Fabrication and Evaluation of Silk Sericin-Derived Hydrogel for the Release of the Model Drug Berberine
Abstract
:1. Introduction
2. Results and Discussion
2.1. Gelation Exploration
2.2. Investigation of the Gelation Process
2.3. Microstructural Characterization of SS/PEGDA Scaffolds
2.4. Mechanical Behavior of SS/PEGDA Scaffolds
2.5. Swelling of SS/PEGDA Scaffolds
2.6. Kinetics of Drug Release
2.7. Antibacterial Property
2.8. In Vitro Cytotoxicity
3. Conclusions
4. Materials and Methods
4.1. Materials
4.2. Silk Sericin Molecule Thiolation
4.3. Silk Sericin-Derived Hydrogel Scaffold Preparation
4.4. FTIR Analysis
4.5. Effect of Tween-20, PBS, NaCl and Urea on the Gelation
4.6. Microstructural Morphology Characterization
4.7. BET Analysis
4.8. Compression Test of the SS/PEGDA Scaffold
4.9. Study of Swelling Behavior
4.10. Berberine-Loaded SS/PEGDA Hydrogel Scaffold Preparation
4.11. Mathematical Modeling of Drug Release from SS/PEGDA Scaffolds
4.12. Test for Antimicrobial Activity of Berberine-Loaded SS/PEGDA Scaffolds
4.13. In Vitro Cytotoxicity Assay
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kim, U.-J.; Park, J.; Li, C.; Jin, H.-J.; Valluzzi, R.; Kaplan, D.L. Structure and Properties of Silk Hydrogels. Biomacromolecules 2004, 5, 786–792. [Google Scholar] [CrossRef]
- Santos, N.T.D.G.; Landers, R.; da Silva, M.G.C.; Vieira, M.G.A. Adsorption of Gold Ions onto Sericin and Alginate Particles Chemically Crosslinked by Proanthocyanidins: A Complete Fixed-Bed Column Study. Ind. Eng. Chem. Res. 2020, 59, 318–328. [Google Scholar] [CrossRef]
- Arango, M.C.; Montoya, Y.; Peresin, M.S.; Bustamante, J.; Álvarez-López, C. Silk Sericin as A Biomaterial for Tissue Engineering: A Review. Int. J. Polym. Mater. Polym. Biomater. 2020, 69, 1–15. [Google Scholar] [CrossRef]
- Kunz, R.I.; Brancalhão, R.M.C.; Ribeiro, L.D.F.C.; Natali, M.R.M. Silkworm Sericin: Properties and Biomedical Applications. BioMed Res. Int. 2016, 2016, 8175701. [Google Scholar] [CrossRef] [Green Version]
- Mitran, V.; Dinca, V.; Ion, R.; Cojocaru, V.D.; Neacsu, P.; Dinu, C.Z.; Rusen, L.; Brajnicov, S.; Bonciu, A.; Dinescu, M.; et al. Graphene Nanoplatelets-Sericin Surface-Modified Gum Alloy for Improved Biological Response. RSC Adv. 2018, 8, 18492–18501. [Google Scholar] [CrossRef] [Green Version]
- Kumar, J.P.; Mandal, B.B. Antioxidant Potential of Mulberry and Non-mulberry Silk Sericin and its Implications in Biomedicine. Free Radic. Biol. Med. 2017, 108, 803–818. [Google Scholar] [CrossRef]
- Lamboni, L.; Gauthier, M.; Yang, G.; Wang, Q. Silk sericin: A Versatile Material for Tissue Engineering and Drug Delivery. Biotechnol. Adv. 2015, 33, 1855–1867. [Google Scholar] [CrossRef]
- Elahi, M.; Ali, S.; Tahir, H.M.; Mushtaq, R.; Bhatti, M.F. Sericin and Fibroin Nanoparticles—Natural Product for Cancer Therapy: A Comprehensive Review. Int. J. Polym. Mater. 2020, 70, 256–269. [Google Scholar] [CrossRef]
- Sunaina, S.; Subhayan, D.; Mahitosh, M.; Ghosh, A.K.; Kundu, S.C. Prospects of Nonmulberry Silk Protein Sericin-based Nanofibrous Matrices for Wound Healing—In Vitro and In Vivo Investigations. Acta Biomater. 2018, 78, 137–150. [Google Scholar]
- Qi, C.; Deng, Y.; Xu, L.; Yang, C.; Wang, L. A Sericin/Graphene Oxide Composite Scaffold as A Biomimetic Extracellular Matrix for Structural and Functional Repair of Calvarial Bone. Theranostics 2020, 10, 741–756. [Google Scholar] [CrossRef]
- Tao, G.; Wang, Y.J.; Cai, R.; Chang, H.P.; Song, K.; Zuo, H.; Zhao, P.; Xia, Q.Y.; He, H.W. Design and Performance of Sericin/Poly (vinyl alcohol) Hydrogel as A Drug Delivery Carrier for Potential Wound Dressing Application. Mat. Sci. Eng. C 2019, 101, 341–351. [Google Scholar] [CrossRef]
- Qi, C.; Liu, J.; Jin, Y.; Xu, L.M.; Wang, G.B.; Wang, Z.; Wang, L. Photo-Crosslinkable, Injectable Sericin Hydrogel as 3D Biomimetic Extracellular Matrix for Minimally Invasive Repairing Cartilage. Biomaterials 2018, 163, 89–104. [Google Scholar] [CrossRef]
- Liu, J.; Qi, C.; Tao, K.; Zhang, J.; Zhang, J.; Xu, L.; Jiang, X.; Zhang, Y.; Huang, L.; Li, Q.; et al. Sericin/Dextran Injectable Hydrogel as An Optically Trackable Drug Delivery System for Malignant Melanoma Treatment. ACS Appl. Mater. Interfaces 2016, 8, 6411–6422. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, Y.; Zhang, J.; Huang, L.; Liu, J.; Li, Y.; Zhang, G.; Kundu, S.C.; Wang, L. Exploring Natural Silk Protein Sericin for Regenerative Medicine: An Injectable, Photoluminescent, Cell-adhesive 3D Hydrogel. Sci. Rep. 2014, 20, 7064. [Google Scholar] [CrossRef] [Green Version]
- Greg, T.H. Chapter 22-Enzyme Modification and Conjugation. In Bioconjugate Techniques, 3rd ed.; Springer: England, UK, 2013; pp. 951–957. [Google Scholar]
- Leile De Almeida, M.D.O.A.; Isabel, M.B.D.S.S.; Ferreira Borges, S.C.; Pereira Alves, P.J. Silk Sericin-based Hydrgel Methods and Uses Thereof. Portugal Patent WO 2018/011732Al, 18 January 2018. [Google Scholar]
- Chun, J.P.; Jooyeon, R.; Chang, S.K.; Joog, W.K.; Ick, S.K.; Do, G.B.; Um, I.C. Effect of Molecular Weight on the Structure and Mechanical Properties of Silk Sericin Gel, Film, and Sponge. Int. J. Biol. Macromol. 2018, 119, 821–832. [Google Scholar]
- Stichler, S.; Jungst, T.; Schamel, M.; Zilkowski, I.; Kuhlmann, M.; Böck, T.; Blunk, T.; Teßmar, J.; Groll, J. Thiol-ene Clickable Poly (glycidol) Hydrogels for Biofabrication. Ann. Biomed. Eng. 2017, 45, 273–285. [Google Scholar] [CrossRef]
- Zhang, Y.; Chu, C.W.; Ma, W.; Takahara, A. Functionalization of Metal Surface via Thiol–Ene Click Chemistry: Synthesis, Adsorption Behavior, and Postfunctionalization of a Catechol- and Allyl-Containing Copolymer. ACS Omega 2020, 5, 7488–7496. [Google Scholar] [CrossRef]
- Ji, S.L.; Qian, H.L.; Yang, C.X.; Zhao, X.; Yan, X.P. Thiol-Ene Click Synthesis of Phenylboronic Acid-Functionalized Covalent Organic Framework for Selective Catechol Removal from Aqueous Medium. ACS Appl. Mater. Interfaces 2019, 11, 46219–46225. [Google Scholar] [CrossRef]
- Felgueiras, H.P.; Wang, L.M.; Ren, K.F.; Querido, M.M.; Jin, Q.; Barbosa, M.A.; Ji, J.; Martins, M.C.L. Octadecyl Chains Immobilized onto Hyaluronic Acid Coatings by Thiol-ene “Click Chemistry” Increase the Surface Antimicrobial Properties and Prevent Platelet Adhesion and Activation to Polyurethane. ACS Appl. Mater. Interfaces 2017, 9, 7979–7989. [Google Scholar] [CrossRef]
- Hoyle, C.E.; Bowman, C.N. Thiol-Ene Click Chemistry. Angew. Chem. Int. Edit. 2010, 49, 1540–1573. [Google Scholar] [CrossRef]
- Xu, J.; Boyer, C. Visible Light Photocatalytic ThiolEne Reaction: An Elegant Approach for Fast Polymer Postfunctionalization and Step-Growth Polymerization. Macromolecules 2015, 48, 520–529. [Google Scholar] [CrossRef] [Green Version]
- Liang, J.; Zhang, X.; Chen, Z.; Li, S.; Yan, C. Thiol-Ene Click Reaction Initiated Rapid Gelation of PEGDA/Silk Fibroin Hydrogels. Polymers 2019, 11, 2102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Punyamoonwongsa, P.; Klayya, S.; Sajomsang, W.; Kunyanee, C.; Aueviriyavit, S. Silk Sericin Semi-interpenetrating Network Hydrogels Based on PEG-Diacrylate for Wound Healing Treatment. Int. J. Polym. Sci. 2019, 2019, 1–10. [Google Scholar] [CrossRef]
- Ammonium Persulfate; CAS No. 7727-54-0 [Online]; Sigma Aldrich: St. Louis, MO, USA, 2018; Available online: https://www.sigmaaldrich.com (accessed on 4 February 2021).
- Hoyle, C.E.; Lowe, A.B.; Bowman, C.N. Thiol-click Chemistry: A Multifaceted Toolbox for Small Molecule and Polymer Synthesis. Cheminform 2010, 39, 1355–1387. [Google Scholar] [CrossRef] [PubMed]
- Socrates, G. Sulphur and Selenium Compounds. In Infrared and Raman Characteristic Group Frequencies, 3rd ed.; John Wiley & Sons Ltd.: England, UK, 2001; Volume 16, pp. 209–211. [Google Scholar]
- Zhao, J.; Yu, P.; Dong, S. The Influence of Crosslink Density on the Failure Behavior in Amorphous Polymers by Molecular Dynamics Simulations. Materials 2016, 9, 234. [Google Scholar] [CrossRef] [Green Version]
- Bodenberger, N.; Kubiczek, D.; Abrosimova, I.; Scharm, A.; Kipper, F.; Walther, P.; Rosenau, F. Evaluation of Methods for Pore Generation and Their Influence on Physio-Chemical Properties of a Protein Based Hydrogel. Biotechnol. Rep. 2016, 12, 6–12. [Google Scholar] [CrossRef] [Green Version]
- Fu, Y.; Kao, W.J. Drug Release Kinetics and Transport Mechanisms of Non-degradable and Degradable Polymeric Delivery Systems. Expert Opin. Drug Del. 2010, 7, 429–444. [Google Scholar] [CrossRef]
- Ritger, P.L.; Peppas, N.A. A Simple Equation for Description of Solute Release, I. Fickian and Non-Fickian Release from Non-Swellable Devices in the Form of Slabs, Spheres, Cylinders or Discs. J. Control. Release 1987, 5, 23–36. [Google Scholar] [CrossRef]
- Čerňáková, M.; Košťálová, D. Antimicrobial Activity of Berberine—A Constituent of Mahonia Aquifolium. Folia Microbiol. 2002, 47, 375–378. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Hou, K.; Chen, W.; Wang, Y.; Wang, R.; Tian, C.; Xu, S.; Ji, Y.; Yang, Q.; Zhao, P. Transgenic PDGF-BB/Sericin Hydrogel Supports for Cell Proliferation and Osteogenic Differentiation. Biomater. Sci. 2020, 8, 657–672. [Google Scholar] [CrossRef] [PubMed]
- Bakhsheshi-Rad, H.R.; Ismail, A.F.; Aziz, M.; Akbari, M.; Hadisi, Z.; Omidi, M.; Chen, X. Development of the PVA/CS Nanofibers Containing Silk Protein Sericin as A Wound Dressing: In Vitro and in Vivo Assessment. Int. J. Biol. Macromol. 2020, 149, 513–521. [Google Scholar] [CrossRef] [PubMed]
Scheme. | Specific Surface Area (m2/g) |
---|---|
10% SS/PEGDA | 0.1230 |
20% SS/PEGDA | 0.2811 |
30% SS/PEGDA | 0.1411 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, C.; Liang, J.; Fang, H.; Meng, X.; Chen, J.; Zhong, Z.; Liu, Q.; Hu, H.; Zhang, X. Fabrication and Evaluation of Silk Sericin-Derived Hydrogel for the Release of the Model Drug Berberine. Gels 2021, 7, 23. https://doi.org/10.3390/gels7010023
Yan C, Liang J, Fang H, Meng X, Chen J, Zhong Z, Liu Q, Hu H, Zhang X. Fabrication and Evaluation of Silk Sericin-Derived Hydrogel for the Release of the Model Drug Berberine. Gels. 2021; 7(1):23. https://doi.org/10.3390/gels7010023
Chicago/Turabian StyleYan, Chi, Jianwei Liang, Hao Fang, Xizhi Meng, Jiale Chen, Zhi Zhong, Qin Liu, Hongmei Hu, and Xiaoning Zhang. 2021. "Fabrication and Evaluation of Silk Sericin-Derived Hydrogel for the Release of the Model Drug Berberine" Gels 7, no. 1: 23. https://doi.org/10.3390/gels7010023
APA StyleYan, C., Liang, J., Fang, H., Meng, X., Chen, J., Zhong, Z., Liu, Q., Hu, H., & Zhang, X. (2021). Fabrication and Evaluation of Silk Sericin-Derived Hydrogel for the Release of the Model Drug Berberine. Gels, 7(1), 23. https://doi.org/10.3390/gels7010023