Preparation and Characterization of Poly(acrylic acid-co-vinyl imidazole) Hydrogel-Supported Palladium Catalyst for Tsuji–Trost and Suzuki Reactions in Aqueous Media
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of P(AA-co-VI)@Pd
2.2. Swelling Properties
2.3. Mechanical Properties
2.4. Application of P(AA-co-VI)@Pd in Tsuji–Trost
2.5. Application of the P(AA-co-VI)@Pd in Suzuki
2.6. Recovery of the P(AA-co-VI)@Pd Catalyst
2.7. Reaction Mechanism of Tsuji–Trost and Suzuki
2.8. Comparison of Catalytic Activity of P(AA-co-VI)@Pd Catalyst with Other Reported Catalysts in Tsuji–Trost and Suzuki Reactions
3. Conclusions
4. Materials and Methods
4.1. Materials
4.2. Preparation of (P(AA-co-VI) @Pd)
4.3. Characterization
4.4. Measurement of Swelling Ratio
4.5. Measurement of Mechanical Properties
4.6. P(AA-co-VI)@Pd General Steps for Tsuji–Trost
4.7. P(AA-co-VI)@Pd General Steps for Suzuki
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Huang, T.; Zhao, W.; Zhang, X.; Nie, X.; Chen, J.; Xiong, W. Synthesis and characterization of diimidazole-based hexafluorophosphate ionic liquids. J. Mol. Liq. 2020, 320, 114465. [Google Scholar] [CrossRef]
- Deng, X.; Zheng, C.; Li, Y.; Zhou, Z.; Wang, J.; Ran, Y.; Hu, Z.; Yang, F.; Li, L. Conductive catalysis by subsurface transition metals. Natl. Sci. Rev. 2024, 11, nwae015. [Google Scholar] [CrossRef] [PubMed]
- Hajipour, A.R.; Raimi, S. Efficient heck and Suzuki-Miyaura cross-coupling reactions catalyzed by heterogeneous Pd NPs-decorated porous MOF catalysts under mild conditions. J. Mol. Struct. 2024, 1309, 138156. [Google Scholar] [CrossRef]
- Llevot, A.; Monney, B.; Sehlinger, A.; Behrens, S.; Meier, M.A.R. Highly efficient Tsuji–Trost allylation in water catalyzed by Pd-nanoparticles. Chem. Commun. 2017, 53, 5175–5178. [Google Scholar] [CrossRef] [PubMed]
- Jabbari, A.; Tahmasbi, B.; Nikoorazm, M.; Ghorbani-Choghamarani, A. A new Pd-Schiff-base complex on boehmite nanoparticles: Its application in Suzuki reaction and synthesis of tetrazoles. Appl. Organomet. Chem. 2018, 32, e4295. [Google Scholar] [CrossRef]
- Boztepe, C.; Künkül, A.; Yaşar, S.; Gürbüz, N. Heterogenization of homogeneous NHC-Pd-pyridine catalysts and investigation of their catalytic activities in Suzuki-Miyaura coupling reactions. J. Organomet. Chem. 2018, 872, 123–134. [Google Scholar] [CrossRef]
- Pei, X.; Xiang, D.; Luo, Z.; Lei, F.; Guo, Z.; Liu, D.; Zhao, Z.; Ran, M.; Dai, T. Catalytic performance of palladium nanoparticles encapsulated within nitrogen-doped carbon during Heck reaction. J. Catal. 2021, 400, 20–27. [Google Scholar] [CrossRef]
- Fernandes, R.; Patel, N.; Edla, R.; Bazzanella, N.; Kothari, D.C.; Miotello, A. Ruthenium nanoparticles supported over carbon thin film catalyst synthesized by pulsed laser deposition for hydrogen production from ammonia borane. Appl. Catal. A Gen. 2015, 495, 23–29. [Google Scholar] [CrossRef]
- Peng, C.; Li, T.; Zou, Y.; Xiang, C.; Xu, F.; Zhang, J.; Sun, L. Bacterial cellulose derived carbon as a support for catalytically active Co–B alloy for hydrolysis of sodium borohydride. Int. J. Hydrogen Energy 2021, 46, 666–675. [Google Scholar] [CrossRef]
- Jia, X.; Sang, Z.; Sun, L.; Xu, F.; Pan, H.; Zhang, C.; Cheng, R.; Yu, Y.; Hu, H.; Kang, L.; et al. Graphene-Modified Co-B-P Catalysts for Hydrogen Generation from Sodium Borohydride Hydrolysis. Nanomaterials 2022, 12, 2732. [Google Scholar] [CrossRef]
- Altaf, C.T.; Colak, T.O.; Minkina, V.G.; Shabunya, S.I.; Sankir, M.; Sankir, N.D.; Kalinin, V.I. Effect of Titanium Dioxide Support for Cobalt Nanoparticle Catalysts for Hydrogen Generation from Sodium Borohydride Hydrolysis. Catal. Lett. 2022, 153, 3136–3147. [Google Scholar] [CrossRef]
- Dai, P.; Zhao, X.; Xu, D.; Wang, C.; Tao, X.; Liu, X.; Gao, J. Preparation, characterization, and properties of Pt/Al2O3/cordierite monolith catalyst for hydrogen generation from hydrolysis of sodium borohydride in a flow reactor. Int. J. Hydrogen Energy 2019, 44, 28463–28470. [Google Scholar] [CrossRef]
- Tamizhdurai, P.; Mangesh, V.L.; Bahajjaj, A.A.A.; Rajai, U.; Govindasamy, M.; Vasanthi, R.; Kumaran, R.; Augustine, T. Ionic liquid supported on mesoporous Pd/SBA-15 during the manufacture of 1,3-butadiene using ethanol at lower temperature reaction. Fuel 2023, 345, 128235. [Google Scholar] [CrossRef]
- Ren, C.; Wang, Z.; Gao, Q.; Li, J.; Jiang, S.; Huang, Q.; Yang, Y.; Zhang, J.; Wang, Y.; Hu, Y.; et al. Novel Brønsted Acidic Ionic Liquids as High Efficiency Catalysts for Liquid-Phase Beckmann Rearrangement. Catalysts 2023, 13, 978. [Google Scholar] [CrossRef]
- Tuan, D.D.; Lin, K.-Y.A. Ruthenium supported on ZIF-67 as an enhanced catalyst for hydrogen generation from hydrolysis of sodium borohydride. Chem. Eng. J. 2018, 351, 48–55. [Google Scholar] [CrossRef]
- Paksoy, A.; Kurtoğlu, S.F.; Dizaji, A.K.; Altıntaş, Z.; Khoshsima, S.; Uzun, A.; Balcı, Ö. Nanocrystalline cobalt–nickel–boron (metal boride) catalysts for efficient hydrogen production from the hydrolysis of sodium borohydride. Int. J. Hydrogen Energy 2021, 46, 7974–7988. [Google Scholar] [CrossRef]
- Keskin, M.S.; Ağırtaş, M.S. Hydrogen production performance and kinetic behavior from sodium borohydride hydrolysis with TiO2-supported Co-Mo-B catalyst. Ionics 2023, 29, 3713–3721. [Google Scholar] [CrossRef]
- Roy, A.; Manna, K.; Pal, S. Recent advances in various stimuli-responsive hydrogels: From synthetic designs to emerging healthcare applications. Mater. Chem. Front. 2022, 6, 2338–2385. [Google Scholar] [CrossRef]
- Liu, Q.; Zhou, K.; Liu, Y.; Zhang, Y.; Chen, W.; Tang, S. Exploring the potential applications of amphiphilic carbon dots based nanocomposite hydrogel in liquid chromatographic separations. Anal. Chim. Acta 2024, 1299, 342445. [Google Scholar] [CrossRef]
- Zhou, B.; Cheng, Q.; Chen, Z.; Chen, Z.; Liang, D.; Munro, E.A.; Yun, G.; Kawai, Y.; Chen, J.; Bhowmick, T.; et al. Universal Murray’s law for optimised fluid transport in synthetic structures. Nat. Commun. 2024, 15, 3652. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, J.; Zhang, X.; Bian, F.; Yu, W. A novel thermo and pH-double sensitive hydrogel immobilized Pd catalyst for Heck and Suzuki reactions in aqueous media. React. Funct. Polym. 2012, 72, 233–241. [Google Scholar] [CrossRef]
- Huang, Y.; Lin, D.; Qi, Y.; Deng, H.; Li, Y. Novel self-doped Pd/Cu bimetals in CMC/PANI composites: Efficient heterogeneous catalyst for cooperative Sonogashira and Sonogashira-cyclization tandem reactions. Appl. Organomet. Chem. 2024, 38, e1509. [Google Scholar] [CrossRef]
- Wan, K.; Xiao, Y.; Fan, J.; Miao, Z.; Wang, G.; Xue, S. Preparation of high-capacity macroporous adsorbent using lignite-derived humic acid and its multifunctional binding chemistry for heavy metals in wastewater. J. Clean. Prod. 2022, 363, 132498. [Google Scholar] [CrossRef]
- Gong, G.; Li, Z.; Zhang, Y.; Ma, L.; Wang, Z.; Li, R.; Liang, S.; Lu, S.; Ma, L. Preparation and structural characterisation of coal-based fulvic acid based on lignite. J. Mol. Struct. 2022, 1260, 132766. [Google Scholar] [CrossRef]
- Çavuş, S.; Çakal, E. Poly(2-acrylamido-2-methyl-1-propane sulfonic acid-co-1-vinyl-2-pyrrolidone) Hydrogel and its use in the Removal of Cd(II), Pb(II) and Cu(II). Acta Phys. Pol. A 2017, 132, 505–508. [Google Scholar] [CrossRef]
- Arif, M.; Raza, H.; Haroon, S.M.; Moussa, S.B.; Tahir, F.; Alzahrani, A.Y.A. Silica@poly(chitosan-N-isopropylacrylamide-methacrylic acid) microgels: Extraction of palladium (II) ions and in situ formation of palladium nanoparticles for pollutant reduction. Int. J. Biol. Macromol. 2024, 270, 132331. [Google Scholar] [CrossRef]
- Huang, Y.; Huang, J.; Zhou, Y.; Fan, X.; Li, Y. Pd@HKUST-1@Cu(II)/CMC composite bead as an efficient synergistic bimetallic catalyst for Sonogashira cross-coupling reactions. Carbohydr. Polym. 2024, 324, 121531. [Google Scholar] [CrossRef] [PubMed]
- Zeng, M.; Wang, Y.; Liu, Q.; Yuan, X.; Feng, R.; Yang, Z.; Qi, C. N-doped mesoporous carbons supported palladium catalysts prepared from chitosan/silica/palladium gel beads. Int. J. Biol. Macromol. 2016, 89, 449–455. [Google Scholar] [CrossRef]
- Peng, Y.-Q.; Li, Y.-Q.; Liu, M.-M.; Ni, C.; Cao, Y.-C. Unexpectedly superior efficiency of chloride-directed double Suzuki–Miyaura cross-coupling reactions to bromide-directed reactions for the synthesis of sterically hindered 2,7-diaryl fluorenes. New J. Chem. 2024, 48, 12130–12137. [Google Scholar] [CrossRef]
- Trzeciak, A.M.; Augustyniak, A.W. The role of palladium nanoparticles in catalytic C–C cross-coupling reactions. Coord. Chem. Rev. 2019, 384, 1–20. [Google Scholar] [CrossRef]
- Pan, S.; Wu, B.; Hu, J.; Xu, R.; Jiang, M.; Zeng, X.; Zhong, G. Palladium-Catalyzed Allylic Substitution Reaction of Benzothiazolylacetamide with Allylic Alcohols in Water. J. Org. Chem. 2019, 84, 10111–10119. [Google Scholar] [CrossRef] [PubMed]
- Yan, P.; Pan, S.; Hu, J.; Lu, L.; Zeng, X.; Zhong, G. Palladium Catalyzed Controllable Mono- or Di-Allylic Substitution Reaction of Benzothiazolylacetate with Allylic Alcohols. Adv. Synth. Catal. 2019, 361, 1322–1334. [Google Scholar] [CrossRef]
- Mao, M.; Zhang, L.; Chen, Y.-Z.; Zhu, J.; Wu, L. Palladium-Catalyzed Coupling of Allenylphosphine Oxides with N-Tosylhydrazones toward Phosphinyl [3]Dendralenes. ACS Catal. 2016, 7, 181–185. [Google Scholar] [CrossRef]
- Wang, X.; Wang, X.; Shu, S.; Liu, J.; Liu, Q.; Wang, T.; Zhang, Z. N1-Allylation of Arylhydrazines via a Palladium-Catalyzed Allylic Substitution. Org. Lett. 2023, 25, 4880–4885. [Google Scholar] [CrossRef]
- Shaikh, N.; Pamidimukkala, P. Magnetic chitosan stabilized palladium nanostructures: Potential catalysts for aqueous Suzuki coupling reactions. Int. J. Biol. Macromol. 2021, 183, 1560–1573. [Google Scholar] [CrossRef]
- Dong, Y.; Bi, J.; Ming, S.; Zhang, S.; Zhu, D.; Meng, D.; Li, T. Functionalized chitosan as a novel support for stabilizing palladium in Suzuki reactions. Carbohydr. Polym. 2021, 260, 117815. [Google Scholar] [CrossRef]
- De Cattelle, A.; Billen, A.; O’Rourke, G.; Brullot, W.; Verbiest, T.; Koeckelberghs, G. Ligand-free, recyclable palladium-functionalized magnetite nanoparticles as a catalyst in the Suzuki-, Sonogashira, and Stille reaction. J. Organomet. Chem. 2019, 904, 121005. [Google Scholar] [CrossRef]
- Zhou, X.; Guo, X.; Jian, F.; Wei, G. Highly Efficient Method for Suzuki Reactions in Aqueous Media. ACS Omega 2018, 3, 4418–4422. [Google Scholar] [CrossRef]
- Lee, Y.; Hong, M.C.; Ahn, H.; Yu, J.; Rhee, H. Pd nanoparticles immobilized on poly(NIPAM-co-4-VP) hydrogel: Highly active and reusable catalyst for carbon–carbon coupling reactions in water. J. Organomet. Chem. 2014, 769, 80–93. [Google Scholar] [CrossRef]
- Uyanga, K.A.; Daoud, W.A. Green and sustainable carboxymethyl cellulose-chitosan composite hydrogels: Effect of crosslinker on microstructure. Cellulose 2021, 28, 5493–5512. [Google Scholar] [CrossRef]
- Sawut, A.; Yimit, M.; Sun, W.; Nurulla, I. Photopolymerisation and characterization of maleylatedcellulose-g-poly(acrylic acid) superabsorbent polymer. Carbohydr. Polym. 2014, 101, 231–239. [Google Scholar] [CrossRef] [PubMed]
Entry a | Catalyst (mg) | Solvent (mL) | Temp. (°C) | Time (h) b | Yield (%) c |
1 | 10 | H2O (5) | 80 | 2 | 94 |
2 | 10 | CH3CH2OH (5) | 80 | 12 | trace |
3 | 10 | H2O (5) | 40 | 2 | 45 |
4 | 5 | H2O (5) | 80 | 3 | 93 |
5 | 15 | H2O (5) | 80 | 2 | 90 |
6 | 20 | H2O (5) | 80 | 2 | 95 |
Entry a | Catalyst (mg) | Solvent (mL) | Temp. (°C) | Time (h) b | Yield (%) c |
1 | 15 | H2O (5) | 80 | 1 | 99 |
2 | 15 | CH3CH2OH (5) | 80 | 12 | Trace |
3 | 15 | CH3CH2OH/H2O (1:1) | 80 | 4 | 99 |
4 | 15 | H2O (5) | 40 | 12 | Trace |
5 | 5 | H2O (5) | 80 | 3 | 99 |
6 | 10 | H2O (5) | 80 | 1 | 99 |
7 | 20 | H2O (5) | 80 | 1 | 99 |
Entry a | Substrate | Time (h) b | Yield (%) c |
1 | 1 | 99 | |
2 | 0.5 | 96 | |
3 | 1 | 95 | |
4 | 1 | 98 | |
5 | 1 | 97 |
Entry | Catalyst | Solvent (mL) | Temp. (°C) | Time (h) | Yield (%) | TON | TOF (h−1) | Reference |
---|---|---|---|---|---|---|---|---|
1 | P(AA-co-VI)@Pd | H2O | 80 | 2 | 94 | 7.83 × 106 | 3.92 × 106 | This work |
2 | Pd(PPh3)4 | H2O | 100 | 12 | 92 | 23 | 1.91 | [31] |
3 | Pd(PPh3)4 | DCM | 75 | 12 | 96 | 24 | 2 | [32] |
4 | Pd(PPh3)2Cl2 | dioxane | reflux | 18 | 92 | 18.4 | 1.53 | [33] |
5 | Pd(Ph CN)2Cl2 | DCM | r.t | 4 | 85 | 17 | 4.25 | [34] |
6 | P(AA-co-VI)@Pd | H2O | 80 | 1 | 99 | 8.25 × 106 | 8.25 × 106 | This work |
7 | Pd@IO-chitosan | H2O | 100 | 6 | 99 | 1.8 × 104 | 3 × 103 | [35] |
8 | OCMCS-SB-Pd(II) | EtOH:H2O = 3:2 | 50 | 2 | 96 | 208.8 | 104.4 | [36] |
9 | Fe3O4/PEG/Pd | EtOH:H2O = 1:1 | 60 | 1 | 73 | 1.8 × 104 | 1.8 × 104 | [37] |
10 | PdCl2(Ln@β-CD) | TBAB | 90 | 4 | 98 | 9.8 × 103 | 2.45 × 103 | [38] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, H.; Sawut, A.; Simayi, R.; Sun, Y. Preparation and Characterization of Poly(acrylic acid-co-vinyl imidazole) Hydrogel-Supported Palladium Catalyst for Tsuji–Trost and Suzuki Reactions in Aqueous Media. Gels 2024, 10, 758. https://doi.org/10.3390/gels10120758
Song H, Sawut A, Simayi R, Sun Y. Preparation and Characterization of Poly(acrylic acid-co-vinyl imidazole) Hydrogel-Supported Palladium Catalyst for Tsuji–Trost and Suzuki Reactions in Aqueous Media. Gels. 2024; 10(12):758. https://doi.org/10.3390/gels10120758
Chicago/Turabian StyleSong, Huijun, Amatjan Sawut, Rena Simayi, and Yuqi Sun. 2024. "Preparation and Characterization of Poly(acrylic acid-co-vinyl imidazole) Hydrogel-Supported Palladium Catalyst for Tsuji–Trost and Suzuki Reactions in Aqueous Media" Gels 10, no. 12: 758. https://doi.org/10.3390/gels10120758
APA StyleSong, H., Sawut, A., Simayi, R., & Sun, Y. (2024). Preparation and Characterization of Poly(acrylic acid-co-vinyl imidazole) Hydrogel-Supported Palladium Catalyst for Tsuji–Trost and Suzuki Reactions in Aqueous Media. Gels, 10(12), 758. https://doi.org/10.3390/gels10120758