Analysis of Copper(II), Cobalt(II) and Iron(III) Sorption in Binary and Ternary Systems by Chitosan-Based Composite Sponges Obtained by Ice-Segregation Approach
Abstract
:1. Introduction
2. Results and Discussion
2.1. Sorption of HMIs in a Binary System
2.2. Sorption of HMIs in Ternary System
2.3. HMIs Desorption and Sorbent Recycling
3. Conclusions
4. Materials and Methods
4.1. Materials
4.2. Methods
4.2.1. Preparation and Functionalization of CSZ Composite Sponges
4.2.2. Morphology and Elemental Surface Composition
4.2.3. Sorption Studies
4.2.4. Desorption and Reusability Experiments
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hu, H. Human health and heavy metals exposure. In Life Support: The Environment and Human Health; McCally, M., Ed.; MIT Press: Cambridge, UK, 2002; Volume 4, pp. 1–12. [Google Scholar]
- Dragan, E.S.; Dinu, M.V. Advances in porous chitosan-based composite hydrogels: Synthesis and applications. React. Funct. Polym. 2020, 146, 104372. [Google Scholar] [CrossRef]
- Beyki, M.H.; Shemirani, F.; Shirkhodaie, M. Aqueous Co(II) adsorption using 8-hydroxyquinoline anchored-Fe2O3@chitosan with Co(II) as imprinted ions. Int. J. Biol. Macromol. 2016, 87, 375–384. [Google Scholar] [CrossRef]
- Abbaspour, N.; Hurrell, R.; Kelishadi, R. Review on iron and its importance for human health. J. Res. Med. Sci. 2014, 19, 164–174. [Google Scholar] [PubMed]
- Guemiza, K.; Coudert, L.; Metahni, S.; Mercier, G.; Besner, S.; Blais, J.F. Treatment technologies used for the removal of As, Cr, Cu, PCP and/or PCDD/F from contaminated soil: A review. J. Hazard. Mater. 2017, 333, 194–214. [Google Scholar] [CrossRef] [Green Version]
- Dragan, E.S.; Avram, E.; Dinu, M.V. Organic ion exchangers as beads. Synthesis, characterization and applications. Polym. Adv. Technol. 2006, 17, 571–578. [Google Scholar] [CrossRef]
- Cao, D.Q.; Wang, X.; Wang, Q.H.; Fang, X.M.; Jin, J.Y.; Hao, X.D.; Iritani, E.; Katagiri, N. Removal of heavy metal ions by ultrafiltration with recovery of extracellular polymer substances from excess sludge. J. Membr. Sci. 2020, 606, 118103. [Google Scholar] [CrossRef]
- Dragan, E.S.; Humelnicu, D.; Dinu, M.V. Design of porous strong base anion exchangers bearing N,N-dialkyl 2-hydroxyethyl ammonium groups with enhanced retention of Cr(VI) ions from aqueous solution. React. Funct. Polym. 2018, 124, 55–63. [Google Scholar] [CrossRef]
- Liao, G.; Zhong, L.; Cheung, C.S.; Du, C.; Wu, J.; Du, W.; Zheng, H.; Gao, H. Direct synthesis of hypercrosslinked microporous poly(para-methoxystyrene) for removal of iron(III) ion from aqueous solution. Microporous Mesoporous Mater. 2020, 307, 110469. [Google Scholar] [CrossRef]
- Dinu, M.V.; Dinu, I.A.; Lazar, M.M.; Dragan, E.S. Insights into the mechanism of Cu2+ binding onto chitosan-based cryogel composites: Equilibrium, kinetics and thermodynamics studies. Cell. Chem. Technol. 2018, 52, 181–192. [Google Scholar]
- Humelnicu, D.; Dragan, E.S.; Ignat, M.; Dinu, M.V. A comparative study on Cu2+, Zn2+, Ni2+, Fe3+, and Cr3+ metal ions removal from industrial wastewaters by chitosan-based composite cryogels. Molecules 2020, 25, 2664. [Google Scholar] [CrossRef] [PubMed]
- Beaugeard, V.; Muller, J.; Graillot, A.; Ding, X.; Robin, J.J.; Monge, S. Acidic polymeric sorbents for the removal of metallic pollution in water: A review. React. Funct. Polym. 2020, 152, 104599. [Google Scholar] [CrossRef]
- Zhang, H.; Xu, F.; Xue, J.; Chen, S.; Wang, J.; Yang, Y. Enhanced removal of heavy metal ions from aqueous solution using manganese dioxide-loaded biochar: Behavior and mechanism. Sci. Rep. 2020, 10, 6067. [Google Scholar] [CrossRef] [Green Version]
- Ma, L.; Wang, Q.; Islam, S.M.; Liu, Y.; Ma, S.; Kanatzidis, M.G. Highly selective and efficient removal of heavy metals by layered double hydroxide intercalated with the MoS42- ion. J. Am. Chem. Soc. 2016, 138, 2858–2866. [Google Scholar] [CrossRef] [PubMed]
- Hossein, M.I.; Haghighi, K. Removal of heavy metals from polluted solutions by zeolitic adsorbents: A review. Environ. Process. 2021, 8, 7–35. [Google Scholar]
- Zorpas, A.A.; Pedreño, J.N.; Candel, M.B.A. Heavy metal treatment and removal using natural zeolites from sewage sludge, compost, and agricultural soils: A review. Arab. J. Geosci. 2021, 14, 1098. [Google Scholar] [CrossRef]
- Tounsadi, H.; Khalidi, A.; Machrouhi, A.; Farnane, M.; Elmoubarki, R.; Elhalil, A.; Sadiq, M.; Barka, N. Highly efficient activated carbon from Glebionis coronaria L. biomass: Optimization of preparation conditions and heavy metals removal using experimental design approach. J. Environ. Chem. Eng. 2016, 4, 4549–4564. [Google Scholar] [CrossRef]
- Ibrahim, B.A.; Kassem, O.A.; Alhebeshy, R. Utilization of carbon nanotubes in removal of heavy metals from wastewater: A review of the CNTs’ potential and current challenges. Appl. Phys. A Mater. 2020, 126, 38. [Google Scholar]
- Deng, J.; Li, X.; Wei, X.; Liu, Y.; Liang, J.; Song, B.; Shao, Y.; Huang, W. Hybrid silicate-hydrochar composite for highly efficient removal of heavy metal and antibiotics: Coadsorption and mechanism. Chem. Eng. J. 2020, 387, 124097. [Google Scholar] [CrossRef]
- Guibal, E.; Vincent, T.; Navarro, R. Metal ion biosorption on chitosan for the synthesis of advanced materials. J. Mater. Sci. 2014, 49, 5505–5518. [Google Scholar] [CrossRef]
- Ghiorghita, C.A.; Borchert, K.B.L.; Vasiliu, A.L.; Zaharia, M.M.; Schwarz, D.; Mihai, M. Porous thiourea-grafted-chitosan hydrogels: Synthesis and sorption of toxic metal ions from contaminated waters. Colloids Surf. A 2020, 607, 125504. [Google Scholar] [CrossRef]
- Cai, L.; Ying, D.; Liang, X.; Zhu, M.; Lin, X.; Xu, Q.; Cai, Z.; Xu, X.; Zhang, L. A novel cationic polyelectrolyte microsphere for ultrafast and ultra-efficient removal of heavy metal ions and dyes. Chem. Eng. J. 2021, 410, 128404. [Google Scholar] [CrossRef]
- Fan, S.; Liu, Z.; Wu, Y.; Zhang, Y.; Hu, H.; Huang, Z.; Qin, Y.; Liang, J. 3D porous tubular network-structured chitosan-based beads with multifunctional groups: Highly efficient and selective removal of Cu2+. Int. J. Biol. Macromol. 2021, 171, 17–27. [Google Scholar] [CrossRef] [PubMed]
- Maia, M.T.; Sena, D.N.; Calais, G.B.; Luna, F.M.T.; Beppu, M.M.; Vieira, R.S. Effects of histidine modification of chitosan microparticles on metal ion adsorption. React. Funct. Polym. 2020, 154, 104694. [Google Scholar] [CrossRef]
- Monier, M.; Bukhari, A.A.H.; Elsayed, N.H. Designing and characterization of copper (II) ion-imprinted adsorbent based on isatin functionalized chitosan. Int. J. Biol. Macromol. 2020, 155, 795–804. [Google Scholar] [CrossRef]
- Nikiforova, T.E.; Kozlov, V.A.; Telegin, F.Y. Chemisorption of copper ions in aqueous acidic solutions by modified chitosan. Mater. Sci. Eng. B 2021, 263, 114778. [Google Scholar] [CrossRef]
- Upadhyay, U.; Sreedhar, I.; Singh, S.A.; Patel, C.M.; Anitha, K.L. Recent advances in heavy metal removal by chitosan based adsorbents. Carbohydr. Polym. 2021, 251, 117000. [Google Scholar] [CrossRef] [PubMed]
- Qi, X.; Liu, R.; Chen, M.; Li, Z.; Qin, T.; Qian, Y.; Zhao, S.; Liu, M.; Zeng, Q.; Shen, J. Removal of copper ions from water using polysaccharide-constructed hydrogels. Carbohydr. Polym. 2019, 209, 101–110. [Google Scholar] [CrossRef]
- Zeng, Q.; Qi, X.; Zhang, M.; Tong, X.; Jiang, N.; Pan, W.; Xiong, W.; Li, Y.; Xu, J.; Shen, J.; et al. Efficient decontamination of heavy metals from aqueous solution using pullulan/polydopamine hydrogels. Int. J. Biol. Macromol. 2020, 145, 1049–1058. [Google Scholar] [CrossRef]
- Dinu, M.V.; Dinu, I.A.; Lazar, M.M.; Dragan, E.S. Chitosan-based ion-imprinted cryo-composites with excellent selectivity for copper ions. Carbohydr. Polym. 2018, 186, 140–149. [Google Scholar] [CrossRef]
- Humelnicu, D.; Lazar, M.M.; Ignat, M.; Dinu, I.A.; Dragan, E.S.; Dinu, M.V. Removal of heavy metal ions from multi-component aqueous solutions by eco-friendly and low-cost composite sorbents with anisotropic pores. J. Hazard. Mater. 2020, 381, 120980. [Google Scholar] [CrossRef] [PubMed]
- Sáez, P.; Dinu, I.A.; Rodríguez, A.; Gómez, J.M.; Lazar, M.M.; Rossini, D.; Dinu, M.V. Composite cryo-beads of chitosan reinforced with natural zeolites with remarkable elasticity and switching on/off selectivity for heavy metal ions. Int. J. Biol. Macromol. 2020, 164, 2432–2449. [Google Scholar] [CrossRef]
- Mo, Y.; Zhang, Y.; Vincent, T.; Faur, C.; Guibal, E. Investigation of mercury(II) and copper(II) sorption in single and binary systems by alginate/polyethylenimine membranes. Carbohydr. Polym. 2021, 257, 117588. [Google Scholar] [CrossRef]
- Goher, M.E.; Hassan, A.M.; Abdel-Moniem, I.A.; Fahmy, A.H.; Abdo, M.H.; El-sayed, S.M. Removal of aluminum, iron and manganese ions from industrial wastes using granular activated carbon and Amberlite IR-120H. Egypt. J. Aquat. Res. 2015, 41, 155–164. [Google Scholar] [CrossRef] [Green Version]
- Bouhamed, F.; Elouear, Z.; Bouzid, J.; Ouddane, B. Multi-component adsorption of copper, nickel and zinc from aqueous solutions onto activated carbon prepared from date stones. Environ. Sci. Pollut. Res. 2015, 23, 15801–15806. [Google Scholar] [CrossRef]
- Swayampakulaa, K.; Boddub, V.M.; Nadavala, S.K.; Abburi, K. Competitive adsorption of Cu (II), Co (II) and Ni (II) from their binary and tertiary aqueous solutions using chitosan-coated perlite beads as biosorbent. J. Hazard. Mater. 2009, 170, 680–689. [Google Scholar] [CrossRef] [PubMed]
- Duan, J.-X.; Li, X.; Zhang, C.-C. The synthesis and adsorption performance of polyamine Cu2+ imprinted polymer for selective removal of Cu2+. Polym. Bull. 2017, 74, 3487–3504. [Google Scholar] [CrossRef]
- Mureseanu, M.; Reiss, A.; Stefanescu, I.; David, E.; Parvulescu, V.; Renard, G.; Hulea, V. Modified SBA-15 mesoporous silica for heavy metal ions remediation. Chemosphere 2008, 73, 1499–1504. [Google Scholar] [CrossRef] [PubMed]
- Orakdogen, N. Novel responsive poly(n,n-dimethylaminoethyl methacrylate) gel beads: Preparation, mechanical properties and ph-dependent swelling behavior. J. Polym. Res. 2012, 19, 9914. [Google Scholar] [CrossRef]
- Lazar, M.M.; Dinu, I.A.; Dinu, M.V. Synthesis of ethylenediaminetetraacetic acid-functionalized chitosan cryogels as potential sorbents of heavy metal ions. Mater. Plast. 2021, 58, 155–166. [Google Scholar] [CrossRef]
Sorbents/pH | Removal Efficiency (RE, %) after the First Cycle of Sorption | |||||
C0 = 50 mg/L | C0 = 200 mg/L | |||||
Cu | Co | Fe | Cu | Co | Fe | |
CSZ/pH 4 | 57.32 | 49.38 | 62.16 | 36.33 | 26.48 | 42.63 |
CSZ-EDTA/pH 4 | 64.14 | 50.88 | 75.32 | 36.79 | 30.08 | 43.83 |
CSZ-DTPA/pH 4 | 96.04 | 74.18 | 98.26 | 62.69 | 52.82 | 68.53 |
CSZ/pH 6 | 44.08 | 37.77 | - | 28.71 | 22.44 | - |
CSZ-EDTA/pH 6 | 87.54 | 75.94 | - | 63.68 | 45.72 | - |
CSZ-DTPA/pH 6 | 96.84 | 88.12 | - | 85.27 | 64.58 | - |
Sorbents/pH | Removal Efficiency (RE, %) after the Fifth Cycle of Sorption | |||||
C0 = 50 mg/L | C0 = 200 mg/L | |||||
Cu | Co | Fe | Cu | Co | Fe | |
CSZ/pH 4 | 49.15 | 41.02 | 51.26 | 32.91 | 22.64 | 38.22 |
CSZ-EDTA/pH 4 | 52.86 | 41.92 | 64.34 | 32.87 | 26.72 | 39.72 |
CSZ-DTPA/pH 4 | 81.26 | 58.36 | 82.72 | 58.82 | 48.66 | 62.26 |
CSZ/pH 6 | 35.04 | 29.42 | - | 25.62 | 19.42 | - |
CSZ-EDTA/pH 6 | 75.26 | 65.24 | - | 59.83 | 40.31 | - |
CSZ-DTPA/pH 6 | 77.44 | 72.66 | - | 80.13 | 59.83 | - |
Sorbents | Type of Multicomponent Mixture | HMI | pH | C0, mg/L | Sorbent Dose, g/L | qe, mg/g | Refs. |
---|---|---|---|---|---|---|---|
Granular activated carbon (GAC) | Ternary | Al(III) Fe(III) Mn(II) | 5 | 26–122 | 2 | 106.5 14.8 7.6 | [34] |
Amberlite IR-120H | Ternary | Al(III) Fe(III) Mn(II) | 5 | 26–122 | 2 | 108.7 15.6 8.7 | [34] |
Activate carbon | Ternary | Cu(II) Ni(II) Zn(II) | 5.5 | 10–100 | 2.5 | 18.6 16.1 12.1 | [35] |
CS-coated perlite beads | Binary | Cu(II) Ni(II) | 5 | 50–200 | 2.5 | 147.0 38.9 | [36] |
Binary | Cu(II) Co(II) | 156.2 39.8 | |||||
Binary | Ni(II) Co(II) | 56.1 66.6 | |||||
Ternary | Cu(II) Co(II) Ni(II) | 128.2 35.2 30.4 | |||||
Cu2+-ion-imprinted polymer | Binary | Cu(II) Ni(II) | 6 | 30–90 | 3 | 53.1 7.7 | [37] |
Binary | Cu(II) Zn(II) | 40.2 3.3 | |||||
Binary | Cu(II) Pb(II) | 38.4 128.1 | |||||
SBA-15 mesoporous silica | Quaternary | Cu(II) Ni(II) Co(II) Zn(II) | 4.8 | 1 | 8.2 7.6 4.7 5.5 | [38] | |
N-propylsalicylaldimino-functionalized SBA-15 mesoporous silica | Quaternary | Cu(II) Ni(II) Co(II) Zn(II) | 4.8 | 1 | 44 3.5 2.9 2.6 | [38] | |
Acid-activated Romanian zeolite | Five-component | Cu(II) Fe(III) Ni(II) Zn(II) Cr(III) | 5 4 4.5 5 3.5 | 50–1000 | 3.5 | 9.7 7.3 2.2 2.2 0.12 | [11] |
CS/acid-activated Romanian zeolite composite cryogels | Five-component | Cu(II) Fe(III) Ni(II) Zn(II) Cr(III) | 5 4 4.5 5 3.5 | 50–1000 | 3.5 | 61.1 18.6 12.2 53.4 0.8 | [11] |
CSZ | Binary | Cu(II) Fe(III) | 4 | 200 | 0.4 | 113.3 161.6 | This study |
Binary | Cu(II) Co(II) | 4 | 200 | 0.4 | 107.8 80.3 | ||
Binary | Co(II) Fe(III) | 4 | 200 | 0.4 | 82.8 157.5 | ||
Binary | Cu(II) Co(II) | 6 | 200 | 0.4 | 188.3 115.3 | ||
CSZ-EDTA | Binary | Cu(II) Fe(III) | 4 | 200 | 0.4 | 135.3 189.6 | |
Binary | Cu(II) Co(II) | 4 | 200 | 0.4 | 130.7 110.6 | ||
Binary | Co(II) Fe(III) | 4 | 200 | 0.4 | 112.2 180.2 | ||
Binary | Cu(II) Co(II) | 6 | 200 | 0.4 | 190.64 118.0 | ||
CSZ-DTPA | Binary | Cu(II) Fe(III) | 4 | 200 | 0.4 | 145.4 206.7 | |
Binary | Cu(II) Co(II) | 4 | 200 | 0.4 | 141.9 129.1 | ||
Binary | Co(II) Fe(III) | 4 | 200 | 0.4 | 133.8 203.7 | ||
Binary | Cu(II) Co(II) | 6 | 200 | 0.4 | 218.0 130.4 | ||
CSZ | Ternary | Cu(II) Co(II) Fe(III) | 4 | 200 | 0.4 | 105.7 74.5 148.6 | |
CSZ-EDTA | Ternary | Cu(II) Co(II) Fe(III) | 4 | 200 | 0.4 | 128.2 91.5 177.7 | |
CSZ-DTPA | Ternary | Cu(II) Co(II) Fe(III) | 4 | 200 | 0.4 | 138.6 103.5 188.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dinu, M.V.; Humelnicu, D.; Lazar, M.M. Analysis of Copper(II), Cobalt(II) and Iron(III) Sorption in Binary and Ternary Systems by Chitosan-Based Composite Sponges Obtained by Ice-Segregation Approach. Gels 2021, 7, 103. https://doi.org/10.3390/gels7030103
Dinu MV, Humelnicu D, Lazar MM. Analysis of Copper(II), Cobalt(II) and Iron(III) Sorption in Binary and Ternary Systems by Chitosan-Based Composite Sponges Obtained by Ice-Segregation Approach. Gels. 2021; 7(3):103. https://doi.org/10.3390/gels7030103
Chicago/Turabian StyleDinu, Maria Valentina, Doina Humelnicu, and Maria Marinela Lazar. 2021. "Analysis of Copper(II), Cobalt(II) and Iron(III) Sorption in Binary and Ternary Systems by Chitosan-Based Composite Sponges Obtained by Ice-Segregation Approach" Gels 7, no. 3: 103. https://doi.org/10.3390/gels7030103
APA StyleDinu, M. V., Humelnicu, D., & Lazar, M. M. (2021). Analysis of Copper(II), Cobalt(II) and Iron(III) Sorption in Binary and Ternary Systems by Chitosan-Based Composite Sponges Obtained by Ice-Segregation Approach. Gels, 7(3), 103. https://doi.org/10.3390/gels7030103