Microcapillary Reactors via Coaxial Electrospinning: Fabrication of Small Poly(Acrylic Acid) Gel Beads and Thin Threads of Biological Cell Dimensions
Abstract
:1. Introduction
2. Results and Discussion
2.1. Electrospinning Conditions That Favor Long PAA Threads
2.2. Swelling and Deswelling of PAA Threads
2.3. Electrical Potentials of PAA Threads
3. Conclusions
4. Materials and Methods
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Oosawa, F. Polyelectrolytes; Marcel Dekker: New York, NY, USA, 1971. [Google Scholar]
- Janmey, P.A.; Slochower, D.R.; Wang, Y.-H.; Wen, Q.; Cēbers, A. Polyelectrolyte properties of filamentous biopolymers and their consequences in biological fluids. Soft Matter 2014, 10, 1439–1449. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tasaki, I. Spread of discrete structural changes in synthetic polyanionic gel: a model of propagation of a nerve impulse. J. Theor. Biol. 2002, 218, 497–505. [Google Scholar] [CrossRef]
- Tasaki, I. Abrupt Structural Changes in Polyanionic Gels Evoked by Na-Ca Ion Exchange: Their Biological Implications. Macromol. Symp. 2005, 227, 97–104. [Google Scholar] [CrossRef]
- Boeynaems, S.; Alberti, S.; Fawzi, N.L.; Mittag, T.; Polymenidou, M.; Rousseau, F.; Schymkowitz, J.; Shorter, J.; Wolozin, B.; Bosch, L.V.D.; et al. Protein Phase Separation: A New Phase in Cell Biology. Trends Cell Biol. 2018, 28, 420–435. [Google Scholar] [CrossRef] [Green Version]
- van Lente, J.J.; Claessens, M.M.A.E.; Lindhoud, S. Charge-Based Separation of Proteins Using Polyelectrolyte Com-plexes as Models for Membraneless Organelles. Biomacromolecules 2019, 20, 3696–3703. [Google Scholar] [CrossRef] [Green Version]
- Ryan, V.H.; Fawzi, N.L. Physiological, Pathological, and Targetable Membraneless Organelles in Neurons. Trends Neurosci. 2019, 42, 693–708. [Google Scholar] [CrossRef]
- Feng, Z.; Chen, X.; Wu, X.; Zhang, M. Formation of biological condensates via phase separation: Characteristics, analytical methods, and physiological implications. J. Biol. Chem. 2019, 294, 14823–14835. [Google Scholar] [CrossRef] [Green Version]
- Shklyar, T.F.; Safronov, A.P.; Klyuzhin, I.S.; Pollack, G.; Blyakhman, F.A. A correlation between mechanical and electrical properties of the synthetic hydrogel chosen as an experimental model of cytoskeleton. Biophysics 2008, 53, 544–549. [Google Scholar] [CrossRef]
- Matveev, V.V. Cell theory, intrinsically disordered proteins, and the physics of the origin of life. Prog. Biophys. Mol. Biol. 2019, 149, 114–130. [Google Scholar] [CrossRef]
- Meng, L.; Klinkajon, W.; K-Hasuwan, P.-R.; Harkin, S.; Supaphol, P.; E Wnek, G. Electrospun crosslinked poly(acrylic acid) fiber constructs: towards a synthetic model of the cortical layer of nerve. Polym. Int. 2015, 64, 42–48. [Google Scholar] [CrossRef]
- Yarin, A. Coaxial electrospinning and emulsion electrospinning of core-shell fibers. Polym. Adv. Technol. 2010, 22, 310–317. [Google Scholar] [CrossRef]
- Loscertales, I.G.; Barrero, A.; Márquez, M.; Spretz, R.; Velarde-Ortiz, R.; Larsen, G. Electrically Forced Coaxial Nanojets for One-Step Hollow Nanofiber Design. J. Am. Chem. Soc. 2004, 126, 5376–5377. [Google Scholar] [CrossRef] [PubMed]
- Reddy, C.S.; Arinstein, A.; Avrahami, R.; Zussman, E. Fabrication of thermoset polymer nanofibers by co-electrospinning of uniform core-shell structures. J. Mater. Chem. 2009, 19, 7198–7201. [Google Scholar] [CrossRef]
- Han, D.; Steckl, A.J. Coaxial Electrospinning Formation of Complex Polymer Fibers and their Applications. ChemPlusChem 2019, 84, 1. [Google Scholar] [CrossRef] [PubMed]
- Tomotika, S. On the Instability of a Cylindrical Thread of a Viscous Liquid Surrounded by Another Viscous Fluid. Proc. R. Soc. (London) 1935, A150, 322–337. [Google Scholar]
- Elmendorp, J.J. A study on polymer blending microrheology. Polym. Eng. Sci. 1986, 26, 418. [Google Scholar] [CrossRef] [Green Version]
- Jarusuwannapoom, T.; Hongrojjanawiwat, W.; Jitjaicham, S.; Wannatong, L.; Nithitanakul, M.; Pattamaprom, C.; Koombhongse, P.; Rangkupan, R.; Supaphol, P. Effect of solvents on electro-spinnability of polystyrene solutions and morphological appearance of resulting electrospun polystyrene fibers. Eur. Polym. J. 2005, 41, 409–421. [Google Scholar] [CrossRef]
- Horkay, F.; Tasaki, I.; Basser, P.J. Effect of Monovalent-Divalent Cation Exchange on the Swelling of Polyacrylate Hydrogels in Physiological Salt Solutions. Biomacromolecules 2001, 2, 195–199. [Google Scholar] [CrossRef]
- Mussel, M.; Basser, P.J.; Horkay, F. Effects of mono- and divalent cations on the structure and thermodynamic properties of polyelectrolyte gels. Soft Matter 2019, 15, 4153–4161. [Google Scholar] [CrossRef]
- Wilson, J.E.; Chin, A. Chelation of divalent cations by ATP, studied by titration calorimetry. Anal. Biochem. 1991, 193, 16–19. [Google Scholar] [CrossRef]
- Chrysafides, S.M.; Sharma, S. Physiology, Resting Potential. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2020. [Google Scholar]
- Guo, H.; Kurokawa, T.; Takahata, M.; Hong, W.; Katsuyama, Y.; Luo, F.; Ahmed, J.; Nakajima, T.; Nonoyama, T.; Gong, J.P. Quantitative Observation of Electric Potential Distribution of Brittle Polyelectrolyte Hydrogels Using Microelec-trode Technique. Macromolecules 2016, 49, 3100. [Google Scholar] [CrossRef]
- Gao, F.; Reitz, F.B.; Pollack, G.H. Potentials in anionic polyelectrolyte hydrogels. J. Appl. Polym. Sci. 2003, 89, 1319–1321. [Google Scholar] [CrossRef]
Voltage | 10 kV | 12 kV | 15 kV |
---|---|---|---|
10% PS | Droplets | Fibers | Particles |
12% PS | Droplets | Particles/Fibers | Particles |
20% PS | Droplets | Particles/Fibers | Particles |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kozawa, S.K.; Lord, A.; Scott-McKean, J.J.; Walker, A.Y.; Costa, A.C.S.; Wnek, G.E. Microcapillary Reactors via Coaxial Electrospinning: Fabrication of Small Poly(Acrylic Acid) Gel Beads and Thin Threads of Biological Cell Dimensions. Gels 2021, 7, 37. https://doi.org/10.3390/gels7020037
Kozawa SK, Lord A, Scott-McKean JJ, Walker AY, Costa ACS, Wnek GE. Microcapillary Reactors via Coaxial Electrospinning: Fabrication of Small Poly(Acrylic Acid) Gel Beads and Thin Threads of Biological Cell Dimensions. Gels. 2021; 7(2):37. https://doi.org/10.3390/gels7020037
Chicago/Turabian StyleKozawa, Susan K., Audrey Lord, Jonah J. Scott-McKean, Anne Y. Walker, Alberto C. S. Costa, and Gary E. Wnek. 2021. "Microcapillary Reactors via Coaxial Electrospinning: Fabrication of Small Poly(Acrylic Acid) Gel Beads and Thin Threads of Biological Cell Dimensions" Gels 7, no. 2: 37. https://doi.org/10.3390/gels7020037
APA StyleKozawa, S. K., Lord, A., Scott-McKean, J. J., Walker, A. Y., Costa, A. C. S., & Wnek, G. E. (2021). Microcapillary Reactors via Coaxial Electrospinning: Fabrication of Small Poly(Acrylic Acid) Gel Beads and Thin Threads of Biological Cell Dimensions. Gels, 7(2), 37. https://doi.org/10.3390/gels7020037