Secretome Analysis for a New Strain of the Blackleg Fungus Plenodomus lingam Reveals Candidate Proteins for Effectors and Virulence Factors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sequence Information and Retrieval
2.2. Prediction of Secretome
2.3. Characterization and Annotation of Secretory Proteins
2.4. Analysis of the Putative Effectors
2.5. Comparative Analysis of Effector and CAZymes among Species and Isolates
3. Results and Discussion
3.1. Prediction of Secretome
3.2. Characterization of Physicochemical Properties of Secretory Proteins
3.3. Characterization and Annotation of Secretory Proteins
3.4. Analysis of Putative Effectors
3.5. Analysis of Virulence Factors
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Howlett, B.J. Current knowledge of the interaction between Brassica napus and Leptosphaeria maculans. Can. J. Plant Pathol. 2004, 26, 245–252. [Google Scholar] [CrossRef]
- Fitt, B.D.L.; Brun, H.; Barbetti, M.J.; Rimmer, S.R. World-wide importance of phoma stem canker (Leptosphaeria maculans and L. biglobosa) on oilseed rape (Brassica napus). Eur. J. Plant Pathol. 2006, 114, 3–15. [Google Scholar] [CrossRef]
- Robin, A.H.K.; Laila, R.; Abuyusuf, M.; Park, J.I.; Nou, I.S. Leptosphaeria maculans alters glucosinolate accumulation and expression of aliphatic and indolic glucosinolate biosynthesis genes in blackleg disease-resistant and -susceptible cabbage lines at the seedling stage. Front. Plant Sci. 2020, 11, 1134. [Google Scholar] [CrossRef] [PubMed]
- West, J.S.; Biddulph, J.E.; Fitt, B.D.L.; Gladders, P. Epidemiology of Leptosphaeria maculans in relation to forecasting stem canker severity on winter oilseed rape in the UK. Ann. Appl. Biol. 1999, 135, 535–546. [Google Scholar] [CrossRef]
- Hao, L.; Song, P.; Huangfu, H.; Li, Z. Genetic diversity and differentiation of Leptosphaeria biglobosa on oilseed rape in China. Phytoparasitica 2015, 43, 253–263. [Google Scholar] [CrossRef]
- Fernando, W.G.D.; Zhang, X.; Amarasinghe, C.C. Detection of Leptosphaeria maculans and Leptosphaeria biglobosa causing blackleg disease in canola from Canadian canola seed lots and dockage. Plants 2016, 5, 12. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Sivasithamparam, K.; Barbetti, M.J. Soilborne ascospores and pycnidiospores of Leptosphaeria maculans can contribute significantly to blackleg disease epidemiology in oilseed rape (Brassica napus) in Western Australia. Australas. Plant Pathol. 2007, 36, 439–444. [Google Scholar] [CrossRef]
- Ghanbarnia, K.; Fernando, W.G.D.; Crow, G. Comparison of disease severity and incidence at different growth stages of naturally infected canola plants under field conditions by pycnidiospores of Phoma lingam as a main source of inoculum. Can. J. Plant Pathol. 2011, 33, 355–363. [Google Scholar] [CrossRef]
- Zhang, X.; Fernando, W. Insights into fighting against blackleg disease of Brassica napus in Canada. Crop Pasture Sci. 2017, 69, 40–47. [Google Scholar] [CrossRef]
- Romano, N.; Lignola, G.P.; Brigante, M.; Bosso, L.; Chirico, G.B. Residual life and degradation assessment of wood elements used in soil bioengineering structures for slope protection. Ecol. Eng. 2016, 90, 498–509. [Google Scholar] [CrossRef]
- Sützl, L.; Laurent, C.V.F.P.; Abrera, A.T.; Schütz, G.; Ludwig, R.; Haltrich, D. Multiplicity of enzymatic functions in the CAZy AA3family. Appl. Microbiol. Biotechnol. 2018, 102, 2477–2492. [Google Scholar] [CrossRef] [Green Version]
- Girard, V.; Dieryckx, C.; Job, C.; Job, D. Secretomes: The fungal strike force. Proteomics 2013, 13, 597–608. [Google Scholar] [CrossRef]
- Essig, A.; Hofmann, D.; Münch, D.; Gayathri, S.; Künzler, M.; Kallio, P.T.; Sahl, H.-G.; Wider, G.; Schneider, T.; Aebi, M. Copsin, a novel peptide-based fungal antibiotic interfering with the peptidoglycan. J. Biol. Chem. 2014, 289, 34953–34964. [Google Scholar] [CrossRef] [Green Version]
- Bosso, L.; Lacatena, F.; Varlese, R.; Nocerino, S.; Cristinzio, G.; Russo, D. Plant pathogens but not antagonists change in soil fungal communities across a land abandonment gradient in a Mediterranean landscape. Acta Oecol. 2017, 78, 1–6. [Google Scholar] [CrossRef]
- Põlme, S.; Bahram, M.; Jacquemyn, H.; Kennedy, P.; Kohout, P.; Moora, M.; Oja, J.; Opik, M.; Pecoraro, L.; Tedersoo, L. Host preference and network properties in biotrophic plant–fungal associations. New Phytol. 2018, 217, 1230–1239. [Google Scholar] [CrossRef] [Green Version]
- Alfaro, M.; Oguiza, J.A.; Ramírez, L.; Pisabarro, A.G. Comparative analysis of secretomes in basidiomycete fungi. J. Proteom. 2014, 102, 28–43. [Google Scholar] [CrossRef]
- Neu, E.; Debener, T. Prediction of the Diplocarpon rosae secretome reveals candidate genes for effectors and virulence factors. Fungal Biol. 2019, 123, 231–239. [Google Scholar] [CrossRef]
- Rodrigues, M.L.; Franzen, A.J.; Nimrichter, L.; Miranda, K. Vesicular mechanisms of traffic of fungal molecules to extracellular space. Curr. Opin. Microbiol. 2013, 16, 414–420. [Google Scholar] [CrossRef]
- Kubicek, C.P.; Starr, T.L.; Glass, N.L. Plant cell wall-degrading enzymes and their secretion in plant-pathogenic fungi. Annu. Rev. Phytopathol. 2014, 52, 427–451. [Google Scholar] [CrossRef]
- McCotter, S.W.; Horianopoulos, L.C.; Kronstad, J.W. Regulation of the fungal secretome. Curr. Genet. 2016, 62, 533–545. [Google Scholar] [CrossRef]
- Pradhan, A.; Ghosh, S.; Sahoo, D.; Jha, G. Fungal effectors, the double edge sword of phytopathogens. Curr. Genet. 2021, 67, 27–40. [Google Scholar] [CrossRef] [PubMed]
- Lo Presti, L.; Lanver, D.; Schweizer, G.; Tanaka, S.; Liang, L.; Tollot, M.; Zuccaro, A.; Reissmann, S.; Kahmann, R. Fungal Effectors and Plant Susceptibility. Annu. Rev. Plant Biol. 2015, 66, 513–545. [Google Scholar] [CrossRef] [PubMed]
- Ma, W.; Wang, Y.; McDowell, J. Focus on effector-triggered susceptibility. Mol. Plant-Microbe Interact. 2018, 31, 5. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.M.; Zhang, Y. Plant immunity: Danger perception and signaling. Cell 2020, 181, 978–989. [Google Scholar] [CrossRef] [PubMed]
- Ali, G.S.; Reddy, A. PAMP-triggered immunity. Plant Signal. Behav. 2008, 3, 423–426. [Google Scholar] [CrossRef]
- Hammond-Kosack, K.E.; Jones, J.D. Plant disease resistance genes. Annu. Rev. Plant Biol. 1997, 48, 575–607. [Google Scholar] [CrossRef] [Green Version]
- Xu, X.; Chen, Y.; Li, B.; Zhang, Z.; Qin, G.; Chen, T.; Tian, S. Molecular mechanisms underlying multi-level defense responses of horticultural crops to fungal pathogens. Hortic. Res. 2022, 9, uhac066. [Google Scholar] [CrossRef]
- Petit-Houdenot, Y.; Fudal, I. Complex interactions between fungal avirulence genes and their corresponding plant resistance genes and consequences for disease resistance management. Front. Plant Sci. 2017, 8, 1072. [Google Scholar] [CrossRef] [Green Version]
- Balint-Kurti, P.; Balint-Kurti, P. The plant hypersensitive response: Concepts, control and consequences. Mol. Plant Pathol. 2019, 20, 1163–1178. [Google Scholar] [CrossRef] [Green Version]
- Rouxel, T.; Grandaubert, J.; Hane, J.; Hoede, C.; van de Wouw, A.P.; Couloux, A.; Dominguez, V.; Anthouard, V.; Bally, P.; Bourras, S.; et al. Effector diversification within compartments of the Leptosphaeria maculans genome affected by repeat-induced point mutations. Nat. Commun. 2011, 2, 202. [Google Scholar] [CrossRef] [Green Version]
- Meinken, J.; Asch, D.K.; Neizer-Ashun, K.A.; Chang, G.H.; Cooper, J.R.C.R.; Min, X.J. FunSecKB2: A fungal protein subcellular location knowledgebase. Comput. Mol. Biol. 2014, 4, 4. [Google Scholar] [CrossRef]
- Rafiqi, M.; Jelonek, L.; Akum, N.F.; Zhang, F.; Kogel, K.H. Effector candidates in the secretome of Piriformospora indica, a ubiquitous plant-associated fungus. Front. Plant Sci. 2013, 4, 228. [Google Scholar] [CrossRef] [Green Version]
- Almagro Armenteros, J.J.; Tsirigos, K.D.; Sønderby, C.K.; Petersen, T.N.; Winther, O.; Brunak, S.; von Heijne, G.; Nielsen, H. SignalP 5.0 improves signal peptide predictions using deep neural networks. Nat. Biotechnol. 2019, 37, 420–423. [Google Scholar] [CrossRef] [Green Version]
- Krogh, A.; Larsson, B.; von Heijne, G.; Sonnhammer, E.L. Predicting transmembrane protein topology with a hidden Markov model: Application to complete genomes. J. Mol. Biol. 2001, 305, 567–580. [Google Scholar] [CrossRef] [Green Version]
- Hallgren, J.; Tsirigos, K.D.; Pedersen, M.D.; Almagro Armenteros, J.J.; Marcatili, P.; Nielsen, H.; Krogh, A.; Winther, O. DeepTMHMM predicts alpha and beta transmembrane proteins using deep neural networks. bioRxiv 2022, arXiv:08.487609. [Google Scholar]
- Gattiker, A.; Gasteiger, E.; Bairoch, A. ScanProsite: A reference implementation of a PROSITE scanning tool. Appl. Bioinform. 2002, 1, 107–108. [Google Scholar] [PubMed]
- Gíslason, M.H.; Nielsen, H.; Armenteros, J.J.A.; Johansen, A.R. Prediction of GPI-anchored proteins with pointer neural networks. Curr. Res. Biotechnol. 2021, 3, 6–13. [Google Scholar] [CrossRef]
- Paysan-Lafosse, T.; Blum, M.; Chuguransky, S.; Grego, T.; Pinto, B.L.; Salazar, G.A.; Bileschi, M.L.; Bork, P.; Bridge, A.; Colwell, L.; et al. InterPro in 2022. Nucleic Acids Res. 2023, 51, D418–D427. [Google Scholar] [CrossRef]
- Altenhoff, A.M.; Train, C.M.; Gilbert, K.J.; Mediratta, I.; Mendes de Farias, T.; Moi, D.; Nevers, Y.; Radoykova, H.S.; Rossier, V.; Warwick Vesztrocy, A.; et al. OMA orthology in 2021: Website overhaul, conserved isoforms, ancestral gene order and more. Nucleic Acids Res. 2021, 49, D373–D379. [Google Scholar] [CrossRef]
- Bu, D.; Luo, H.; Huo, P.; Wang, Z.; Zhang, S.; He, Z.; Wu, Y.; Zhao, L.; Liu, J.; Guo, J. KOBAS-i: Intelligent prioritization and exploratory visualization of biological functions for gene enrichment analysis. Nucleic Acids Res. 2021, 49, W317–W325. [Google Scholar] [CrossRef]
- Gasteiger, E.; Hoogland, C.; Gattiker, A.; Duvaud, S.; Wilkins, M.R.; Appel, R.D.; Bairoch, A. The Proteomics Protocols Handbook. Proteomics Protoc. Handb. 2005, 1, 571–607. [Google Scholar] [CrossRef]
- Cantarel, B.L.; Coutinho, P.M.; Rancurel, C.; Bernard, T.; Lombard, V.; Henrissat, B. The Carbohydrate-Active EnZymes database (CAZy): An expert resource for glycogenomics. Nucleic Acids Res. 2009, 37, D233–D238. [Google Scholar] [CrossRef] [PubMed]
- Zheng, J.; Ge, Q.; Yan, Y.; Zhang, X.; Huang, L.; Yin, Y. dbCAN3: Automated carbohydrate-active enzyme and substrate annotation. Nucleic Acids Res. 2023, 51, W115–W121. [Google Scholar] [CrossRef] [PubMed]
- Rawlings, N.D.; Barrett, A.J.; Thomas, P.D.; Huang, X.; Bateman, A.; Finn, R.D. The MEROPS database of proteolytic enzymes, their substrates and inhibitors in 2017 and a comparison with peptidases in the PANTHER database. Nucleic Acids Res. 2018, 46, D624–D632. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fischer, M.; Pleiss, J. The Lipase Engineering Database: A navigation and analysis tool for protein families. Nucleic Acids Res. 2003, 31, 319–321. [Google Scholar] [CrossRef] [PubMed]
- Sperschneider, J.; Dodds, P.N. EffectorP 3.0: Prediction of apoplastic and cytoplasmic effectors in fungi and oomycetes. Mol. Plant-Microbe Interact. 2022, 35, 146–156. [Google Scholar] [CrossRef]
- Urban, M.; Cuzick, A.; Seager, J.; Wood, V.; Rutherford, K.; Venkatesh, S.Y.; De Silva, N.; Martinez, M.C.; Pedro, H.; Yates, A.D.; et al. PHI-base: The pathogen–host interactions database. Nucleic Acids Res. 2020, 48, D613–D620. [Google Scholar] [CrossRef]
- Szklarczyk, D.; Gable, A.L.; Nastou, K.C.; Lyon, D.; Kirsch, R.; Pyysalo, S.; Doncheva, N.T.; Legeay, M.; Fang, T.; Bork, P.; et al. The STRING database in 2021: Customizable protein-protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res. 2021, 49, D605–D612. [Google Scholar] [CrossRef]
- Waterhouse, A.; Bertoni, M.; Bienert, S.; Studer, G.; Tauriello, G.; Gumienny, R.; Heer, F.T.; de Beer, T.A.P.; Rempfer, C.; Bordoli, L.; et al. SWISS-MODEL: Homology modelling of protein structures and complexes. Nucleic Acids Res. 2018, 46, W296–W303. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Yang, X.; Gan, J.; Chen, S.; Xiao, Z.X.; Cao, Y. CB-Dock2: Improved protein-ligand blind docking by integrating cavity detection, docking and homologous template fitting. Nucleic Acids Res. 2022, 50, W159–W164. [Google Scholar] [CrossRef]
- Sievers, F.; Higgins, D.G. Clustal Omega for making accurate alignments of many protein sequences. Protein Sci. 2018, 1, 135–145. [Google Scholar] [CrossRef] [Green Version]
- Letunic, I.; Bork, P. Interactive Tree of Life (iTOL) v5: An online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 2021, 49, W293–W296. [Google Scholar] [CrossRef]
- Bailey, T.L.; Johnson, J.; Grant, C.E.; Noble, W.S. “The MEME Suite”. Nucleic Acids Res. 2015, 43, W39–W49. [Google Scholar] [CrossRef] [Green Version]
- Sun, J.; Lu, F.; Luo, Y.; Bie, L.; Xu, L.; Wang, Y. OrthoVenn3: An integrated platform for exploring and visualizing orthologous data across genomes. Nucleic Acids Res. 2023, 51, W397–W403. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations (FAO). International Year of Plant Health—Protecting Plants, Protecting Life. 2020. Available online: http://www.fao.org/plant-health-2020 (accessed on 25 April 2023).
- Savary, S.; Bregaglio, S.; Willocquet, L.; Gustafson, D.; D’Croz, D.M.; Sparks, A.; Castilla, N.; Djurle, A.; Allinne, C.; Sharma, M.; et al. Crop health and its global impacts on the components of food security. Food Secur. 2017, 9, 311–327. [Google Scholar] [CrossRef]
- Dean, R.; Van Kan, J.A.L.; Pretorius, Z.A.; Hammond-Kosack, K.E.; Di Pietro, A.; Spanu, P.D.; Rudd, J.J.; Dickman, M.; Kahmann, R.; Ellis, J.; et al. The Top 10 fungal pathogens in molecular plant pathology. Mol. Plant Pathol. 2012, 13, 414–430. [Google Scholar] [CrossRef] [Green Version]
- Pontes, J.G.D.M.; Fernandes, L.S.; dos Santos, R.V.; Tasic, L.; Fill, T.P. Virulence factors in the phytopathogen–host interactions: An Overview. J. Agric. Food Chem. 2020, 68, 7555–7570. [Google Scholar] [CrossRef]
- Xu, J.; Zhao, Y.; Zhang, X.; Zhang, L.; Hou, Y.; Dong, W. Transcriptome analysis and ultrastructure observation reveal that hawthorn fruit softening is due to cellulose/hemicellulose degradation. Front. Plant. Sci. 2016, 7, 1524. [Google Scholar] [CrossRef] [Green Version]
- Kavya, N.; Prasannakumar, M.K.; Venkateshbabu, G.; Niranjan, V.; Uttarkar, A.; Buela Parivallal, P.; Banakar, S.N.; Mahesh, H.B.; Devanna, P.; Manasa, K.G.; et al. Insights on novel effectors and characterization of metacaspase (RS107_6) as a potential cell death-inducing protein in Rhizoctonia solani. Microorganisms 2023, 11, 920. [Google Scholar] [CrossRef]
- Enany, S. Structural and functional analysis of hypothetical and conserved proteins of Clostridium tetani. J. Infect. Public Health 2014, 7, 296–307. [Google Scholar] [CrossRef] [Green Version]
- Tomii, K. Protein Properties. In Encyclopedia of Bioinformatics and Computational Biology; Ranganathan, S., Gribskov, M., Nakai, K., Schönbach, C., Eds.; Academic Press: Cambridge, MA, USA, 2019; pp. 28–33. ISBN 9780128114322. [Google Scholar] [CrossRef]
- Kaur, A.; Pati, P.K.; Pati, A.M.; Nagpal, A.K. Physico-chemical characterization and topological analysis of pathogenesis-related proteins from Arabidopsis thaliana and Oryza sativa using in-silico approaches. PLoS ONE 2020, 15, e0239836. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Tian, L.; Zhang, D.D.; Song, J.; Song, S.S.; Yin, C.M.; Zhou, L.; Liu, Y.; Wang, B.L.; Kong, Z.Q.; et al. Functional analyses of small, secreted cysteine-rich proteins identified candidate effectors in Verticillium dahliae. Mol. Plant Pathol. 2020, 21, 667–685. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nene, T.; Yadav, M.; Yadav, H.S. Plant catalase in silico characterization and phylogenetic analysis with structural modeling. J. Genet. Eng. Biotechnol. 2022, 20, 125. [Google Scholar] [CrossRef] [PubMed]
- Overview of KOBAS—pku.edu.cn. Available online: ahttp://kobas.cbi.pku.edu.cn/kobas3/help/ (accessed on 2 June 2023).
- Chen, C.; Fu, R.; Wang, J.; Li, X.; Chen, X.; Li, Q.; Lu, D. Genome sequence and transcriptome profiles of pathogenic fungus Paecilomyces penicillatus reveal its interactions with edible fungus Morchella importuna. Comput. Struct. Biotechnol. J. 2021, 19, 2607–2617. [Google Scholar] [CrossRef] [PubMed]
- Scharf, D.H.; Heinekamp, T.; Brakhage, A.A. Human and plant fungal pathogens: The role of secondary metabolites. PLoS Pathog. 2014, 10, e1003859. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pusztahelyi, T.; Holb, I.J.; Pócsi, I. Secondary metabolites in fungus-plant interactions. Front. Plant Sci. 2015, 6, 573. [Google Scholar] [CrossRef] [Green Version]
- Oliva, J.; Stenlid, J.; Martínez-Vilalta, J. The effect of fungal pathogens on the water and carbon economy of trees: Implications for drought-induced mortality. New Phytol. 2014, 203, 1028–1035. [Google Scholar] [CrossRef] [Green Version]
- Nazar Pour, F.; Pedrosa, B.; Oliveira, M.; Fidalgo, C.; Devreese, B.; Driessche, G.V.; Félix, C.; Rosa, N.; Alves, A.; Duarte, A.S.; et al. Unveiling the secretome of the fungal plant pathogen Neofusicoccum parvum induced by in vitro host mimicry. J. Fungi 2022, 8, 971. [Google Scholar] [CrossRef]
- Sützl, L.; Foley, G.; Gillam, E.M.J.; Bodén, M.; Haltrich, D. The GMC superfamily of oxidoreductases revisited: Analysis and evolution of fungal GMC oxidoreductases. Biotechnol. Biofuels 2019, 12, 118. [Google Scholar] [CrossRef]
- Ciancia, M.; Matulewicz, M.C.; Tuvikene, R. Structural diversity in galactans from red seaweeds and its influence on rheological properties. Front. Plant Sci. 2020, 11, 559986. [Google Scholar] [CrossRef]
- Krishnan, P.; Ma, X.; McDonald, B.A.; Brunner, P.C. Widespread signatures of selection for secreted peptidases in a fungal plant pathogen. BMC Evol. Biol. 2018, 18, 7. [Google Scholar] [CrossRef] [Green Version]
- Gaillardin, C. Lipases as Pathogenicity Factors of Fungi. In Handbook of Hydrocarbon and Lipid Microbiology; Timmis, K.N., Ed.; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar] [CrossRef]
- Mendes, F.K.; Vanderpool, D.; Fulton, B.; Hahn, M.W. CAFE 5 models variation in evolutionary rates among gene families. Bioinformatics 2020, 36, 5516–5518. [Google Scholar] [CrossRef]
- Stergiopoulos, I.; de Wit, P.J. Fungal Effector Proteins. Annu. Rev. Phytopathol. 2009, 47, 233–263. [Google Scholar] [CrossRef] [Green Version]
- Bowen, J.K.; Mesarich, C.H.; Rees-George, J.; Cui, W.; Fitzgerald, A.; Win, J.; Plummer, K.M.; Templeton, M.D. Candidate effector gene identification in the ascomycete fungal phytopathogen Venturia inaequalis by expressed sequence tag analysis. Mol. Plant Pathol. 2009, 10, 431–448. [Google Scholar] [CrossRef]
- Syme, R.A.; Hane, J.K.; Friesen, T.L.; Oliver, R.P. Resequencing and comparative genomics of Stagonospora nodorum: Sectional gene absence and effector discovery. G3 Genes Genomes Genet. 2013, 3, 959–969. [Google Scholar] [CrossRef] [Green Version]
- Marín-Rodríguez, M.C.; Orchard, J.; Seymour, G.B. Pectate lyases, cell wall degradation and fruit softening. J. Exp. Bot. 2002, 53, 2115–2119. [Google Scholar] [CrossRef]
- Marschall, R.; Tudzynski, P. The protein disulfide isomerase of Botrytis cinerea: An ER protein involved in protein folding and redox homeostasis influences NADPH oxidase signaling processes. Front. Microbiol. 2017, 8, 960. [Google Scholar] [CrossRef] [Green Version]
- Zhou, L.; Wang, X.; Du, S.; Wang, Y.; Zhao, H.; Du, T.; Yu, J.; Wu, L.; Song, Z.; Liu, Q.; et al. Germline specific expression of a vasa homologue gene in the viviparous fish black rockfish (Sebastes schlegelii) and functional analysis of the vasa 3′ untranslated region. Front. Cell Dev. Biol. 2020, 8, 575788. [Google Scholar] [CrossRef]
- Yu, W.; Kong, G.; Chao, J.; Yin, T.; Tian, H.; Ya, H.; He, L.; Zhang, H. Genome-wide identification of the rubber tree superoxide dismutase (SOD) gene family and analysis of its expression under abiotic stress. PeerJ. 2022, 10, e14251. [Google Scholar] [CrossRef]
- Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Žídek, A.; Potapenko, A.; et al. Highly accurate protein structure prediction with AlphaFold. Nature 2021, 596, 583–589. [Google Scholar] [CrossRef]
- Mazumder, L.; Hasan, M.R.; Fatema, K.; Islam, M.Z.; Tamanna, S.K. Structural and functional annotation and molecular docking analysis of a hypothetical protein from Neisseria gonorrhoeae: An in-Silico approach. Biomed. Res. Int. 2022, 2022, 4302625. [Google Scholar] [CrossRef] [PubMed]
- Winnenburg, R.; Urban, M.; Beacham, A.; Baldwin, T.K.; Holland, S.; Lindeberg, M.; Hansen, H.; Rawlings, C.; Hammond-Kosack, K.E.; Köhler, J. PHI-base update: Additions to the pathogen host interaction database. Nucleic Acids Res. 2007, 36, D572–D576. [Google Scholar] [CrossRef] [PubMed]
- Chellappan, B.V.; El-Ganainy, S.M.; Alrajeh, H.S.; Al-Sheikh, H. In Silico characterization of the secretome of the fungal pathogen Thielaviopsis punctulata, the causal agent of date palm black scorch disease. J. Fungi 2023, 9, 303. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.H.; Chiu, C.M.; Roubtsova, T.; Chou, C.M.; Bostock, R.M. Overexpression of a redox-regulated cutinase gene, MfCUT1, increases virulence of the brown rot pathogen Monilinia fructicola on Prunus spp. Mol. Plant Microbe Interact. 2010, 23, 176–186. [Google Scholar] [CrossRef] [Green Version]
- Kombrink, A.; Rovenich, H.; Shi-Kunne, X.; Rojas-Padilla, E.; van den Berg, G.C.; Domazakis, E.; de Jonge, R.; Valkenburg, D.J.; Sánchez-Vallet, A.; Seidl, M.F.; et al. Verticillium dahliae LysM effectors differentially contribute to virulence on plant hosts. Mol. Plant Pathol. 2017, 18, 596–608. [Google Scholar] [CrossRef] [Green Version]
- Oide, S.; Moeder, W.; Krasnoff, S.; Gibson, D.; Haas, H.; Yoshioka, K.; Turgeon, B.G. NPS6, encoding a nonribosomal peptide synthetase involved in siderophore-mediated iron metabolism, is a conserved virulence determinant of plant pathogenic ascomycetes. Plant Cell 2006, 18, 2836–2853. [Google Scholar] [CrossRef] [Green Version]
- de Jonge, R.; van Esse, H.P.; Kombrink, A.; Shinya, T.; Desaki, Y.; Bours, R.; van der Krol, S.; Shibuya, N.; Joosten, M.H.A.J.; Thomma, B.P.H.J. Conserved fungal LysM effector Ecp6 prevents chitin-triggered immunity in plants. Science 2010, 329, 953–955. [Google Scholar] [CrossRef]
- Rose, J.K.; Ham, K.S.; Darvill, A.G.; Albersheim, P. Molecular cloning and characterization of glucanase inhibitor proteins: Coevolution of a counter defense mechanism by plant pathogens. Plant Cell 2002, 14, 1329–1345. [Google Scholar] [CrossRef] [Green Version]
CAZy Family | Annotation | InterPro ID | EC Number | Substrate | Copy No. |
---|---|---|---|---|---|
AA1 | Multicopper oxidase | IPR045087 | 1.10.3.2 | Lignin | 5 |
AA2 | Lignin peroxidase | IPR001621 | na | Lignin | 4 |
AA3 | GMC oxidoreductase | IPR012132 | 1.1.99.18 | Cellobiose | 7 |
AA5 | Radical Copper oxidase | - | 1.3.3.9 | Galactose | 3 |
AA7 | Glucooligosaccharide oxidase | - | 1.3.3.- | Cellobiose | 10 |
AA9 | lytic cellulose monooxygenase | IPR005103 | 1.14.99.56 | Cellulose | 4 |
CBM63 | Cellulose binding | IPR007112 | na | Cellulose | 1 |
CE4 | chitin deacetylase | - | 3.5.1.41 | Chitin | 4 |
CE5 | acetyl xylan esterase | IPR000675 | 3.1.1.72 | Xylan | 4 |
Cutinase | IPR011150 | 3.1.1.74 | Cutin | ||
CE8 | Pectin methylesterase | - | 3.1.1.11 | Pectin | 2 |
GH2 | β -mannosidase | - | 3.2.1.25 | Mannose | 1 |
GH3 | β-glucosidase | IPR017736 | 3.2.1.21 | Cellulose | 3 |
GH6 | 1, 4- β-cellobiohydrolase | IPR016288 | 3.2.1.91 | Cellulose | 1 |
GH10 | Endo-β-1,4-xylanase | IPR044846 | 3.2.1.8 | Xylan | 3 |
GH11 | Endo-β-1,4-xylanase | IPR001137 | 3.2.1.8 | Xylan | 2 |
GH12 | Endo-β-1,4-glucanase | IPR002594 | 3.2.1.4 | Cellulose | 1 |
Xyloglucanase | - | 3.2.1.151 | Xylan | ||
GH15 | Glucoamylase | IPR000165 | 3.2.1.3 | Starch | 1 |
GH16 | Endo-β-1,3-galactanase | IPR000757 | 3.2.1.181 | Galactan | 5 |
GH17 | Endo-1,3-β-glucosidase | IPR017853 | na | Polysaccharides | 1 |
GH18 | Chitinase | IPR001223 | 3.2.1.14 | Chitin | 5 |
GH26 | Endo-β-1,4-glucanase | IPR000805 | 3.2.1.4 | Cellulose | 1 |
GH27 | α-galactosidase | IPR002241 | 3.2.1.22 | Hemicellulose | 3 |
GH28 | Polygalacturonase | IPR000743 | 3.2.1.15 | Pectin | 4 |
GH31 | α -glucosidase | IPR000322 | 3.2.1.20 | Amylose | 1 |
GH35 | β-galactosidase | IPR001944 | 3.2.1.23 | Hemicellulose | 1 |
GH37 | α, α-trehalase | IPR001661 | 3.2.1.28 | Trehalose | 1 |
GH45 | Endo-β-1,4-glucanase | - | 3.2.1.4 | Cellulose | 1 |
GH63 | α-glucosidase | IPR004888 | 3.2.1.106 | Oligosaccharides | 1 |
GH92 | α-mannosidases | IPR044846 | na | Mannose | 1 |
GH105 | Rhamnogalacturonyl hydrolase | IPR010905 | 3.2.1.172 | Pectin | 1 |
PL1 | Pectate lyase | - | 4.2.2.2 | Pectin | 1 |
PL3 | Pectate lyase | IPR004898 | 4.2.2.2 | Pectin | 1 |
PL4 | Rhamnogalacturonan lyase | IPR029413 | 4.2.2.- | Galacturonan | 1 |
PL26 | Rhamnogalacturonan exolyase | - | 4.2.2.24 | Galacturonan | 1 |
Fungal Species | Total Proteome | Secretome (%) | CAZymes | Effectors |
---|---|---|---|---|
P. lingam CAN1 | 11,837 | 217 (1.83%) | 85 | 49 |
P. lingam JN3 | 12,469 | 209 (1.67%) | 90 | 42 |
P. biglobosus CA1 | 12,183 | 238 (1.95%) | 103 | 63 |
Protein ID | Effector Probabilities | PHI-Blast | Domain | ||
---|---|---|---|---|---|
Apoplastic | Cytoplasmic | PHI ID | Classification | ||
KAH9881423.1 | 0.646 | - | PHI:10423 | Reduced virulence | - |
KAH9881503.1 | 0.658 | - | PHI:10461 | Reduced virulence | - |
KAH9880351.1 | - | 0.844 | PHI:5599 | Unaffected pathogenicity | - |
KAH9880478.1 | - | 0.549 | PHI:9191 | Reduced virulence | SET_dom |
KAH9880542.1 | 0.677 | - | PHI:2138 | Unaffected pathogenicity | Cellulose/chitin-bd_N |
KAH9880554.1 | 0.78 | - | PHI:6391 | Unaffected pathogenicity | Chitin-bd_1/NODB_dom |
KAH9879448.1 | 0.826 | - | PHI:652 | Avirulence determinant | Trypsin_dom |
KAH9876765.1 | 0.504 | - | PHI:6228 | Reduced virulence | GH16_dom |
KAH9876928.1 | - | 0.666 | PHI:1028 | Reduced virulence | Pectinesterase_cat |
KAH9876931.1 | 0.627 | PHI:1034 | Unaffected pathogenicity | Pectin_lyase_fold | |
KAH9876991.1 | - | 0.791 | PHI:9553 | Unaffected pathogenicity | ML_PG-PI_TP |
KAH9877485.1 | 0.698 | - | PHI:2817 | Unaffected pathogenicity | Glyco_hydro_28 |
KAH9877596.1 | 0.652 | - | PHI:6391 | Unaffected pathogenicity | Chitin-bd_1/NODB_dom |
KAH9874320.1 | 0.861 | 0.527 | PHI:8520 | Reduced virulence | AltA1 |
KAH9874600.1 | 0.883 | - | PHI:571 | Unaffected pathogenicity | GH11_dom |
KAH9875744.1 | 0.835 | 0.631 | PHI:180 | Reduced virulence | Pectin_lyas_fold |
KAH9875764.1 | 0.723 | - | PHI:2044 | Loss of pathogenicity | Lipocln_cytosolic-bd |
KAH9875892.1 | - | 0.525 | PHI:10926 | Reduced virulence | - |
KAH9873589.1 | 0.793 | - | PHI:6832 | Avirulence determinant | LysM_dom |
KAH9873703.1 | - | 0.619 | PHI:9867 | Reduced virulence | Thioredoxin |
KAH9873874.1 | - | 0.544 | PHI:10459 | Reduced virulence | MRH_dom |
KAH9874050.1 | 0.826 | - | PHI:3214 | Unaffected pathogenicity | CFEM_dom |
KAH9872236.1 | 0.518 | - | PHI:9546 | Reduced virulence | Aspergillopepsin-like |
KAH9872288.1 | 0.758 | - | - | - | DUF6060 |
KAH9870266.1 | 0.525 | - | PHI:6823 | Reduced virulence | - |
KAH9871448.1 | - | 0.698 | PHI:9867 | Reduced virulence | ERp29_C/Thioredoxin |
KAH9869412.1 | - | 0.863 | PHI:3440 | Reduced virulence | - |
KAH9869498.1 | - | 0.532 | PHI:9903 | Reduced virulence | PCSK9_ProteinaseK |
KAH9869606.1 | 0.794 | 0.56 | PHI:8208 | Reduced virulence | - |
KAH9867862.1 | - | 0.659 | PHI:401 | Unaffected pathogenicity | - |
KAH9868053.1 | - | 0.703 | PHI:1380 | Unaffected pathogenicity | - |
KAH9868081.1 | 0.504 | - | PHI:2210 | Reduced virulence | GH11_dom |
KAH9867052.1 | 0.693 | - | PHI:653 | Avirulence dominant | Trypsin |
KAH9867270.1 | 0.723 | - | PHI:2383 | Hypervirulence | Cutinase_monf |
KAH9867337.1 | 0.713 | 0.79 | PHI:6834 | Avirulence dominant | LysM |
KAH9864751.1 | 0.527 | - | PHI:197 | Reduced virulence | Oxid_FAD_bind_N |
KAH9865909.1 | - | 0.676 | PHI:10459 | Reduced virulence | MRH_dom/PRKCSH_N |
KAH9864831.1 | - | 0.639 | PHI:4231 | Reduced virulence | Fasciclin (FAS1) |
KAH9865021.1 | 0.844 | 0.649 | PHI:3972 | Unaffected pathogenicity | Chitin-bd_1 |
KAH9865263.1 | 0.78 | 0.602 | PHI:2383 | Hypervirulence | Cutinase/axe |
KAH9861880.1 | - | 0.757 | PHI:5236 | Reduced virulence | DnaJ_dom |
KAH9861890.1 | 0.777 | - | PHI:1008 | Reduced virulence | Ubiquitin3-bd_dom |
KAH9861931.1 | - | 0.578 | PHI:9867 | Reduced virulence | Thioredoxin |
KAH9862482.1 | - | 0.575 | PHI:181 | Reduced virulence | Znf_C2H2_type |
KAH9860991.1 | 0.562 | - | PHI:3503 | Reduced virulence | Pectin_lyas_fold |
KAH9861149.1 | 0.505 | - | PHI:1087 | Unaffected pathogenicity | Tyrosinase_Cu-bd |
KAH9861329.1 | 0.816 | - | PHI:11528 | Reduced virulence | NODB_dom |
KAH9862149.1 | 0.501 | - | PHI:10358 | Reduced virulence | Cellulose-bd_dom_fun |
KAH9859690.1 | 0.698 | - | PHI:7283 | Reduced virulence | Pectin_lyas_fold |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bouqellah, N.A.; Elkady, N.A.; Farag, P.F. Secretome Analysis for a New Strain of the Blackleg Fungus Plenodomus lingam Reveals Candidate Proteins for Effectors and Virulence Factors. J. Fungi 2023, 9, 740. https://doi.org/10.3390/jof9070740
Bouqellah NA, Elkady NA, Farag PF. Secretome Analysis for a New Strain of the Blackleg Fungus Plenodomus lingam Reveals Candidate Proteins for Effectors and Virulence Factors. Journal of Fungi. 2023; 9(7):740. https://doi.org/10.3390/jof9070740
Chicago/Turabian StyleBouqellah, Nahla A., Nadia A. Elkady, and Peter F. Farag. 2023. "Secretome Analysis for a New Strain of the Blackleg Fungus Plenodomus lingam Reveals Candidate Proteins for Effectors and Virulence Factors" Journal of Fungi 9, no. 7: 740. https://doi.org/10.3390/jof9070740
APA StyleBouqellah, N. A., Elkady, N. A., & Farag, P. F. (2023). Secretome Analysis for a New Strain of the Blackleg Fungus Plenodomus lingam Reveals Candidate Proteins for Effectors and Virulence Factors. Journal of Fungi, 9(7), 740. https://doi.org/10.3390/jof9070740