-de-honor-en-las-fiestas-decembrinas (accessed on 8 January 2020).
- Vicente, F.; Cueto, M.A.; de la Rosa, B.; Argamentería, A. Caracterización de Subproductos de La Manzana Para Su Uso En Nutrición Animal. ITEA Inf. Tec. Econ. Agrar. 2005, 26, 560–662. [Google Scholar]
- Martínez Gutiérrez, G.A.; Iñiguez Covarrubias, G.; Ortiz-Hernández, Y.D.; López-Cruz, J.Y.; Bautista Cruz, M.A. Tiempos de Apilado Del Bagazo Del Maguey Mezcalero y Su Efecto En Las Propiedades Del Compost Para Sustrato de Tomate. Rev. Int. Contam. Ambient. 2013, 29, 209–216. [Google Scholar]
- Mejía Giraldo, L.F.; Martínez Correa, H.A.; Betan court Gutiérrez, J.E.; Castrillón Castaño, C.E. Aprovechamiento de Residuo Agroindustrial Del Mango Común (Mangifera indica L.) Para Obtener Azúcares Fermentables. Ing. Cienc. 2007, 3, 41–62. [Google Scholar]
- Sánchez Riaño, A.M.; Gutiérrez Morales, A.I.; Muñoz Hernández, J.A.; Rivera Barrero, C.A. Producción de Bioetanol a partir de Subproductos Agroindustriales Lignocelulósicos. Tumbaga 2010, 1, 61–91. [Google Scholar]
- Unekwu, H.R.; Audu, J.A.; Makun, M.H.; Chidi, E.E. Phytochemical Screening and Antioxidant Activity of Methanolic Extract of Selected Wild Edible Nigerian Mushrooms. Asian Pac. J. Trop. Dis. 2014, 4, S153–S157. [Google Scholar] [CrossRef]
- Palacios, I.; García-Lafuente, A.; Guillamón, E.; Villares, A. Novel Isolation of Water-Soluble Polysaccharides from the Fruiting Bodies of Pleurotus ostreatus Mushrooms. Carbohydr. Res. 2012, 358, 72–77. [Google Scholar] [CrossRef]
- Suárez Arango, C.; Nieto, I.J. Cultivo biotecnológico de macrohongos comestibles: Unaalternativa en la obtención de nutracéuticos. Rev. Iberoam. Micol. 2013, 30, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Benkortbi, O.; Hanini, S.; Bentahar, F. Batch Kinetics and Modelling of Pleuromutilin Production by Pleurotus mutilis. Biochem. Eng. J. 2007, 36, 14–18. [Google Scholar] [CrossRef]
- Singhania, R.R.; Sukumaran, R.K.; Patel, A.K.; Larroche, C.; Pandey, A. Advancement and Comparative Profiles in the Production Technologies Using Solid-State and Submerged Fermentation for Microbial Cellulases. Enzym. Microb. Technol. 2010, 46, 541–549. [Google Scholar] [CrossRef]
- Thomas, L.; Larroche, C.; Pandey, A. Current Developments in Solid-State Fermentation. Biochem. Eng. J. 2013, 81, 146–161. [Google Scholar] [CrossRef]
- Singhnee’Nigam, P.; Pandey, A. Biotechnology for Agro-Industrial Residues Utilisation: Utilisation of Agro-Residues. In Biotechnology for Agro-Industrial Residues Utilisation; Singhnee’Nigam, P., Pandey, A., Eds.; Springer: Dordrecht, The Netherlands, 2009. [Google Scholar] [CrossRef]
- Lizardi-Jimenez, M.A.; Hernández-Martínez, R. Solid State Fermentation(SSF): Diversity of Applications to Valorize Waste and Biomass. 3Biotech 2017, 7, 44. [Google Scholar] [CrossRef] [PubMed]
- Yusuf, M. Agro-Industrial Waste Materials and Their Recycled Value-Added Applications: Review. In Handbook of Ecomaterials; Martínez, L.M.T., Kharissova, O.V., Kharisov, B.I., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 1–11. [Google Scholar] [CrossRef]
- Wasser, S. Medicinal Mushrooms as a Source of Antitumor and Immunomodulating Polysaccharides. Appl. Microbiol. Biotechnol. 2002, 60, 258–274. [Google Scholar] [CrossRef] [PubMed]
- Gregori, A.; Švagelj, M.; Pohleven, J. Cultivation Techniques and Medicinal Properties of Pleurotus spp. Food Technol. Biotechnol. 2007, 45, 238–249. [Google Scholar]
- Gil-Chávez, G.J.; Villa, J.A.; Ayala-Zavala, J.F.; BasilioHeredia, J.; Sepulveda, D.; Yahia, E.M.; González-Aguilar, G.A. Technologies for Extraction and Production of Bioactive Compounds to Be Used as Nutraceuticals and Food Ingredients: An Overview. Compr. Rev. Food Sci. Food Saf. 2013, 12, 5–23. [Google Scholar] [CrossRef]
- Kumar, K.; Yadav, A.N.; Kumar, V.; Vyas, P.; Dhaliwal, H.S. Food Waste: A Potential Bioresource for Extraction of Nutraceuticals and Bioactive Compounds. Bioresour. Bioprocess. 2017, 4, 18. [Google Scholar] [CrossRef] [Green Version]
- Stamets, P.; Chilton, J.S. The Mushroom Cultivator: A Practical Guide to Growing Mushrooms at Home; Agarikon Press: Olympia, WA, USA, 1983. [Google Scholar]
- Horwitz, W.; AOAC International (Eds.) Official Methods of Analysis of AOAC International, 18th ed.; AOAC International: Gaithersburg, MD, USA, 2006. [Google Scholar]
- Singleton, V.L.; Rossi, J.A. Colorimetry of Total Phenolics with Phosphomolybdic-Phosphotungstic Acid Reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar]
- Chang, C.-C.; Yang, M.-H.; Wen, H.-M.; Chern, J.-C. Estimation of Total Flavonoids Contentin Propolis by Two Complementary Colorimetric Methods. J. Food Drug Anal. 2002, 10, 178–182. [Google Scholar]
- Fan, J.-P.; He, C.H. Simultaneous Quantification of Three Major Bioactive Triterpene Acids in the Leaves of Diospyros Kaki by High-Performance Liquid Chromatography Method. J. Pharm. Biomed. Anal. 2006, 41, 950–956. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a Free Radical Method to Evaluate Antioxidant Activity. LWT-Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant Activity Applying an Improved ABTS Radical Cation Decolorization Assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- SAS Institute Inc. SAS/STAT® User’s Guide; SAS Institute Inc.: Cary, NC, USA, 1999. [Google Scholar]
- Rufino, M.S.M.; Fernandes, F.A.N.; Alves, R.E.; Debrito, E.S. Free Radical-Scavenging Behaviour of Some North-East Brazilian Fruitsina DPPH System. Food Chem. 2009, 114, 693–695. [Google Scholar] [CrossRef] [Green Version]
- Philippoussis, A.N. Production of Mushrooms Using Agro-Industrial Residuesas Substrates. In Biotechnology for Agro-Industrial Residues Utilisation; Singhnee’Nigam, P., Pandey, A., Eds.; Springer: Dordrecht, The Netherlands, 2009; pp. 163–196. [Google Scholar] [CrossRef]
- Damodaran, S.; Parkin, K.; Fennema, O.R.; BeMiller, J.N.; Huber, O.R. (Eds.) Fennema’s Food Chemistry, 4th ed.; Food science and technology; CRC Press/Taylor&Francis: Boca Raton, FL, USA, 2008. [Google Scholar]
- Vicente, A.R.; Manganaris, G.A.; Sozzi, G.O.; Crisosto, C.H. Nutritional Quality of Fruits and Vegetables. In Postharvest Handling: A Systems Approach; Florkowski, W.J., Shewfelt, R.L., Brueckner, B., Prussia, S.E., Eds.; Elsevier-Academic Press: San Diego, CA, USA, 2009; pp. 57–106. [Google Scholar] [CrossRef]
- Zheng, H.; Hwang, I.-W.; Chung, S.-K. Enhancing Polyphenol Extraction from Unripe Apples by Carbohydrate-Hydrolyzing Enzymes. J. Zhejiang Univ. Sci. B 2009, 10, 912–919. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferrer-Romero, J.C.; Mas-Diego, S.M.; Beltrán-Delgado, Y.; Morris-Quevedo, H.J.; Díaz-Fernández, U. Estudio Cinético de La Producción de Biomasa y Compuestos Fenólicos por Pleurotus ostreatus En Fase Sumergida. Rev. Cub. Quim 2019, 31, 1–17. [Google Scholar]
- Vamanu, E. Antioxidant Properties of Mushroom Mycelia Obtained by Batch Cultivation and Tocopherol Content Affected by Extraction Procedures. BioMed Res. Int. 2014, 2014, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liao, X.; Vining, L.C.; Doull, J.L. Physiological Control of Trophophase—Idiophase Separationin Streptomycete Cultures Producing Secondary Metabolites. Can. J. Microbiol. 1995, 41, 309–315. [Google Scholar] [CrossRef]
- Rashad, M.M.; Abdou, H.M.; Mahmoud, A.E. Production of Some Bioactive Materials by Pleurotus ostreatus from Pineapple Residues and Rice Straw via Solid State Fermentation. Res. J. Pharm. Biol. Chem. Sci. 2016, 7, 2730–2736. [Google Scholar]
- Hamdipour, S.; Rezazad, M.; Alizadeh, M. Production of Phenolic Antioxidants from Apple Residue Using Rhizopus oligosporus. Int. J. Adv. Biol. Biomed. Res. 2014, 2, 1937–1942. [Google Scholar]
- Ajila, C.M.; Brar, S.K.; Verma, M.; Tyagi, R.D.; Valéro, J.R. Solid-State Fermentation of Apple Pomace Using Phanerocheate chrysosporium–Liberation and Extraction of Phenolic Antioxidants. Food Chem. 2011, 126, 1071–1080. [Google Scholar] [CrossRef]
- Carlile, M.J.; Watkinson, S.C.; Gooday, G.W. The Fungi, 2nd ed.; Elsevier-Academic Press: San Diego, CA, USA, 2001. [Google Scholar]
- Kirk, T.K.; Farrell, R.L. Enzymatic “Combustion”: The Microbial Degradation of Lignin. Annu. Rev. Microbiol. 1987, 41, 465–501. [Google Scholar] [CrossRef]
- Boonsong, S.; Klaypradit, W.; Wilaipun, P. Antioxidant Activities of Extracts from Five Edible Mushrooms Using Different Extractants. Agric. Nat. Resour. 2016, 50, 89–97. [Google Scholar] [CrossRef] [Green Version]
- Braga, G.C.; Melo, P.S.; Bergamaschi, K.B.; Tiveron, A.P.; Massarioli, A.P.; de Alencar, S.M. Extraction Yield, Antioxidant Activity and phenolics from Grape, Mango and Peanut Agro-Industrial by-Products. Ciênc. Rural 2016, 46, 1498–1504. [Google Scholar] [CrossRef] [Green Version]
- Dulf, F.V.; Vodnar, D.C.; Dulf, E.-H.; Pintea, A. Phenolic Compounds, Flavonoids, Lipids and Antioxidant Potential of Apricot (Prunus armeniaca L.) Pomace Fermented by Two Filamentous Fungal Strains in Solid State System. Chem. Cent. J. 2017, 11, 92. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lessa, O.A.; dos Santos Reis, N.; Leite, S.G.F.; Gutarra, M.L.E.; Souza, A.O.; Gualberto, S.A.; de Oliveira, J.R.; Aguiar-Oliveira, E.; Franco, M. Effect of the Solid State Fermentation of Cocoa Shellon the Secondary Metabolites, Antioxidant Activity, and Fatty Acids. Food Sci. Biotechnol. 2018, 27, 107–113. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.-C.; Ma, T.-W.; Lee, Y.-H. Reuse of Citrus Peel to Enhance the Formation of Bioactive Metabolite-Triterpenoidin Solid-State Fermentation of A. cinnamomea. Biochem. Eng. J. 2013, 78, 59–66. [Google Scholar] [CrossRef]
- Lee, Y.-H.; Sun, Y.; Glickman, R. Ursolic Acid-Regulated Energy Metabolism—Relieveror Propeller of Ultraviolet-Induced Oxidative Stress and DNA Damage? Proteomes 2014, 2, 399–425. [Google Scholar] [CrossRef] [Green Version]
- Chegwin-Angarita, C.; Nieto-Ramírez, I.J. Effect of Non-Conventional Carbon Sources on the Production of Triterpenoids in Submerged Cultures of Pleurotus Macrofungi. J. Chil. Chem. Soc. 2014, 59, 2287–2293. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.; Shiw, S.H.; Kim, J.S.; Shiw, K.H.; Kang, S.S. Aldose Reductase Inhibitors from the Fruiting Bodies of Ganoderma applanatum. Biol. Pharm. Bull. 2005, 28, 1103–1105. [Google Scholar] [CrossRef] [Green Version]
- Trigos, Á.; Suárez, J. Biologically Active Metabolites of the genus Ganoderma: Three Decades of Myco-Chemistry Research. Rev. Mex. Mic. 2011, 34, 63–83. [Google Scholar]
- Juliette-Ornely, O.B.; Eyi, N.H.C.; Rick-Léonid, N.M.M.; Sima Obiang, C.; Yembiyé, P.; Ondo, J.-P.; Ndong, A.G.R.; Obame-Engonga, L.-C. Phytochemical Screening, Antioxidant and Antiangiogenic Activities of Daedaleopsis nitida, Pycnoporus sanguineus and Phellinus gilvus Medicinal Mushrooms from Gabon. Pharm. Chem. J. 2019, 6, 71–80. [Google Scholar]
- Lu, Y.; YeapFoo, L. Antioxidant and Radical Scavenging Activities of Polyphenols from Apple Pomace. Food Chem. 2000, 68, 81–85. [Google Scholar] [CrossRef]
- Carmona, J.E.; Morales-Martínez, T.K.; Mussatto, S.I.; Castillo-Quiroz, D.; Ríos-González, L.J. Propiedades Químicas, Estructurales y Funcionales de la Lechuguilla (Agave lechuguilla Torr.). Rev. Mex. Cienc. For. 2017, 8, 100–122. [Google Scholar]
- Araldi, R.P.; dos Santos, M.O.; Barbon, F.F.; Manjerona, B.A.; Meirelles, B.R.; de Oliva Neto, P.; da Silva, P.I.; dos Santos, L.; Camargo, I.C.C.; de Souza, E.B. Analysis of Antioxidant, Cytotoxic and Mutagenic Potential of Agave sisalana Perrine Extracts Using Vero Cells, Human Lymphocytes and Mice Polychromatic Erythrocytes. Biomed. Pharmacother. 2018, 98, 873–885. [Google Scholar] [CrossRef] [PubMed]
- Ignat, I.; Volf, I.; Popa, V.I. A Critical Review of Methods for Characterisation of Polyphenolic Compounds in Fruits and Vegetables. Food Chem. 2011, 126, 1821–1835. [Google Scholar] [CrossRef] [PubMed]
Agroindustrial Residue | °Brix | pH | Moisture Percentage (%) | Aw | Titratable Acid (%) | Direct Reducing Sugars 1 (%) | Direct Reducing Sugars 2 (%) |
---|---|---|---|---|---|---|---|
Apple bagasse | 8.90 ± 0.28 a | 4.04 ± 0.15 b | 8.67 ± 0.20 a | 0.98 ± 0.05 a | 0.97 ± 0.23 a | 86.20 ± 7.11 a | 9.98 ± 0.01 a |
Agave mezcalero bagasse | 0.36 ± 0.20 b | 5.00 ± 0.10 a | 8.68 ± 0.20 a | 0.97 ± 0.01 a | 0.87 ± 0.21 a | 6.79 ± 0.37 b | 6.79 ± 0.37 b |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ibarra-Cantún, D.; Ramos-Cassellis, M.E.; Marín-Castro, M.A.; Castelán-Vega, R.d.C. Secondary Metabolites and Antioxidant Activity of the Solid-State Fermentation in Apple (Pirus malus L.) and Agave Mezcalero (Agave angustifolia H.) Bagasse. J. Fungi 2020, 6, 137. https://doi.org/10.3390/jof6030137
Ibarra-Cantún D, Ramos-Cassellis ME, Marín-Castro MA, Castelán-Vega RdC. Secondary Metabolites and Antioxidant Activity of the Solid-State Fermentation in Apple (Pirus malus L.) and Agave Mezcalero (Agave angustifolia H.) Bagasse. Journal of Fungi. 2020; 6(3):137. https://doi.org/10.3390/jof6030137
Chicago/Turabian StyleIbarra-Cantún, Diego, María Elena Ramos-Cassellis, Marco Antonio Marín-Castro, and Rosalía del Carmen Castelán-Vega. 2020. "Secondary Metabolites and Antioxidant Activity of the Solid-State Fermentation in Apple (Pirus malus L.) and Agave Mezcalero (Agave angustifolia H.) Bagasse" Journal of Fungi 6, no. 3: 137. https://doi.org/10.3390/jof6030137
APA StyleIbarra-Cantún, D., Ramos-Cassellis, M. E., Marín-Castro, M. A., & Castelán-Vega, R. d. C. (2020). Secondary Metabolites and Antioxidant Activity of the Solid-State Fermentation in Apple (Pirus malus L.) and Agave Mezcalero (Agave angustifolia H.) Bagasse. Journal of Fungi, 6(3), 137. https://doi.org/10.3390/jof6030137