A Comparative Study on Heavy Metal Removal from CCA-Treated Wood Waste by Yarrowia lipolytica: Effects of Metal Stress
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Microorganisms
2.2. Culture Medium and Conditions
2.3. Metal Stress of Y. lipolytica
2.4. Bioremediation Procedure
2.5. Characterization of CCA-Treated Wood
3. Results and Discussion
3.1. Morphology of Bioremediation Wood
3.2. Surface Chemical Properties of CCA-Treated Wood Samples
3.3. Bioremediation of CCA-Treated Wood
3.3.1. Influence of Initial Strain Concentrations
3.3.2. Influence of Wood Amount
3.3.3. Influence of Copper Ion Stress
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Morais, S.; Fonseca, H.M.; Oliveira, S.M.; Oliveira, H.; Gupta, V.K.; Sharma, B.; de Lourdes Pereira, M. Environmental and Health Hazards of Chromated Copper Arsenate-Treated Wood: A Review. Int. J. Environ. Res. Public Health 2021, 18, 5518. [Google Scholar] [CrossRef] [PubMed]
- Civardi, C.; Schwarze, F.W.M.R.; Wick, P. Micronized copper wood preservatives: An efficiency and potential health risk assessment for copper-based nanoparticles. Environ. Pollut. 2015, 200, 126–132. [Google Scholar] [CrossRef] [PubMed]
- Dhillon, G.S.; Lea Rosine, G.M.; Kaur, S.; Hegde, K.; Brar, S.K.; Drogui, P.; Verma, M. Novel biomaterials from citric acid fermentation as biosorbents for removal of metals from waste chromated copper arsenate wood leachates. Int. Biodeterior. Biodegrad. 2017, 119, 147–154. [Google Scholar] [CrossRef]
- Townsend, T.; Tolaymat, T.; Solo-Gabriele, H.; Dubey, B.; Stook, K.; Wadanambi, L. Leaching of CCA-treated wood: Implications for waste disposal. J. Hazard. Mater. 2004, 114, 75–91. [Google Scholar] [CrossRef]
- Zango Usman, U.; Mukesh, Y.; Vandana, S.; Sharma, J.; Sanjay, P.; Sidhartha, D.; Sharma Anil, K. Microbial bioremediation of heavy metals: Emerging trends and recent advances. Res. J. Biotechnol. Vol. 2020, 15, 164–178. [Google Scholar]
- Gmar, M.; Bouafif, H.; Bouslimi, B.; Braghiroli, F.L.; Koubaa, A. Pyrolysis of Chromated Copper Arsenate-Treated Wood: Investigation of Temperature, Granulometry, Biochar Yield, and Metal Pathways. Energies 2022, 15, 5071. [Google Scholar] [CrossRef]
- Ribeiro, A.; Rodriguez-Maroto, J.; Mateus, E.; Velizarova, E.; Ottosen, L.M. Modeling of electrodialytic and dialytic removal of Cr, Cu and As from CCA-treated wood chips. Chemosphere 2007, 66, 1716–1726. [Google Scholar] [CrossRef]
- Alam, M.; Alshehri, T.; Wang, J.; Singerling, S.A.; Alpers, C.N.; Baalousha, M. Identification and quantification of Cr, Cu, and As incidental nanomaterials derived from CCA-treated wood in wildland-urban interface fire ashes. J. Hazard. Mater. 2023, 445, 130608. [Google Scholar] [CrossRef]
- Kato, T.; Hatakeyama, T.; Sugawara, K. Release behavior of arsenic, chromium, and copper during heat treatments of CCA-treated wood. J. Mater. Cycles Waste Manag. 2021, 23, 1636–1645. [Google Scholar] [CrossRef]
- Costa, L.G.d.; Brocco, V.F.; Paes, J.B.; Kirker, G.T.; Bishell, A.B. Biological and chemical remediation of CCA treated eucalypt poles after 30 years in service. Chemosphere 2022, 286, 131629. [Google Scholar] [CrossRef]
- Blazhenko, O.V.; Zimmermann, M.; Kang, H.A.; Bartosz, G.; Penninckx, M.J.; Ubiyvovk, V.M.; Sibirny, A.A. Accumulation of cadmium ions in the methylotrophic yeast Hansenula polymorpha. BioMetals 2006, 19, 593–599. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Chen, C. Biosorption of heavy metals by Saccharomyces cerevisiae: A review. Biotechnol. Adv. 2006, 24, 427–451. [Google Scholar] [CrossRef]
- Singh, P.; Raghukumar, C.; Parvatkar, R.R.; Mascarenhas-Pereira, M. Heavy metal tolerance in the psychrotolerant Cryptococcus sp. isolated from deep-sea sediments of the Central Indian Basin. Yeast 2013, 30, 93–101. [Google Scholar] [CrossRef] [PubMed]
- Ilyas, S.; Rehman, A.; Ilyas, Q. Heavy metals induced oxidative stress in multi-metal tolerant yeast, Candida sp. PS33 and its capability to uptake heavy metals from wastewater. Pak. J. Zool. 2017, 49, 769. [Google Scholar] [CrossRef]
- Kartal, S.N.; Kakitani, T.; Imamura, Y. Bioremediation of CCA-C treated wood by Aspergillus niger fermentation. Holz Als Roh-Und Werkst. 2004, 62, 64–68. [Google Scholar] [CrossRef]
- Xing, D.; Magdouli, S.; Zhang, J.; Koubaa, A. Microbial remediation for the removal of inorganic contaminants from treated wood: Recent trends and challenges. Chemosphere 2020, 258, 127429. [Google Scholar] [CrossRef]
- Bankar, A.V.; Kumar, A.R.; Zinjarde, S.S. Removal of chromium (VI) ions from aqueous solution by adsorption onto two marine isolates of Yarrowia lipolytica. J. Hazard. Mater. 2009, 170, 487–494. [Google Scholar] [CrossRef]
- Ren, B.; Jin, Y.; Cui, C.; Song, X. Enhanced Cr (VI) adsorption using chemically modified dormant Aspergillus niger spores: Process and mechanisms. J. Environ. Chem. Eng. 2022, 10, 106955. [Google Scholar] [CrossRef]
- Cavallo, E.; Charreau, H.; Cerrutti, P.; Foresti, M.L. Yarrowia lipolytica: A model yeast for citric acid production. FEMS Yeast Res. 2017, 17, fox084. [Google Scholar] [CrossRef] [Green Version]
- Bankar, A.; Zinjarde, S.; Telmore, A.; Walke, A.; Ravikumar, A. Morphological response of Yarrowia lipolytica under stress of heavy metals. Can. J. Microbiol. 2018, 64, 559–566. [Google Scholar] [CrossRef]
- Oliveira, A.; Sousa, T.; Amaral, P.; Coelho, M.; Araujo, O. Study of morphological and physiological parameters of cultures of Yarrowia lipolytica undergone electrochemical stress. Chem. Eng. Trans. 2010, 20, 133–138. [Google Scholar]
- Pandharikar, G.; Claudien, K.; Rose, C.; Billet, D.; Pollier, B.; Deveau, A.; Besserer, A.; Morel-Rouhier, M. Comparative Copper Resistance Strategies of Rhodonia placenta and Phanerochaete chrysosporium in a Copper/Azole-Treated Wood Microcosm. J. Fungi 2022, 8, 706. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Xu, J.; Xia, J.; Lv, J.; Wu, Z.; Deng, Y. Improved production of citric acid by Yarrowia lipolytica using oleic acid as the oxygen-vector and co-substrate. Eng. Life Sci. 2016, 16, 424–431. [Google Scholar] [CrossRef]
- Sierra-Alvarez, R. Removal of copper, chromium, and arsenic from preservative-treated wood by chemical extraction-fungal bioleaching. Waste Manag. 2009, 29, 1885–1891. [Google Scholar] [CrossRef] [PubMed]
- Schubert, M.; Volkmer, T.; Lehringer, C.; Schwarze, F. Resistance of bioincised wood treated with wood preservatives to blue-stain and wood-decay fungi. Int. Biodeterior. Biodegrad. 2011, 65, 108–115. [Google Scholar] [CrossRef]
- Nadaroglu, H.; Kalkan, E.; Celik, H. Equilibrium studies of copper ion adsorption onto a modified kernel of date (Fructus dactylus). Int. J. Environ. Sci. Technol. 2015, 12, 2079–2090. [Google Scholar] [CrossRef] [Green Version]
- Gołofit, T.; Zielenkiewicz, T.; Gawron, J. FTIR examination of preservative retention in beech wood (Fagus sylvatica L.). Eur. J. Wood Wood Prod. 2012, 70, 907–909. [Google Scholar] [CrossRef] [Green Version]
- Kolhe, N.; Damle, E.; Pradhan, A.; Zinjarde, S. A comprehensive assessment of Yarrowia lipolytica and its interactions with metals: Current updates and future prospective. Biotechnol. Adv. 2022, 59, 107967. [Google Scholar] [CrossRef]
- Kartal, S.N.; Katsumata, N.; Imamura, Y. Removal of copper, chromium, and arsenic from CCA-treated wood by organic acids released by mold and staining fungi. For. Prod. J. 2006, 56, 33–37. [Google Scholar]
- Kartal, S.N.; Munir, E.; Kakitani, T.; Imamura, Y. Bioremediation of CCA-treated wood by brown-rot fungi Fomitopsis palustris, Coniophora puteana, and Laetiporus sulphureus. J. Wood Sci. 2004, 50, 182–188. [Google Scholar] [CrossRef]
- Clausen, C.A. Isolating metal-tolerant bacteria capable of removing copper, chromium, and arsenic from treated wood. Waste Manag. Res. 2000, 18, 264–268. [Google Scholar] [CrossRef]
- Wang, X.; Li, J.; Guo, Q.; Xu, M.; Zhang, X.; Li, T. Cation-π interaction in Mg (OH) 2@ GO-coated activated carbon fiber cloth for rapid removal and recovery of divalent metal cations by flow-through adsorption. Resour. Conserv. Recycl. 2023, 188, 106648. [Google Scholar] [CrossRef]
- Bankar, A.; Zinjarde, S.; Shinde, M.; Gopalghare, G.; Ravikumar, A. Heavy metal tolerance in marine strains of Yarrowia lipolytica. Extremophiles 2018, 22, 617–628. [Google Scholar] [CrossRef] [PubMed]
- Hattori, T.; Hisamori, H.; Suzuki, S.; Umezawa, T.; Yoshimura, T.; Sakai, H. Rapid copper transfer and precipitation by wood-rotting fungi can affect copper removal from copper sulfate-treated wood blocks during solid-state fungal treatment. Int. Biodeterior. Biodegrad. 2015, 97, 195–201. [Google Scholar] [CrossRef]
- El-Sayed, M.T. Bioremediation and Extracellular Synthesis of Copper Nanoparticles from Wastewater using vYarrowia lipolytica AUMC 9256. Egypt. J. Bot. 2018, 58, 563–579. [Google Scholar]
- Ito, H.; Inouhe, M.; Tohoyama, H.; Joho, M. Effect of copper on acid phosphatase activity in yeast Yarrowia lipolytica. Z. Für Nat. C 2007, 62, 70–76. [Google Scholar] [CrossRef]
- Adamo, G.M.; Brocca, S.; Passolunghi, S.; Salvato, B.; Lotti, M. Laboratory evolution of copper tolerant yeast strains. Microb. Cell Factories 2012, 11, 1. [Google Scholar] [CrossRef] [Green Version]
- Hosiner, D.; Gerber, S.; Lichtenberg-Fraté, H.; Glaser, W.; Schüller, C.; Klipp, E. Impact of Acute Metal Stress in Saccharomyces cerevisiae. PLoS ONE 2014, 9, e83330. [Google Scholar] [CrossRef]
- Rywińska, A.; Wojtatowicz, M.; Żarowska, B.; Rymowicz, W. Biosynthesis of citric acid by yeast Yarrowia lipolytica A-101-1.31 under repeated batch cultivation. Electron. J. Pol. Agric. Univ. 2008, 11, #07. [Google Scholar]
- Kostina, E.; Wulff, A.; Julkunen-Tiitto, R. Growth, structure, stomatal responses and secondary metabolites of birch seedlings (Betula pendula) under elevated UV-B radiation in the field. Trees 2001, 15, 483–491. [Google Scholar] [CrossRef]
- Rzechonek, D.A.; Dobrowolski, A.; Rymowicz, W.; Mirończuk, A.M. Aseptic production of citric and isocitric acid from crude glycerol by genetically modified Yarrowia lipolytica. Bioresour. Technol. 2019, 271, 340–344. [Google Scholar] [CrossRef] [PubMed]
Sample | Concentrations of Cu2+ (mg·L−1) | Days of Metal Stress |
---|---|---|
A | 600 | 4 |
B | 600 | 8 |
C | 700 | 12 |
D | 700 | 14 |
E | 800 | 12 |
F | 1000 | 12 |
Control | No addition | No |
Concentrations of Cu2+ | Number of Days of Metal Stress | ||||
---|---|---|---|---|---|
1 Day | 4 Days | 8 Days | 12 Days | 14 Days | |
500 mg·L−1 | 116 (2.65 *) | 167 (8.50) | -- | -- | -- |
600 mg·L−1 | 229 (42.77) | 179 (6.51) | -- | -- | -- |
700 mg·L−1 | 170 (13.65) | 92 (7.94) | 21 (2.65) | 99 (2.65) | -- |
800 mg·L−1 | 74 (14.36) | 80 (6.81) | 8 (3.51) | 6 (1.15) | 1 (0.58) |
1000 mg·L−1 | 84 (15.72) | 20 (2.31) | 7 (2.89) | 5 (3.06) | 0 (0.58) |
OD Values | 0.05 | 0.6 | 0.6 (Fungi under Copper Ion Stress) | 0.05 (Supernatant) | 0.6 (Supernatant) | |
---|---|---|---|---|---|---|
Time | ||||||
1 day | 36.8 × 10−3 (mg·g−1) | 1.53 (mg·g−1) | 1.55 (mg·g−1) | 46.0 × 10−3 (mg·g−1) | 32.3 × 10−3 (mg·g−1) | |
15 days | 36.8 × 10−3 (mg·g−1) | 1.02 (mg·g−1) | 1.19 (mg·g−1) | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xing, D.; Magdouli, S.; Zhang, J.; Bouafif, H.; Koubaa, A. A Comparative Study on Heavy Metal Removal from CCA-Treated Wood Waste by Yarrowia lipolytica: Effects of Metal Stress. J. Fungi 2023, 9, 469. https://doi.org/10.3390/jof9040469
Xing D, Magdouli S, Zhang J, Bouafif H, Koubaa A. A Comparative Study on Heavy Metal Removal from CCA-Treated Wood Waste by Yarrowia lipolytica: Effects of Metal Stress. Journal of Fungi. 2023; 9(4):469. https://doi.org/10.3390/jof9040469
Chicago/Turabian StyleXing, Dan, Sara Magdouli, Jingfa Zhang, Hassine Bouafif, and Ahmed Koubaa. 2023. "A Comparative Study on Heavy Metal Removal from CCA-Treated Wood Waste by Yarrowia lipolytica: Effects of Metal Stress" Journal of Fungi 9, no. 4: 469. https://doi.org/10.3390/jof9040469
APA StyleXing, D., Magdouli, S., Zhang, J., Bouafif, H., & Koubaa, A. (2023). A Comparative Study on Heavy Metal Removal from CCA-Treated Wood Waste by Yarrowia lipolytica: Effects of Metal Stress. Journal of Fungi, 9(4), 469. https://doi.org/10.3390/jof9040469