Reproducible Superinsulation Materials: Organosilica-Based Hybrid Aerogels with Flexibility Control
Abstract
:1. Introduction
2. Results and Discussion
2.1. Radical Polymerization of PVMDMS and PV4D4VMDMS
2.2. Polycondensation of PVMDMS
2.3. Polycondensation of PD4V4VMDMS with MTMS or DMDMS
3. Conclusions
4. Materials and Methods
- Chemicals:
- Characterization:
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, L.; Msigwa, G.; Yang, M.; Osman, A.I.; Fawzy, S.; Rooney, D.W.; Yap, P.-S. Strategies to achieve a carbon neutral society: A review. Environ. Chem. Lett. 2022, 20, 2277–2310. [Google Scholar] [CrossRef] [PubMed]
- Pontinha, A.D.R.; Mäntyneva, J.; Santos, P.; Duraes, L. Thermomechanical Performance Assessment of Sustainable Buildings Insulating Materials under Accelerated Ageing Conditions. Gels 2023, 9, 241. [Google Scholar] [CrossRef] [PubMed]
- Hüsing, N.; Schubert, U. Aerogels—Airy Materials: Chemistry, Structure, and Properties, Angew. Chem. Int. Ed. 1998, 37, 22–45. [Google Scholar] [CrossRef]
- Bashir, A.W.; Leite, B.C.C. Performance of aerogel as a thermal insulation material towards a sustainable design of residential buildings for tropical climates in Nigeria. EBE 2022, 3, 291–315. [Google Scholar] [CrossRef]
- Pacheco-Torgal, F.; Diamanti, M.V.; Nazari, A.; Granqvist, C.-G.; Torgal, F.P.; Cranqvist, C.-G. Nanotechnology in Eco-Efficient Construction: Materials, Processes and Applications; Woodhead Publishing: Sawston, UK, 2013. [Google Scholar]
- Huang, J.; Wang, X.; Guo, W.; Niu, H.; Song, L.; Hu, Y. Eco-friendly thermally insulating cellulose aerogels with exceptional flame retardancy, mechanical property and thermal stability. J. Taiwan Inst. Chem. Eng. 2022, 131, 104159. [Google Scholar] [CrossRef]
- Du, L.; Lu, T.; Li, B. CO2 capture and sequestration in porous media with SiO2 aerogel nanoparticle-stabilized foams. Fuel 2022, 324, 124661. [Google Scholar] [CrossRef]
- Donelienee, J.; Faataraite-Urboniene, E.; Danchova, N.; Gutzov, S.; Ulbikas, J. The Influence of the Precursor’s Nature an Drying Conditions on the Structure, Morphology, and Thermal Properties of TiO2 Aerogels. Gels 2022, 8, 422. [Google Scholar] [CrossRef]
- Horvat, G.; Maver, U. Editorial on the Special Issue Entitled “Recent Advances in Aerogels. Gels 2024, 10, 154. [Google Scholar] [CrossRef]
- Noroozi, M.; Panahi-Sarmad, M.; Abrisham, M.; Amirkiai, A.; Asghari, N.; Golbaten-Mofrad, H.; Karimpour-Motlagh, N.; Goodarzi, V.; Bahramian, A.R.; Zahiri, B. Nanostructure of Aerogels and Their Applications in Thermal Energy Insulation. ACS Appl. Energy Mater. 2019, 2, 5319–5349. [Google Scholar] [CrossRef]
- Zhu, J.; Hu, J.; Jiang, C.; Liu, S.; Li, Y. Ultralight, hydrophobic, monolithic konjac glucomannan-silica composite aerogel with thermal insulation and mechanical properties. Carbohydr. Polym. 2019, 207, 246–255. [Google Scholar] [CrossRef]
- Koebel, M.; Rigacci, A.; Achard, P. Aerogel-based thermal superinsulation: An overview. J. Sol-Gel Sci. Technol. 2012, 63, 315–339. [Google Scholar] [CrossRef]
- Xu, H.J.; Xing, Z.B.; Wang, F.Q.; Cheng, Z.M. Review on heat conduction, heat convection, thermal radiation and phase change heat transfer of nanofluids in porous media: Fundamentals and applications. Chem. Eng. Sci. 2019, 195, 462–483. [Google Scholar] [CrossRef]
- Iswar, S.; Galmarini, S.; Bonanomi, L.; Wernery, J.; Roumeli, E.; Nimalshantha, S.; Ben Ishai, A.M.; Lattuada, M.; Koebel, M.; Malfait, W.J. Dense and strong, but superinsulating silica aerogel. Acta Mater. 2021, 213, 116959. [Google Scholar] [CrossRef]
- Baetens, R. High performance thermal insulation materials for buildings. In Nanotechnology in Eco-Efficient Construction; Woodhead Publishing: Sawston, UK, 2013; pp. 188–206. [Google Scholar]
- Akimov, Y.K. Fields of Application of Aerogels (Review). Instrum. Exp. Tech. 2003, 46, 287–299. [Google Scholar] [CrossRef]
- Woignier, T.; Primera, J.; Alaoui, A.; Etienne, P.; Despestis, F.; Calas-Etienne, S. Mechanical Properties and Brittle Behavior of Silica Aerogels. Gels 2015, 1, 256–275. [Google Scholar] [CrossRef]
- Fesmire, J.E. Aerogel insulation systems for space launch applications. Cryogenics 2006, 46, 111–117. [Google Scholar] [CrossRef]
- Kim, T.; Lee, W.; Choi, H.; Parale, V.G.; Patil, U.M.; Kanamori, K.; Seo, J.G.; Bae, Y.; Kim, S.; Park, H. Sol–Gel Synthesized Nickel-Doped Ruthenium Oxide Aerogel for Highly Efficient Acidic Hydrogen Evolution Reaction. Int. J. Energy Res. 2024, 2024, 1457751. [Google Scholar] [CrossRef]
- Gao, W.; Wen, D. Recent advances of noble metal aerogels in biosensing. VIEW 2021, 2, 20200124. [Google Scholar] [CrossRef]
- Smirnova, I.; Gurikov, P. Aerogel production: Current status, research directions, and future opportunities. J. Supercrit. Fluids 2018, 134, 228–233. [Google Scholar] [CrossRef]
- Borzova, M.; Schollbach, K.; Gauvin, F.; Brouwers, H.J.H. Sustainable ambient pressure-dried silica aerogel from waste glass. Curr. Opin. Green Sustain. Chem. 2024, 9, 100425. [Google Scholar] [CrossRef]
- Zemke, F.; Gonthier, J.; Scoppola, E.; Simon, U.; Bekheet, M.F.; Wagermaier, W.; Gurlo, A. Origin of the Springback Effect in Ambient-Pressure-Dried Silica Aerogels: The Effect of Surface Silylation. Gels 2023, 9, 160. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Dass, A.; Rawashdeh, A.-M.M.; Thomas, J.; Counsil, J.A.; Sotiriou-Leventis, C.; Fabrizio, E.F.; Ilhan, F.; Vassilaras, P.; Scheiman, D.A. Isocyanate-crosslinked silica aerogel monoliths: Preparation and characterization. J. Non-Cryst. Solids 2004, 350, 152–164. [Google Scholar] [CrossRef]
- Shimizu, T.; Kanamori, K.; Nakanishi, K. Silicone-Based Organic–Inorganic Hybrid Aerogels and Xerogels. Chem. Eur. J. 2017, 23, 5176–5187. [Google Scholar] [CrossRef] [PubMed]
- Kanamori, K.; Aizawa, M.; Nakanishi, K.; Hanada, T. Elastic organic–inorganic hybrid aerogels and xerogels, J. Sol-Gel Sci. Technol. 2008, 48, 172–181. [Google Scholar] [CrossRef]
- Shimizu, T.; Kanamori, K.; Maeno, A.; Kaji, H.; Doherty, C.M.; Falcaro, P.; Nakanishi, K. Transparent, Highly Insulating Polyethyl- and Polyvinylsilsesquioxane Aerogels: Mechanical Improvements by Vulcanization for Ambient Pressure Drying. Chem. Mater. 2016, 28, 6860–6868. [Google Scholar] [CrossRef]
- Zu, G.; Shimizu, T.; Kanamori, K.; Zhu, Y.; Maeno, A.; Kaji, H.; Shen, J.; Nakanishi, K. Transparent, Superflexible Doubly Cross-Linked Polyvinylpolymethylsiloxane Aerogel Superinsulators via Ambient Pressure Drying. ACS Nano 2018, 12, 521–532. [Google Scholar] [CrossRef]
- Zu, G.; Kanamori, K.; Shimizu, T.; Zhu, Y.; Maeno, A.; Kaji, H.; Nakanishi, K.; Shen, J. Versatile Double-Cross-Linking Approach to Transparent, Machinable, Supercompressible, Highly Bendable Aerogel Thermal Superinsulators. Chem. Mater. 2018, 30, 2759–2770. [Google Scholar] [CrossRef]
- Wang, L.; Feng, J.; Jiang, Y.; Li, L.; Feng, J. Thermal conductivity of polyvinylpolymethylsiloxane aerogels with high specific surface area. RSC Adv. 2019, 9, 7833–7841. [Google Scholar] [CrossRef]
- Kong, W.; Jiang, L.; Jiang, G.; Zhang, J.; Shen, X. A novel aerogel with forced thermoelastic deformation. Microporous Mesoporous Mater. 2021, 314, 110869. [Google Scholar] [CrossRef]
- Zhou, J.; Xia, Y.; Liu, S.; Zhang, S.; Li, Z.; Zhao, C.; Li, L.; Feng, J. Research progress on polybenzoxazine aerogels: Preparation, properties, composites and hybrids fabrication, applications. Adv. Colloid Interface Sci. 2024, 329, 103185. [Google Scholar] [CrossRef]
- Ruan, J.; Xie, K.; Wan, J.; Chen, Q.; Zuo, X.; Li, X.; Wu, X.; Fei, C.; Yao, S. Effects of Freeze-Drying Processes on the Acoustic Absorption Performance of Sustainable Cellulose Nanocrystal Aerogels. Gels 2024, 10, 141. [Google Scholar] [CrossRef] [PubMed]
- Cruz, L.G.; Abt, T.; Leon, N.; Sanchez-Soto, M. Properties of Freeze-Dried Gelatin/Clay Aerogel Composites Crosslinked with Tannic Acid. ACS Applied Poly. Mater. 2023, 5, 7774–7785. [Google Scholar] [CrossRef]
- Simon-Herrero, C.; Caminero-Hertas, S.; Romero, A.; Valverde, J.L.; Sanchez-Silvia, L. Effects of freeze-drying conditions on aerogel properties. J. Mater. Sci. 2016, 51, 8977–8985. [Google Scholar] [CrossRef]
- Zhai, S.; Yu, K.; Meng, C.; Wang, H.; Fu, J. Eco-friendly approach for preparation of hybrid silica aerogel via freeze drying method. J. Mater. Sci. 2022, 57, 7491–7502. [Google Scholar] [CrossRef]
- Luigi, M.D.; Guo, Z.; An, L.; Armstrong, J.N.; Zhou, C.; Ren, S. Manufacturing silica aerogel and cryogel through ambient pressure and freeze drying. RSC 2022, 12, 21213–21222. [Google Scholar] [CrossRef]
- Hu, L.; He, R.; Lu, Z.; Zhang, K.; Bai, X. Step-freeze-drying method for carbon aerogels: A study of the effects on microstructure and mechanical property. RSC 2019, 9, 9931–9936. [Google Scholar] [CrossRef]
- Alexandrova, L.; Diaz, F.; Canseco, M.; Likhatchev, D.; Vera-Graziano, R. Bulk polymerization of 1,3,5,7-tetravinyltetramethylcyclotetrasiloxane induced by gamma radiation. Rad. Phys. Chem. 1998, 51, 101–106. [Google Scholar] [CrossRef]
- Guo, T.; Yun, S.; Li, Y.; Chen, Z.; Cao, C.; Gao, Y. Facile synthesis of highly flexible polymethylsilsesquioxane aerogel monoliths with low density, low thermal conductivity and superhydrophobicity. Vacuum 2021, 183, 109825. [Google Scholar] [CrossRef]
- Mixer, R.Y.; Bailey, D.L. The mode of peroxide-catalyzed polymerization of vinyltriethoxysilane. J. Polym. Sci. 1955, 18, 573–582. [Google Scholar] [CrossRef]
- Rezaei, S.; Zolali, A.M.; Jalali, A.; Park, C.B. Strong, highly hydrophobic, transparent and super-insulative polyorganosiloxane-based aerogel. Chem. Eng. J. 2021, 413, 127488. [Google Scholar] [CrossRef]
- Rezaei, S.; Jalali, A.; Zolali, A.M.; Alshrah, M.; Karamikamkar, S.; Park, C.B. Robust, ultra-insulative and transparent polyethylene-based hybrid silica aerogel with a novel non-particulate structure. J. Colloid Interface Sci. 2019, 548, 206–216. [Google Scholar] [CrossRef] [PubMed]
- Meti, P.; Wang, Q.; Mahadik, D.B.; Lee, K.; Gong, Y.; Park, H. Evolutionary Progress of Silica Aerogels and Their Classification Based on Composition: An Overview. Nanomaterials 2023, 13, 1498. [Google Scholar] [CrossRef] [PubMed]
- Hayase, G.; Kanamori, K.; Nakanishi, K. New flexible aerogels and xerogels derived from methyltrimethoxysilane/dimethyldimethoxysilane co-precursors. J. Mater. Chem. 2011, 21, 170–177. [Google Scholar] [CrossRef]
- Parale, V.G.; Lee, K.-Y.; Park, H.-H. Flexible and Transparent Silica Aerogels: An Overview. J. Korean Ceram. Soc. 2017, 54, 184–199. [Google Scholar] [CrossRef]
- Despetis, F.; Calas-Etienne, S.; Etienne, P. Slow crack growth in silica aerogels: A review. J. Sol-Gel Sci. Technol. 2019, 90, 20–27. [Google Scholar] [CrossRef]
- Huang, W.L.; Liang, K.M.; Cui, S.H.; Gu, S.R. Influence of Calcination Procedure on Porosity and Surface Fractal Dimensions of Silica Xerogels Prepared under Different Evaporation Conditions. J. Colloid Interface Sci. 2000, 231, 152–157. [Google Scholar] [CrossRef]
- Sales, F.; Souza, A.; Ariati, R.; Noronha, V.; Giovanetti, E.; Lima, R.; Ribeiro, J. Composite Material of PDMS with Interchangeable Transmittance: Study of Optical, Mechanical Properties and Wettability. J. Compos. Sci. 2021, 5, 110. [Google Scholar] [CrossRef]
- Law, K. Contact Angle Hysteresis on Smooth/Flat and Rough Surfaces. Interpretation, Mechanism, and Origin. Acc. Mater. Res. 2022, 3, 1–7. [Google Scholar] [CrossRef]
- Liddel, U.; Becker, D.E. Infra-red spectroscopic studies of hydrogen bonding in methanol, ethanol, and t-butanol. Spectrochim. Acta 1957, 10, 70–84. [Google Scholar] [CrossRef]
- Sebbar, N.; Bozzelli, J.W.; Bockhorn, H. Kinetic Study of Di-Tert-Butyl Peroxide: Thermal Decomposition and Product Reaction Pathways. Int. J. Chem. Kinet. 2015, 47, 133–161. [Google Scholar] [CrossRef]
- Lorand, J.P. Radicals and scavengers. V. Steric hindrance and cage effects in the decompositions of several tert-butyl peresters. J. Am. Chem. Soc. 1974, 96, 2867–2874. [Google Scholar] [CrossRef]
- Ueoka, R.; Hara, Y.; Maeno, A.; Kaji, H.; Nakanishi, K.; Kanamori, K. Unusual flexibility of transparent poly(methylsilsesquioxane) aerogels by surfactant-induced mesoscopic fiber-like assembly. Nat. Comm. 2024, 461, 1–11. [Google Scholar] [CrossRef]
Exp. | VMDMS [mL] | D4V4 [mL] | VMDMS:D4V4 [mol:mol] | Time [h] | Mn [g/mol] | PDI | Yield [%] |
---|---|---|---|---|---|---|---|
1_1 | 1 | - | - | 24 | 2761 | 1.7 | 57 |
1_2 | 1 | - | - | 48 | 2807 | 1.7 | 67 |
1_3 | 1 | - | - | 96 | 3054 | 1.7 | 74 |
2_1 | 1 | 0.012 | 99.5:0.5 | 24 | 3122 | 2.1 | 66 |
2_2 | 1 | 0.122 | 95:5 | 24 | - * | - | 68 |
2_3 | 1 | 0.012 | 99.5:0.5 | 48 | 3212 | 2.2 | 72 |
2_4 | 1 | 0.122 | 95:5 | 48 | - * | - | 76 |
2_5 | 1 | 0.012 | 99.5:0.5 | 96 | 3325 | 1.9 | 78 |
2_6 | 1 | 0.122 | 95:5 | 96 | - * | - | 79 |
Exp. | VMDMS: PVMDMS [mol:mol] | DMDMS: PVMDMS [mol:mol] | BzOH/Si [mol mol−1] | H2O/Si [mol mol−1] | TMAOH/Si [mol mol−1] | κ [mW m−1K−1] | Density [g cm−3] | Compres. [%] |
---|---|---|---|---|---|---|---|---|
1 | 0.3 | 0.1 | 4.3 | 2.0 | 0.03 | 25.5 | 0.312 | 8 |
2 | 0.3 | 0.1 | 5.2 | 2.4 | 0.03 | 22.7 | 0.247 | 16 |
3 | 0.3 | - | 6.0 | 2.8 | 0.03 | 19.8 | 0.174 | 12 |
4 | 0.3 | - | 7.7 | 3.6 | 0.04 | 18.9 | 0.138 | 26 |
5 | 0.2 | - | 6.9 | 3.2 | 0.04 | 17.3 | 0.145 | 18 |
6 | 0.2 | - | 7.7 | 3.6 | 0.04 | 18.7 | 0.120 | 22 |
7 | 0.1 | - | 6.9 | 3.2 | 0.04 | 18.3 | 0.165 | 12 |
8 | 0.1 | - | 8.6 | 4.0 | 0.05 | 17.1 | 0.127 | 20 |
9 | - | - | 7.7 | 3.6 | 0.04 | 17.2 | 0.171 | 17 |
10 | - | - | 9.5 | 4.4 | 0.05 | 17.0 | 0.129 | 19 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Geyer, M.; Leven, F.; Limberg, J.; Andronescu, C.; Ostermann, R. Reproducible Superinsulation Materials: Organosilica-Based Hybrid Aerogels with Flexibility Control. Gels 2024, 10, 692. https://doi.org/10.3390/gels10110692
Geyer M, Leven F, Limberg J, Andronescu C, Ostermann R. Reproducible Superinsulation Materials: Organosilica-Based Hybrid Aerogels with Flexibility Control. Gels. 2024; 10(11):692. https://doi.org/10.3390/gels10110692
Chicago/Turabian StyleGeyer, Marvin, Felix Leven, Johannes Limberg, Corina Andronescu, and Rainer Ostermann. 2024. "Reproducible Superinsulation Materials: Organosilica-Based Hybrid Aerogels with Flexibility Control" Gels 10, no. 11: 692. https://doi.org/10.3390/gels10110692
APA StyleGeyer, M., Leven, F., Limberg, J., Andronescu, C., & Ostermann, R. (2024). Reproducible Superinsulation Materials: Organosilica-Based Hybrid Aerogels with Flexibility Control. Gels, 10(11), 692. https://doi.org/10.3390/gels10110692