Risk Assessment of the Wild Edible Leccinum Mushrooms Consumption According to the Total Mercury Content
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Areas, Sampling and Sample Preparation
2.2. Sample Analysis
2.3. Risk Assessment
2.3.1. Contamination Factor ()
2.3.2. Bioaccumulation Factor (BCF) and Translocation Quotient (Qc/s)
2.3.3. Provisional Tolerable Weekly Intake (PTWI)
2.3.4. Target Hazard Quotient (THQ)
2.4. Statistical Analysis
3. Results and Discussion
3.1. Soil/Substrate Samples Analysis
3.2. Mercury Concentration in Fruiting Bodies
3.3. Bioaccumulation Factor (BCF) and the Translocation Quotient (Qc/s)
3.4. Health Risk Assessment
Percentage of the Provisional Tolerable Weekly Intake (%PTWI) and Target Hazard Quotient (THQ)
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bernaś, E.; Jaworska, G. Vitamins profile as an indicator of the quality of frozen Agaricus bisporus mushrooms. J. Food Compost. Anal. 2016, 49, 1–8. [Google Scholar] [CrossRef]
- Kumar, P.; Kumar, V.; Eid, E.M.; Al-Huqail, A.A.; Adelodun, B.; Fayssal, S.A.; Goala, M.; Kumar-Arya, A.; Bachheti, A.; Andabaka, Ž.; et al. Spatial Assessment of Potentially Toxic Elements (PTE) Concentration in Agaricus bisporus Mushroom Collected from Local Vegetable Markets of Uttarakhand State, India. J. Fungi 2022, 8, 452. [Google Scholar] [CrossRef]
- Wang, X.-M.; Zhang, J.; Wu, L.-H.; Zhao, Y.-L.; Li, T.; Li, J.-Q.; Wang, Y.-Z.; Liu, H.-G. A mini-review of chemical composition and nutritional value of edible wild-grown mushroom from China. Food Chem. 2014, 151, 279–285. [Google Scholar] [CrossRef]
- Meng, X.; Wang, G.-S.; Wu, G.; Wang, P.-M.; Yang, Z.L.; Li, Y.-C. The genus Leccinum (Boletaceae, Boletales) from China based on morphological and Molecular Data. J. Fungi 2021, 7, 732. [Google Scholar] [CrossRef]
- Čeryová, N.; Jančo, I.; Šnirc, M.; Lidiková, J.; Sabo, R.; Wassenaar, T.; Meroro, A.; Amwele, H.; Árvay, J. Mercury content in the wild edible Leccinum mushrooms growing in Slovakia: Environmental and Health Risk Assessment. J. Microbiol. Biotechnol. Food Sci. 2022, 12, e9455. [Google Scholar] [CrossRef]
- Den Bakker, H.C.; Zuccarello, G.C.; Kuyper, T.H.W.; Noordeloos, M.E. Evolution and host specificity in the ectomycorrhizal genus Leccinum. New Phytol. 2004, 163, 201–215. [Google Scholar]
- Demková, L.; Árvay, J.; Bobuľská, L.; Hauptvogl, M.; Michalko, M. Activity of the soil enzymes and moss and lichen biomonitoring method used for the evaluation of soil and air pollution from tailing pond in Nižná Slaná (Slovakia). J. Environ. Sci. Health A 2019, 54, 495–507. [Google Scholar] [CrossRef]
- Širić, I.; Kumar, P.; Adelodun, B.; Fayssal, S.A.; Bachheti, K.R.; Bachheti, A.; Ajibade, O.F.; Kumar, V.; Taher, M.A.; Eid, E.M. Risk Assessment of Heavy Metals Occurrence in Two Wild Edible Oyster Mushrooms (Pleurotus spp.) Collected from Rajaji National Park. J. Fungi 2022, 8, 1007. [Google Scholar] [CrossRef]
- Árvay, J.; Demková, L.; Hauptvogl, M.; Michalko, M.; Bajčan, D.; Stanovič, R.; Tomáš, J.; Hrstková, M.; Trebichalský, P. Assessment of environmental and health risks in former polymetallic ore mining and smelting area, Slovakia: Spatial Distribution and accumulation of mercury in four different ecosystems. Ecotoxicol. Environ. Saf. 2017, 144, 236–244. [Google Scholar] [CrossRef]
- Kovacik, A.; Arvay, J.; Tusimova, E.; Harangozo, L.; Tvrda, E.; Zbynovska, K.; Cupka, P.; Andrascikova, S.; Tomas, J.; Massanyi, P. Seasonal variations in the blood concentration of selected heavy metals in sheep and their effects on the biochemical and hematological parameters. Chemosphere 2017, 168, 365–371. [Google Scholar]
- Ruan, X.; Ge, S.; Jiao, Z.; Zhan, W.; Wang, Y. Bioaccumulation and risk assessment of potential toxic elements in the soil-vegetable system as influenced by historical wastewater irrigation. Agric. Water Manag. 2023, 279, 108197. [Google Scholar] [CrossRef]
- Yang, L.; Ren, Q.; Zheng, K.; Jiao, Z.; Ruan, X.; Wang, Y. Migration of heavy metals in the soil-grape system and potential health risk assessment. Sci. Tot. Environ. 2022, 806, 150646. [Google Scholar]
- Asad, S.A.; Farooq, M.; Afzal, A.; West, H. Integrated Phytobial Heavy Metal Remediation Strategies for a sustainable clean environment—A Review. Chemosphere 2019, 217, 925–941. [Google Scholar] [CrossRef]
- Árvay, J.; Hauptvogl, M.; Šnirc, M.; Gažová, M.; Demková, L.; Bobuľská, L.; Hrstková, M.; Bajčan, D.; Harangozo, Ľ.; Bilčíková, J.; et al. Determination of elements in wild edible mushrooms: Levels and risk assessment. J. Microbiol. Biotechnol. Food Sci. 2019, 8, 999–1004. [Google Scholar] [CrossRef] [Green Version]
- Selin, N.E. A proposed global metric to aid Mercury pollution policy. Science 2018, 360, 607–609. [Google Scholar] [CrossRef]
- Hsu-Kim, H.; Eckley, C.S.; Achá, D.; Feng, X.; Gilmour, C.C.; Jonsson, S.; Mitchell, C.P. Challenges and opportunities for managing aquatic mercury pollution in altered landscapes. AMBIO 2018, 47, 141–169. [Google Scholar] [CrossRef] [Green Version]
- Xu, J.; Zhang, J.; Lv, Y.; Xu, K.; Lu, S.; Liu, X.; Yang, Y. Effect of soil mercury pollution on Ginger (zingiber officinale Roscoe): Growth, product quality, health risks and Silicon Mitigation. Ecotoxicol. Environ. Saf. 2020, 195, 110472. [Google Scholar] [CrossRef]
- Schwieger, A.-C.; Gebauer, K.; Ohle, A.; Beckmann, M. Determination of mercury binding forms in humic substances of lignite. Fuel 2020, 274, 117800. [Google Scholar] [CrossRef]
- Tang, W.-L.; Liu, Y.-R.; Guan, W.-Y.; Zhong, H.; Qu, X.-M.; Zhang, T. Understanding Mercury methylation in the changing environment: Recent advances in assessing microbial methylators and Mercury bioavailability. Sci. Tot. Environ. 2020, 714, 136827. [Google Scholar] [CrossRef]
- Kalač, P. Mineral Composition and Radioactivity of Edible Mushrooms; Academic Press: Cambridge, MA, USA, 2019; pp. 299–326. ISBN 9780128175651. [Google Scholar]
- Kunca, V.; Čiliak, M. Habitat preferences of hericium erinaceus in Slovakia. Fungal Ecol. 2017, 27, 189–192. [Google Scholar] [CrossRef]
- Kunca, V.; Pavlik, M. Fruiting body production of, and suitable environmental ranges for, growing the umbrella polypore medicinal mushroom, polyporus umbellatus (agaricomycetes), in natural conditions in Central Europe. Int. J. Med. Mushrooms 2019, 21, 121–129. [Google Scholar] [CrossRef]
- Demo, M.; Bako, A.; Húska, D. Biomass production potential of different willow varieties (Salix spp.) grown in soil-climatic conditions of south-western Slovakia. Wood Res. 2013, 58, 651–661. [Google Scholar]
- Liu, S.; Liu, H.; Li, J.; Wang, Y. Research Progress on Elements of Wild Edible Mushrooms. J. Fungi 2022, 8, 964. [Google Scholar] [CrossRef]
- Bahadori, M.B.; Sarikurkcu, C.; Yalcin, O.U.; Cengiz, M.; Gungor, H. Metal concentration, phenolics profiling, and antioxidant activity of two wild edible melanoleuca mushrooms (M. Cognata and M. Stridula). Microchem. J. 2019, 150, 104172. [Google Scholar] [CrossRef]
- Hakanson, L. An ecological risk index for aquatic pollution control.a sedimentological approach. Water Res. 1980, 14, 975–1001. [Google Scholar] [CrossRef]
- Dryżałowska, A.; Falandysz, J. Bioconcentration of Mercury by mushroom Xerocomus Chrysenteron from the spatially distinct locations: Levels, possible intake and safety. Ecotox. Environ. Saf. 2014, 107, 97–102. [Google Scholar] [CrossRef]
- Joint, F.A.O.; World Health Organization; WHO Expert Committee on Food Additives. Safety Evaluation of Certain Food Additives/Prepared by the by the Seventy Fourth Meeting of the Joint FAO/WHO Expert Committee on Food Additives (JECFA). 2012. Available online: https://books.google.ro/books?hl=ro&lr=&id=YFAMU9qYD_YC&oi=fnd&pg=PP7&ots=e5skGh31Ln&sig=W99eNu8GUWHlWsG-ooJzM1dlkws&redir_esc=y#v=onepage&q&f=false (accessed on 9 May 2022).
- Statistical Organization of Slovak Republic 2021. Food Consumption in the Slovak Republic 2020. Available online: www.statistics.sk (accessed on 9 May 2022).
- Demková, L.; Árvay, J.; Hauptvogl, M.; Michalková, J.; Šnirc, M.; Harangozo, Ľ.; Bobuľská, L.; Bajčan, D.; Kunca, V. Mercury content in three edible wild-growing mushroom species from different environmentally loaded areas in Slovakia: An Ecological and human health risk assessment. J. Fungi 2021, 7, 434. [Google Scholar] [CrossRef]
- The Jamovi Project Jamovi. (Version 2.2) [Computer Software]. 2021. Available online: https://www.jamovi.org (accessed on 21 December 2022).
- R Core Team. R: A Language and Environment for Statistical Computing. (Version 4.0) [Computer software]. 2021. Available online: https://cran.r-project.org (accessed on 1 April 2021).
- Patil I Ggstatsplot: ‘ggplot2’ Based Plots with Statistical Details. [R package]. 2018. Available online: https://CRAN.R-project.org/package=ggstatsplot (accessed on 21 December 2022).
- Brunson, J.C. ggalluvial: Alluvial Plots in ‘ggplot2’. [R package]. 2018. Available online: https://CRAN.Rproject.org/package=ggalluvial (accessed on 21 December 2022).
- Koneswarakantha, B. Easyalluvial: Generate Alluvial Plots with a Single Line of Code. [R package]. 2019. Available online: https://CRAN.R-project.org/package=easyalluvial (accessed on 20 December 2022).
- Wickham, H.; Chang, W.; Henry, L.; Pedersen, T.L.; Takahashi, K.; Wilke, C.; Woo, K. RStudio ggplot2: Create Elegant Data Visualisations Using the Grammar of Graphics. [R package]. 2018. Available online: https://CRAN.Rproject.org/package=ggplot2 (accessed on 20 December 2022).
- RStudio Team. RStudio: Integrated Development for R; RStudio Inc.: Boston, MA, USA, 2015; Available online: http://www.rstudio.com/ (accessed on 12 December 2022).
- Šefčík, P.; Pramuka, S.; Gluch, A. Assessment of soil contamination in Slovakia according index of geoaccumulation. Agriculture 2008, 54, 119–130. [Google Scholar]
- Act of the National Council of the Slovak Republic, No. 220/2004 Coll. Available online: http://www.podnemapy.sk/portal/verejnost/konsolidacia/z_220_2004.pdf (accessed on 29 October 2022).
- Li, X.; Yang, H.; Zhang, C.; Zeng, G.; Liu, Y.; Xu, W.; Wu, Y.; Lan, S. Spatial distribution and transport characteristics of heavy metals around an antimony mine area in central China. Chemosphere 2017, 170, 17–24. [Google Scholar] [CrossRef]
- Jančo, I.; Šnirc, M.; Hauptvogl, M.; Demková, L.; Franková, H.; Kunca, V.; Lošák, T.; Árvay, J. Mercury in Macrolepiota procera (scop.) singer and its underlying substrate—Environmental and Health Risks Assessment. J. Fungi 2021, 7, 772. [Google Scholar] [CrossRef]
- Árvay, J.; Tomáš, J.; Hauptvogl, M.; Massányi, P.; Harangozo, Ľ.; Tóth, T.; Stanovič, R.; Bryndzová, Š.; Bumbalová, M. Human exposure to heavy metals and possible public health risks via consumption of wild edible mushrooms from Slovak Paradise National Park, Slovakia. J. Environ. Sci. Health B 2015, 50, 833–843. [Google Scholar] [CrossRef]
- Árvay, J.; Záhorcová, Z.; Tomáš, J.; Hauptvogl, M.; Stanovič, R.; Harangozo. Mercury in edible wild-grown mushrooms from historical mining area—Slovakia: Bioaccumulation and risk assessment. J. Microbiol. Biotechnol. Food Sci. 2015, 4, 1–4. [Google Scholar] [CrossRef]
- Falandysz, M.; Gucia, B.; Skwarzec, A.J. Total Mercury in mushrooms and underlying soil substrate from the Borecka Forest, northeastern Poland. Arch. Environ. Contam. Toxicol. 2002, 42, 145–154. [Google Scholar] [CrossRef]
- Mleczek, M.; Budka, A.; Kalač, P.; Siwulski, M.; Niedzielski, P. Family and species as determinants modulating mineral composition of selected wild-growing mushroom species. Environ. Sci. Pollut. Res. 2020, 28, 389–404. [Google Scholar] [CrossRef]
- Falandysz, J.; Gucia, M. Bioconcentration factors of Mercury by Parasol Mushroom (Macrolepiota procera). Environ. Geochem. Health 2008, 30, 121–125. [Google Scholar] [CrossRef]
- Falandysz, J.; Bielawski, L.; Kawano, M.; Brzostowski, A.; Chudzyński, K. Mercury in mushrooms and soil from the Wieluńska Upland in south-central Poland. J. Environ. Sci. Health A 2002, 37, 1409–1420. [Google Scholar] [CrossRef]
- Mleczek, M.; Siwulski, M.; Budka, A.; Mleczek, P.; Budzyńska, S.; Szostek, M.; Kuczyńska-Kippen, N.; Kalač, P.; Niedzielski, P.; Gąsecka, M.; et al. Toxicological risks and nutritional value of wild edible mushroom species -a half-century monitoring study. Chemosphere 2021, 263, 128095. [Google Scholar] [CrossRef]
- Jančo, I.; Šnirc, M.; Hauptvogl, M.; Franková, H.; Čeryová, N.; Štefániková, J.; Árvay, J. Arsenic, cadmium and mercury in the Macrolepiota procera (scop.) singer fruiting bodies. J. Microbiol. Biotechnol. Food Sci. 2021, 11, e4764. [Google Scholar] [CrossRef]
- Jančo, I.; Trebichalský, P.; Bystrická, J.; Tirdil’ová, I.; Štefániková, J. Determination of cadmium, lead and mercury content in Macrolepiota procera in selected areas of Slovakia.19th international multidisciplinary scientific geoconference SGEM2019, water resources. forest, Marine and Ocean Ecosystems. SGEM Int. Multidiscip. Sci. GeoConference EXPO Proc. 2019, 19, 681–688. [Google Scholar] [CrossRef]
- Árvay, J.; Tomáš, J.; Hauptvogl, M.; Kopernická, M.; Kováčik, A.; Bajčan, D.; Massányi, P. Contamination of wild-grown edible mushrooms by heavy metals in a former mercury-mining area. J. Environ. Sci. Health B 2014, 49, 815–827. [Google Scholar] [CrossRef]
- Falandysz, J.; Zhang, J.; Wang, Y.; Krasińska, G.; Kojta, A.; Saba, M.; Shen, T.; Li, T.; Liu, H. Evaluation of the mercury contamination in mushrooms of genus Leccinum from two different regions of the world: Accumulation, distribution and probable dietary intake. Sci. Tot. Environ. 2015, 537, 470–478. [Google Scholar] [CrossRef]
- Melgar, M.J.; Alonso, J.; García, M.A. Mercury in edible mushrooms and underlying soil: Bioconcentration factors and toxicological risk. Sci. Tot. Environ. 2009, 407, 5328–5334. [Google Scholar] [CrossRef]
- Svoboda, L.; Havlíčková, B.; Kalač, P. Contents of cadmium, mercury and lead in edible mushrooms growing in a historical silver-mining area. Food Chem. 2006, 96, 580–585. [Google Scholar] [CrossRef]
- Scragg, A. Environmental Biotechnology; Oxford University Press: New York, NY, USA, 2005; pp. 218–258. [Google Scholar]
- Falandysz, J.; Borovička, J. Macro and trace mineral constituents and radionuclides in mushrooms: Health benefits and risks. Appl. Microbiol. Biotechnol. 2012, 97, 477–501. [Google Scholar] [CrossRef] [Green Version]
- Bidar, G.; Garçon, G.; Pruvot, C.; Dewaele, D.; Cazier, F.; Douay, F.; Shirali, P. Behavior of trifolium repens and lolium perenne growing in a heavy metal contaminated field: Plant metal concentration and phytotoxicity. Environ. Pollut. 2007, 147, 546–553. [Google Scholar] [CrossRef]
- Krasińska, G.; Falandysz, J. Mercury in Hazel Bolete Leccinum griseum and soil substratum: Distribution, bioconcentration and dietary exposure. J. Environ. Sci. Health A 2015, 50, 1259–1264. [Google Scholar] [CrossRef]
- Falandysz, J.; Kowalewska, I.; Nnorom, I.C.; Drewnowska, M.; Jarzyńska, G. Mercury in Red Aspen boletes (Leccinum aurantiacum) mushrooms and the soils. J. Environ. Sci. Health A 2012, 47, 1695–1700. [Google Scholar] [CrossRef]
- Falandysz, J.; Bielawski, L. Mercury and its bioconcentration factors in Brown Birch scaber stalk (Leccinum scabrum) from various sites in Poland. Food Chem. 2007, 105, 635–640. [Google Scholar] [CrossRef]
- Falandysz, J.; Kunito, T.; Kubota, R.; Bielawski, L.; Mazur, A.; Falandysz, J.J.; Tanabe, S. Selected elements in Brown Birch scaber stalk Leccinum scabrum. J. Environ. Sci. Health A 2007, 42, 2081–2088. [Google Scholar] [CrossRef]
- Busuioc, G.; Elekes, C.C.; Stihi, C.; Iordache, S.; Ciulei, S.C. The bioaccumulation and translocation of Fe, Zn, and Cu in species of mushrooms from Russula genus. Environ. Sci. Pollut. Res. 2011, 18, 890–896. [Google Scholar]
- Krasińska, G.; Falandysz, J. Mercury in Orange Birch Bolete leccinum versipelle and soil substratum: Bioconcentration by mushroom and probable dietary intake by consumers. Environ. Sci. Pollut. Res. 2015, 23, 860–869. [Google Scholar] [CrossRef] [Green Version]
Locality | L. albostipitatum | L. piceinum | L. pseudoscabrum | L. scabrum |
---|---|---|---|---|
Badín | 10 | |||
Dubodiel | 12 | |||
Kendice | 19 | |||
Kostoľany p/Tribečom | 15 | |||
Králiky | 17 | |||
Levočské Lúky | 6 | 10 | ||
Malá Franková | 2 | 1 | 12 | |
Liptovská Lúžna | 18 | |||
Osrblie | 17 | |||
Osturňa | 9 | 2 | ||
Počúvadlianske Jazero | 12 | |||
Spišské Tomášovce | 10 | 6 | ||
Stráňany | 7 | 8 | ||
Špania Dolina | 17 | 7 | ||
Valčianska dolina | 18 | |||
Žakýlske pleso | 14 |
Locality | AVG ± SD | Min–Max | |
---|---|---|---|
Badín | 0.13 ± 0.02 | 0.09–0.15 | 2.10 |
Dubodiel | 0.21 ± 0.05 | 0.18–0.33 | 3.49 |
Kendice | 0.08 ± 0.04 | 0.04–0.18 | 1.34 |
Kostoľany p/Tribečom | 0.07 ± 0.04 | 0.05–0.18 | 1.11 |
Králiky | 0.05 ± 0.06 | 0.02–0.25 | 0.85 |
Levočské Lúky | 0.61 ± 0.12 | 0.38–0.81 | 10.1 |
Malá Franková | 0.16 ± 0.05 | 0.09–0.25 | 2.63 |
Liptovská Lúžna | 0.18 ± 0.02 | 0.15–0.23 | 3.80 |
Osrblie | 0.05 ± 0.02 | 0.02–0.09 | 0.77 |
Osturňa | 0.13 ± 0.21 | 0.06–0.81 | 2.10 |
Počúvadlianske Jazero | 0.10 ± 0.01 | 0.07–0.11 | 1.58 |
Spišské Tomášovce | 0.53 ± 0.27 | 0.02–0.85 | 8.76 |
Stráňany | 0.15 ± 0.02 | 0.09–0.16 | 2.43 |
Valčianska dolina | 0.07 ± 0.01 | 0.07–0.08 | 1.18 |
Špania Dolina | 0.30 ± 0.14 | 0.01–0.55 | 5.80 |
Žakýlske pleso | 0.07 ± 0.01 | 0.06–0.10 | 1.22 |
Locality | Cap | Stem | ||
---|---|---|---|---|
AVG ± SD | Min–Max | AVG ± SD | Min–Max | |
Badín | 0.97 ± 0.25 | 0.39–1.90 | 0.48 ± 0.18 | 0.13–0.62 |
Dubodiel | 0.55 ± 0.06 | 0.48–0.69 | 0.43 ± 0.08 | 0.26–0.56 |
Kendice | 0.62 ± 0.25 | 0.09–0.96 | 0.70 ± 0.37 | 0.16–1.55 |
Kostoľany p/Tribečom | 0.78 ± 0.43 | 0.27–1.66 | 0.60 ± 0.23 | 0.21–0.95 |
Králiky | 0.16 ± 0.05 | 0.08–0.27 | 0.20 ± 0.82 | 0.06–2.86 |
Levočské Lúky | 1.89 ± 2.60 | 0.89–8.99 | 1.18 ± 1.35 | 0.31–5.94 |
Malá Franková | 0.34 ± 0.51 | 0.1–1.97 | 0.22 ± 0.18 | 0.06–0.68 |
Liptovská Lúžna | 1.27 ± 0.41 | 0.78–2.13 | 0.97 ± 0.21 | 0.50–1.18 |
Osrblie | 0.71 ± 0.37 | 0.07–1.10 | 0.53 ± 0.25 | 0.05–0.87 |
Osturňa | 0.98 ± 0.95 | 0.02–3.15 | 0.53 ± 0.35 | 0.22–1.26 |
Počúvadlianske Jazero | 0.36 ± 0.04 | 0.27–0.38 | 0.32 ± 0.03 | 0.28–0.36 |
Spišské Tomášovce | 5.82 ± 2.28 | 2.50–9.61 | 3.50 ± 1.23 | 0.48–4.43 |
Stráňany | 0.64 ± 0.90 | 0.32–3.26 | 0.44 ± 0.45 | 0.19–1.53 |
Valčianska dolina | 0.52 ± 0.03 | 0.47–0.56 | 0.40 ± 0.08 | 0.29–0.58 |
Špania Dolina | 0.58 ± 0.23 | 0.28–1.80 | 0.34 ± 0.09 | 0.20–0.50 |
Žakýlske pleso | 0.41 ± 0.17 | 0.18–0.71 | 0.35 ± 0.14 | 0.12–0.64 |
Mushroom Species | BCF (Cap) | BCF (Stem) | p-Value | Qc/s |
---|---|---|---|---|
L. albostipitatum | 7.15 | 4.78 | <0.0001 | 1.59 |
L. piceinum | 4.27 | 3.35 | 0.0186 | 1.66 |
L. pseudoscabrum | 4.55 | 4.48 | 0.0230 | 1.18 |
L. scabrum | 3.79 | 2.61 | <0.0001 | 1.50 |
Locality | %PTWI | THQ | ||
---|---|---|---|---|
Cap | Stem | Cap | Stem | |
Badín | 6.27 | 3.90 | 1.19 | 0.59 |
Dubodiel | 3.56 | 2.75 | 0.68 | 0.52 |
Kendice | 3.99 | 4.50 | 0.76 | 0.86 |
Kostoľany p/Tribečom | 5.40 | 3.87 | 0.96 | 0.74 |
Králiky | 1.40 | 1.27 | 0.20 | 0.24 |
Levočské Lúky | 12.1 | 7.62 | 2.31 | 1.45 |
Malá Franková | 2.16 | 1.41 | 0.41 | 0.27 |
Liptovská Lúžna | 8.20 | 6.21 | 1.56 | 1.18 |
Osrblie | 4.59 | 3.37 | 0.87 | 0.64 |
Osturňa | 6.33 | 3.38 | 1.20 | 0.64 |
Počúvadlianske Jazero | 2.31 | 2.70 | 0.44 | 0.39 |
Spišské Tomášovce | 37.4 | 19.6 | 7.13 | 3.74 |
Stráňany | 4.14 | 2.83 | 0.79 | 0.54 |
Valčianska dolina | 3.32 | 2.57 | 0.63 | 0.49 |
Špania Dolina | 3.72 | 2.18 | 0.71 | 0.41 |
Žakýlske pleso | 2.61 | 2.26 | 0.50 | 0.43 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Šnirc, M.; Jančo, I.; Hauptvogl, M.; Jakabová, S.; Demková, L.; Árvay, J. Risk Assessment of the Wild Edible Leccinum Mushrooms Consumption According to the Total Mercury Content. J. Fungi 2023, 9, 287. https://doi.org/10.3390/jof9030287
Šnirc M, Jančo I, Hauptvogl M, Jakabová S, Demková L, Árvay J. Risk Assessment of the Wild Edible Leccinum Mushrooms Consumption According to the Total Mercury Content. Journal of Fungi. 2023; 9(3):287. https://doi.org/10.3390/jof9030287
Chicago/Turabian StyleŠnirc, Marek, Ivona Jančo, Martin Hauptvogl, Silvia Jakabová, Lenka Demková, and Július Árvay. 2023. "Risk Assessment of the Wild Edible Leccinum Mushrooms Consumption According to the Total Mercury Content" Journal of Fungi 9, no. 3: 287. https://doi.org/10.3390/jof9030287
APA StyleŠnirc, M., Jančo, I., Hauptvogl, M., Jakabová, S., Demková, L., & Árvay, J. (2023). Risk Assessment of the Wild Edible Leccinum Mushrooms Consumption According to the Total Mercury Content. Journal of Fungi, 9(3), 287. https://doi.org/10.3390/jof9030287