Combination of Sodium Bicarbonate (SBC) with Bacterial Antagonists for the Control of Brown Rot Disease of Fruit
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Pathogen Inoculum and Antagonists Suspensions
2.2. Sodium Bicarbonate and Chemical Fungicide Preparation
2.3. Fruit Preparation
2.4. Effect of NaHCO3 on Growth of Bacterial Antagonists
2.5. In Vitro Effects of NaHCO3, Antagonists and Their Combined Treatments on Fungal Mycelial Growth
2.6. Impact of Biological Treatments on Spore Germination of M. fructigena
2.7. In Vivo Effects of NaHCO3, Antagonists, and Combined Treatments on Brown Rot Disease
2.8. Quality Analysis of Nectarines
2.8.1. Weight Loss
2.8.2. Total Soluble Solids
2.8.3. Titratable Acidity
2.8.4. Maturity Index
2.9. Statistical Analysis
3. Results
3.1. Effect of NaHCO3 on Growth of Bacterial Antagonists
3.2. In Vitro Effect of Sodium Bicarbonate, Antagonistic Bacteria, and Their Combinations on Fungal Growth
3.3. Effect of Treatments on the Mycelial Structure and Spore Germination of M. fructigena
3.4. In Vivo Effect of SBC, Bacteria, and Their Combinations on Brown Rot Disease
3.5. Effect of Biological Treatments on Quality Parameters of Nectarines Fruit
3.5.1. Weight Loss
3.5.2. Total Soluble Solids (Brix, TSS)
3.5.3. Titratable Acidity (TA)
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tripathi, P.; Dubey, N.K. Exploitation of natural products as an alternative strategy to control postharvest fungal rotting of fruit and vegetables. Postharvest Biol. Technol. 2004, 32, 235–245. [Google Scholar] [CrossRef]
- El Khetabi, A.; Lahlali, R.; Ezrari, S.; Radouane, N.; Lyousfi, N.; Banani, H.; Askarne, L.; Tahiri, A.; El Ghadraoui, L.; Belmalha, S.; et al. Role of plant extracts and essential oils in fighting against postharvest fruit pathogens and extending fruit shelf life: A review. Trends Food Sci. Technol. 2022, 120, 402–417. [Google Scholar] [CrossRef]
- Feliziani, E.; Romanazzi, G. Postharvest decay of strawberry fruit: Etiology, epidemiology, and disease management. J. Berry Res. 2016, 6, 47–63. [Google Scholar] [CrossRef] [Green Version]
- Weber, R.W.S. Grey mould disease of strawberry in northern Germany: Causal agents, fungicide resistance and management strategies. Appl. Microbiol. Biotechnol. 2019, 103, 1589–1597. [Google Scholar] [CrossRef]
- Fillinger, S.; Walker, A. Chemical Control and Resistance Management of Botrytis Diseases. In Botrytis–the Fungus, the Pathogen and its Management in Agricultural Systems; Springer: Cham, Switzerland, 2016; pp. 189–216. [Google Scholar] [CrossRef]
- Elad, Y. Botrytis cinerea in greenhouse vegetables: Chemical, cultural, physiological and biological controls and their integration. Integr. Pest Manag. Rev. 1995, 29, 15–29. [Google Scholar] [CrossRef]
- Conway, W.S.; Leverentz, B.; Janisiewicz, W.J.; Saftner, R.A.; Camp, M.J. Improving biocontrol using antagonist mixtures with heat and/or sodium bicarbonate to control postharvest decay of apple fruit. Postharvest Biol. Technol. 2005, 36, 235–244. [Google Scholar] [CrossRef]
- De Almeida Teixeira, G.H.; Meakem, V.; de Morais, C.D.L.M.; de Lima, K.M.G.; Whitehead, S.R. Conventional and alternative pre-harvest treatments affect the quality of ‘Golden delicious’ and ‘York’ apple fruit. Environ. Exp. Bot. 2020, 173, 104005. [Google Scholar] [CrossRef]
- Carmona-Hernandez, S.; Reyes-Pérez, J.J.; Chiquito-Contreras, R.G.; Rincon-Enriquez, G.; Cerdan-Cabrera, C.R.; Hernandez-Montiel, L.G. Biocontrol of postharvest fruit fungal diseases by bacterial antagonists: A review. Agronomy 2019, 9. [Google Scholar] [CrossRef] [Green Version]
- Fernandez-San Millan, A.; Larraya, L.; Farran, I.; Ancin, M.; Veramendi, J. Successful biocontrol of major postharvest and soil-borne plant pathogenic fungi by antagonistic yeasts. Biol. Control 2021, 160, 104683. [Google Scholar] [CrossRef]
- Chen, O.; Hong, Y.; Ma, J.; Deng, L.; Yi, L.; Zeng, K. Screening lactic acid bacteria from pickle and cured meat as biocontrol agents of Penicillium digitatum on citrus fruit. Biol. Control 2021, 158, 104606. [Google Scholar] [CrossRef]
- Shi, X.C.; Wang, S.Y.; Duan, X.C.; Wang, Y.Z.; Liu, F.Q.; Laborda, P. Biocontrol strategies for the management of Colletotrichum species in postharvest fruits. Crop Prot. 2021, 141, 105454. [Google Scholar] [CrossRef]
- Cao, S.; Zheng, Y.; Tang, S.; Wang, K. Improved control of anthracnose rot in loquat fruit by a combination treatment of Pichia membranifaciens with CaCl2. Int. J. Food Microbiol. 2008, 126, 216–220. [Google Scholar] [CrossRef]
- Larena, I.; Torres, R.; De Cal, A.; Liñán, M.; Melgarejo, P.; Domenichini, P.; Bellini, A.; Mandrin, J.F.; Lichou, J.; De Eribe, X.O.; et al. Biological control of postharvest brown rot (Monilinia spp.) of peaches by field applications of Epicoccum nigrum. Biol. Control 2005, 32, 305–310. [Google Scholar] [CrossRef]
- Martini, C.; Mari, M. Monilinia fructicola, Monilinia laxa (Monilinia Rot, Brown Rot); Elsevier: Amsterdam, The Netherlands, 2014; ISBN 9780124115682. [Google Scholar]
- Hollomon, D.W. Fungicide resistance: Facing the challenge. Plant Prot. Sci. 2015, 51, 170–176. [Google Scholar] [CrossRef]
- Adaskaveg, J.E.; Hao, W.; Förster, H. Postharvest strategies for managing phytophthora brown rot of citrus using potassium phosphite in combination with heat treatments. Plant Dis. 2015, 99, 1477–1482. [Google Scholar] [CrossRef] [Green Version]
- Lahlali, R.; Ezrari, S.; Radouane, N.; Kenfaoui, J.; Esmaeel, Q.; El Hamss, H.; Belabess, Z.; Barka, E.A. Biological Control of Plant Pathogens: A Global Perspective. Microorganisms 2022, 10, 596. [Google Scholar] [CrossRef]
- Chen, K.; Tian, Z.; He, H.; Long, C.-a.; Jiang, F. Bacillus species as potential biocontrol agents against citrus diseases. Biol. Control 2020, 151, 104419. [Google Scholar] [CrossRef]
- Liu, R.; Li, J.; Zhang, F.; Zheng, D.; Chang, Y.; Xu, L.; Huang, L. Biocontrol activity of Bacillus velezensis D4 against apple Valsa canker. Biol. Control 2021, 104760. [Google Scholar] [CrossRef]
- Silimela, M.; Korsten, L.Ã. Evaluation of pre-harvest Bacillus licheniformis sprays to control mango fruit diseases. Crop Prot. 2007, 26, 1474–1481. [Google Scholar] [CrossRef]
- Xu, Y.; Wang, L.; Liang, W.; Liu, M. Biocontrol potential of endophytic Bacillus velezensis strain QSE-21 against postharvest grey mould of fruit. Biol. Control 2021, 161, 104711. [Google Scholar] [CrossRef]
- Lu, Y.; Ma, D.; He, X.; Wang, F.; Wu, J.; Liu, Y.; Jiao, J.; Deng, J. Physiological and Molecular Plant Pathology Bacillus subtilis KLBC BS6 induces resistance and defence-related response against Botrytis cinerea in blueberry fruit. Physiol. Mol. Plant Pathol. 2021, 114, 101599. [Google Scholar] [CrossRef]
- Li, J.; Zhao, Q.; Wuriyanghan, H.; Yang, C. Biocontrol bacteria strains Y4 and Y8 alleviate tobacco bacterial wilt disease by altering their rhizosphere soil bacteria community. Rhizosphere 2021, 19, 100390. [Google Scholar] [CrossRef]
- Oztekin, S.; Karbancioglu-Guler, F. Bioprospection of Metschnikowia sp. isolates as biocontrol agents against postharvest fungal decays on lemons with their potential modes of action. Postharvest Biol. Technol. 2021, 181, 111634. [Google Scholar] [CrossRef]
- Droby, S.; Wisniewski, M.; Macarisin, D.; Wilson, C. Twenty years of postharvest biocontrol research: Is it time for a new paradigm? Postharvest Biol. Technol. 2009, 52, 137–145. [Google Scholar] [CrossRef]
- Papavasileiou, A.; Madesis, P.B.; Karaoglanidis, G.S. Identification and differentiation of Monilinia species causing brown rot of pome and stone fruit using High-Resolution Melting (HRM) analysis. Phytopathology 2016, 106, 1055–1064. [Google Scholar] [CrossRef] [Green Version]
- Ait Bahadou, S.; Ouijja, A.; Karfach, A.; Tahiri, A.; Lahlali, R. New potential bacterial antagonists for the biocontrol of fire blight disease (Erwinia amylovora) in Morocco. Microb. Pathog. 2018, 117, 7–15. [Google Scholar] [CrossRef]
- Lahlali, R.; Aksissou, W.; Lyousfi, N.; Ezrari, S.; Blenzar, A.; Tahiri, A.; Ennahli, S.; Hrustić, J.; MacLean, D.; Amiri, S. Biocontrol activity and putative mechanism of Bacillus amyloliquefaciens (SF14 and SP10), Alcaligenes faecalis ACBC1, and Pantoea agglomerans ACBP1 against brown rot disease of fruit. Microb. Pathog. 2020, 139. [Google Scholar] [CrossRef]
- Lyousfi, N.; Lahlali, R.; Letrib, C.; Belabess, Z.; Ouaabou, R.; Ennahli, S.; Blenzar, A.; Barka, E.A. Improving the Biocontrol Potential of Bacterial Antagonists with Salicylic Acid against Brown Rot Disease and Impact on Nectarine Fruits Quality. Agronomy 2021, 11, 209. [Google Scholar] [CrossRef]
- Obagwu, J.; Korsten, L. Integrated control of citrus green and blue molds using Bacillus subtilis in combination with sodium bicarbonate or hot water. Postharvest Biol. Technol. 2003, 28, 187–194. [Google Scholar] [CrossRef]
- Liu, J.; Sui, Y.; Wisniewski, M.; Droby, S.; Tian, S.; Norelli, J.; Hershkovitz, V. Effect of heat treatment on inhibition of Monilinia fructicola and induction of disease resistance in peach fruit. Postharvest Biol. Technol. 2012, 65, 61–68. [Google Scholar] [CrossRef]
- Jemric, T.; Ivic, D.; Fruk, G.; Matijas, H.S.; Cvjetkovic, B.; Bupic, M.; Pavkovic, B. Reduction of Postharvest Decay of Peach and Nectarine Caused by Monilinia laxa Using Hot Water Dipping. Food Bioprocess Technol. 2011, 4, 149–154. [Google Scholar] [CrossRef]
- Talibi, I.; Boubaker, H.; Boudyach, E.H.; Ait Ben Aoumar, A. Alternative methods for the control of postharvest citrus diseases. J. Appl. Microbiol. 2014, 117, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Hong, P.; Hao, W.; Luo, J.; Chen, S.; Hu, M.; Zhong, G. Combination of hot water, Bacillus amyloliquefaciens HF-01 and sodium bicarbonate treatments to control postharvest decay of mandarin fruit. Postharvest Biol. Technol. 2014, 88, 96–102. [Google Scholar] [CrossRef]
- Geng, P.; Chen, S.; Hu, M.; Rizwan-ul-Haq, M.; Lai, K.; Qu, F.; Zhang, Y. Combination of Kluyveromyces marxianus and sodium bicarbonate for controlling green mold of citrus fruit. Int. J. Food Microbiol. 2011, 151, 190–194. [Google Scholar] [CrossRef] [PubMed]
- Sangwanich, S.; Sangchote, S.; Leelasuphakul, W. Biocontrol of Citrus green mould and postharvest quality parameters. Int. Food Res. J. 2013, 20, 3381–3386. [Google Scholar]
- Qin, X.; Xiao, H.; Xue, C.; Yu, Z.; Yang, R.; Cai, Z.; Si, L. Biocontrol of gray mold in grapes with the yeast Hanseniaspora uvarum alone and in combination with salicylic acid or sodium bicarbonate. Postharvest Biol. Technol. 2015, 100, 160–167. [Google Scholar] [CrossRef]
- Serrano, M.; Martínez-Romero, D.; Castillo, S.; Guillén, F.; Valero, D. Effect of preharvest sprays containing calcium, magnesium and titanium on the quality of peaches and nectarines at harvest and during postharvest storage. J. Sci. Food Agric. 2004, 84, 1270–1276. [Google Scholar] [CrossRef]
- Qin, G.Z.; Tian, S.P.; Xu, Y.; Chan, Z.L.; Li, B.Q. Combination of antagonistic yeasts with two food additives for control of brown rot caused by Monilinia fructicola on sweet cherry fruit. J. Appl. Microbiol. 2006, 100, 508–515. [Google Scholar] [CrossRef]
- De Costa, D.M.; Gunawardhana, H.M.D.M. Effects of sodium bicarbonate on pathogenicity of Colletotrichum musae and potential for controlling postharvest diseases of banana. Postharvest Biol. Technol. 2012, 68, 54–63. [Google Scholar] [CrossRef]
- Karabulut, O.A.; Smilanick, J.L.; Gabler, F.M.; Mansour, M.; Droby, S. Near-Harvest Applications of Metschnikowia fructicola, Ethanol, and Sodium Bicarbonate to Control Postharvest Diseases of Grape in Central California. Plant Dis. 2003, 87, 1384–1389. [Google Scholar] [CrossRef] [Green Version]
- Dihazi, A.; Jaiti, F.; Jaoua, S.; Driouich, A. Plant Physiology and Biochemistry Use of two bacteria for biological control of bayoud disease caused by Fusarium oxysporum in date palm (Phoenix dactylifera L.) seedlings. Plant Physiol. Biochem. 2012, 55, 7–15. [Google Scholar] [CrossRef]
- Janisiewicz, W.J.; Saftner, R.A.; Conway, W.S.; Yoder, K.S. Control of blue mold decay of apple during commercial controlled atmosphere storage with yeast antagonists and sodium bicarbonate. Postharvest Biol. Technol. 2008, 49, 374–378. [Google Scholar] [CrossRef]
- Holb, I.J.; Kunz, S. Integrated control of brown rot blossom blight by combining approved chemical control options with Aureobasidium pullulans in organic cherry production. Crop Prot. 2013, 54, 114–120. [Google Scholar] [CrossRef]
- De Curtis, F.; Ianiri, G.; Raiola, A.; Ritieni, A.; Succi, M.; Tremonte, P.; Castoria, R. Integration of biological and chemical control of brown rot of stone fruits to reduce disease incidence on fruits and minimize fungicide residues in juice. Crop Prot. 2019, 119, 158–165. [Google Scholar] [CrossRef]
- Sare, A.R.; Jijakli, M.H.; Massart, S. Postharvest Biology and Technology Microbial ecology to support integrative efficacy improvement of biocontrol agents for postharvest diseases management. Postharvest Biol. Technol. 2021, 179, 111572. [Google Scholar] [CrossRef]
Treatments | pH | 5 Days of Incubation | 10 Days of Incubation | ||
---|---|---|---|---|---|
Colony Diameter (mm) | IR (%) | Colony Diameter (mm) | IR (%) | ||
Untreated Control | PDApH = 7.02 | 54.03 e | 0.00 | 82.75 f | 0.00 |
0.5% SBC | 8.24 | 27.42 d | 54.28 | 34.91 e | 60.97 |
2% SBC | 8.34 | 12.83 ab | 84.03 | 14.15 abcd | 88.24 |
3.5% SBC | 8.38 | 7.84 ab | 94.20 | 10.65 ab | 92.74 |
5% SBC | 8.52 | 6.44 a | 96.58 | 10.54 ab | 92.87 |
SF14 | 7.22 | 12.01 ab | 86.62 | 16.74 bcd | 84.91 |
0.5% SBC + SF14 | 7.11 | 9.98 ab | 79.67 | 19.57 cd | 81.26 |
2% SBC + SF14 | 7.20 | 9.43 ab | 91.05 | 9.81 ab | 93.81 |
3.5% SBC + SF14 | 7.25 | 5.00 a | 100.00 | 5.00 a | 100.0 |
5% SBC + SF14 | 7.23 | 6.88 a | 95.06 | 7.71 ab | 96.51 |
ACBC1 | 7.11 | 17.27 bc | 73.48 | 20.13 cb | 80.54 |
0.5% SBC + ACBC1 | 7.21 | 21.16 cd | 67.03 | 22.24 d | 77.83 |
2% SBC + ACBC1 | 7.22 | 7.34 ab | 93.91 | 10.27 ab | 93.23 |
3.5% SBC + ACBC1 | 7.30 | 10.77 ab | 86.94 | 12.58 abc | 90.25 |
5% SBC + ACBC1 | 7.34 | 5.00 a | 100.00 | 5.00 a | 100.0 |
Treatments | Inhibition Rate of Spore Germination (%) |
---|---|
0.5% SBC | 36.17 ± 3.72 a |
2% SBC | 60.97 ± 2.11 c |
3.5% SBC | 56.91 ± 2.81 c |
5% SBC | 60.56 ± 4.92 c |
SF14 | 71.54 ± 5.08 d |
0.5% SBC + SF14 | 35.77 ± 3.92 a |
2% SBC + SF14 | 86.58 ± 4.39 e |
3.5% SBC + SF14 | 91.86 ± 0.70 e |
5% SBC + SF14 | 99.18 ± 1.40 f |
ACBC1 | 73.98 ± 1.86 d |
0.5% SBC + ACBC1 | 43.90 ± 3.22 b |
2% SBC + ACBC1 | 100 ± 0.00 f |
3.5% SBC + ACBC1 | 91.05 ± 1.40 e |
5% SBC + ACBC1 | 100 ± 0.00 f |
Methyl-Thiophanate (1 ppm) | 100 ± 0.00 f |
Treatments | 1 × 104 Spores/mL | |||
---|---|---|---|---|
5 Days of Incubation | 10 Days of Incubation | |||
Lesion Diameter (mm) | DS (%) | Lesion Diameter (mm) | DS (%) | |
Untreated Control | 58.08 e | 100.00 | 68.27 e | 100.00 |
0.5%SBC | 32.91 d | 56.66 | 44.26 d | 64.83 |
2% SBC | 20.14 c | 34.68 | 32.70 c | 47.89 |
3.5% SBC | 5.93 ab | 10.21 | 17.34 b | 25.40 |
5% SBC | 4.76 ab | 8.20 | 9.34 ab | 13.69 |
ACBC1 | 5.35 ab | 9.22 | 10.30 ab | 15.09 |
0.5% SBC + ACBC1 | 14.23 bc | 24.49 | 18.99 b | 27.81 |
2% SBC + ACBC1 | 5.08 ab | 8.75 | 8.84 ab | 12.95 |
3.5% SBC + ACBC1 | 7.64 ab | 13.15 | 9.82 ab | 14.39 |
5% SBC + ACBC1 | 12.09 abc | 20.82 | 18.04 b | 26.43 |
SF14 | 11.50 abc | 19.80 | 18.16 b | 26.60 |
0.5% SBC + SF14 | 9.10 abc | 15.67 | 12.90 b | 18.89 |
2% SBC + SF14 | 5.00 ab | 8.61 | 6.33 ab | 9.27 |
3.5% SBC + SF14 | 7.46 ab | 12.84 | 11.25 ab | 16.47 |
5% SBC + SF14 | 0.00 a | 8.61 | 0.00 a | 25.63 |
Methyl-Thiophanate (1 ppm) | 0.00 a | 0.00 | 0.00 a | 0.00 |
Treatments | Fruits Appearance | Damage to Pericarp (+/−)a | Quality Parameters | |||
---|---|---|---|---|---|---|
Weight Loss | Total Soluble Solids (%) | Titratable Acidity (g/L Malic Acid) | Maturity Index | |||
Untreated Control | rotten fruit | + | 0.127 ± 0.01 ab | 10.67 ± 0.289 cd | 9.53 ± 0.00 d | 1.10 |
0.5% SBC | brownish spots | + | 0.157 ± 0.00 c | 7.14 ± 0.24 a | 11.34 ± 0.08 hi | 0.60 |
2% SBC | beginning of lesions | + | 0.15 ± 0.02 bc | 8.81 ± 0.33 b | 11.41 ± 0.04 i | 0.81 |
3.5% SBC | dark orange | − | 0.150 ± 0.03 bc | 12.77 ± 0.59 ef | 10.05 ± 0.00 e | 1.30 |
5% SBC | dark orange | − | 0.117 ± 0.00 a | 10.70 ± 0.75 cd | 10.94 ± 0.19 g | 1.00 |
ACBC1 | circular stains | + | 0.137 ± 0.01 abc | 10.33 ± 0.58 c | 10.12 ± 0.13 e | 1.00 |
0.5% SBC + ACBC1 | brownish spots | + | 0.163 ± 0.00 c | 9.00 ± 0.00 b | 11.03 ± 0.4 gh | 0.81 |
2% SBC + ACBC1 | dark orange | − | 0.13 ± 0.00 ab | 11.00 ± 0.00 cd | 10.61 ± 0.33 f | 1.00 |
3.5% SBC + ACBC1 | pale orange | − | 0.147 ± 0.01 bc | 9.23 ± 0.21 b | 12.37 ± 0.04 j | 0.75 |
5% SBC + ACBC1 | dark orange | − | 0.127 ± 0.01 ab | 13.10 ± 0.26 f | 8.88 ± 0.14 c | 1.44 |
SF14 | pale orange | − | 0.14 ± 0.00 abc | 9.10 ± 0.14 b | 9.62 ± 0.67 d | 0.90 |
0.5% SBC + SF14 | beginning of lesions | + | 0.16 ± 0.00 c | 13.30 ± 0.00 f | 8.44 ± 0.15 b | 1.62 |
2% SBC + SF14 | dark orange | − | 0.117 ± 0.00 a | 13.13 ± 0.231 f | 8.75 ± 0.08 bc | 1.44 |
3.5% SBC + SF14 | pale orange | − | 0.153 ± 0.00 bc | 12.10 ± 0.173 e | 8.04 ± 0.00 a | 1.50 |
5% SBC + SF14 | dark orange | − | 0.160 ± 0.01 c | 11.30 ± 0.00 d | 7.93 ± 0.43 a | 1.37 |
Methyl-thiophanate-(1 ppm) | healthy fruit | − | 0.16 ± 0.00 c | 12.73 ± 0.643 ef | 10.18 ± 0.10 e | 1.30 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lyousfi, N.; Letrib, C.; Legrifi, I.; Blenzar, A.; El Khetabi, A.; El Hamss, H.; Belabess, Z.; Barka, E.A.; Lahlali, R. Combination of Sodium Bicarbonate (SBC) with Bacterial Antagonists for the Control of Brown Rot Disease of Fruit. J. Fungi 2022, 8, 636. https://doi.org/10.3390/jof8060636
Lyousfi N, Letrib C, Legrifi I, Blenzar A, El Khetabi A, El Hamss H, Belabess Z, Barka EA, Lahlali R. Combination of Sodium Bicarbonate (SBC) with Bacterial Antagonists for the Control of Brown Rot Disease of Fruit. Journal of Fungi. 2022; 8(6):636. https://doi.org/10.3390/jof8060636
Chicago/Turabian StyleLyousfi, Nadia, Chaimaa Letrib, Ikram Legrifi, Abdelali Blenzar, Assia El Khetabi, Hajar El Hamss, Zineb Belabess, Essaid Ait Barka, and Rachid Lahlali. 2022. "Combination of Sodium Bicarbonate (SBC) with Bacterial Antagonists for the Control of Brown Rot Disease of Fruit" Journal of Fungi 8, no. 6: 636. https://doi.org/10.3390/jof8060636
APA StyleLyousfi, N., Letrib, C., Legrifi, I., Blenzar, A., El Khetabi, A., El Hamss, H., Belabess, Z., Barka, E. A., & Lahlali, R. (2022). Combination of Sodium Bicarbonate (SBC) with Bacterial Antagonists for the Control of Brown Rot Disease of Fruit. Journal of Fungi, 8(6), 636. https://doi.org/10.3390/jof8060636