Tuning of Optical Stopband Wavelength and Effective Bandwidth of Gel-Immobilized Colloidal Photonic Crystal Films
Abstract
:1. Introduction
2. Results and Discussion
3. Conclusions
4. Materials and Methods
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pieranski, P. Colloidal Crystals. Contemp. Phys. 1983, 24, 25–73. [Google Scholar] [CrossRef]
- Xia, Y.; Gates, B.; Yin, Y.; Lu, Y. Monodispersed Colloidal Spheres: Old Materials with New Applications. Adv. Mater. 2000, 12, 693–713. [Google Scholar] [CrossRef]
- Yoshino, K.; Kawagishi, Y.; Ozaki, M.; Kose, A. Mechanical Tuning of the Optical Properties of Plastic Opal as a Photonic Crystal. Jpn. J. Appl. Phys. 1999, 38, L786–L788. [Google Scholar] [CrossRef]
- Baba, T. Slow Light in Photonic Crystals. Nat. Photonics 2008, 2, 465–473. [Google Scholar] [CrossRef]
- Hou, J.; Li, M.; Song, Y. Patterned Colloidal Photonic Crystals. Angew. Chem. Int. Ed. 2018, 57, 2544–2553. [Google Scholar] [CrossRef]
- Clough, J.M.; Weder, C.; Schrettl, S. Mechanochromism in Structurally Colored Polymeric Materials. Macromol. Rapid Commun. 2021, 42, 2000528. [Google Scholar] [CrossRef] [PubMed]
- Lee, G.H.; Han, S.H.; Kim, J.B.; Kim, D.J.; Lee, S.; Hamonangan, W.M.; Lee, J.M.; Kim, S. Elastic Photonic Microbeads as Building Blocks for Mechanochromic Materials. ACS Appl. Polym. Mater. 2020, 2, 706–714. [Google Scholar] [CrossRef]
- Lin, S.Y.; Fleming, J.G.; Hetherington, D.L.; Smith, B.K.; Biswas, R.; Ho, K.M.; Sigalas, M.M.; Zubrzycki, W.; Kurtz, S.R.; Bur, J. A Three-Dimensional Photonic Crystal Operating at Infrared Wavelengths. Nature 1998, 394, 251–253. [Google Scholar] [CrossRef]
- Noda, S.; Tomoda, K.; Yamamoto, N.; Chutinan, A. Full Three-Dimensional Photonic Bandgap Crystals at Near-Infrared Wavelengths. Science 2000, 289, 604–606. [Google Scholar] [CrossRef]
- Furumi, S.; Fudouzi, H.; Miyazaki, H.T.; Sakka, Y. Flexible Polymer Colloidal-Crystal Lasers with a Light-Emitting Planar Defect. Adv. Mater. 2007, 19, 2067–2072. [Google Scholar] [CrossRef]
- Kim, S.H.; Kim, S.H.; Jeong, W.C.; Yang, S.M. Low-Threshold Lasing in 3D Dye-Doped Photonic Crystals Derived from Colloidal Self-Assemblies. Chem. Mater. 2009, 21, 4993–4999. [Google Scholar] [CrossRef]
- Weissman, J.M.; Sunkara, H.B.; Tse, A.S.; Asher, S.A. Thermally Switchable Periodicities and Diffraction from Mesoscopically Ordered Materials. Science 1996, 274, 959–963. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Holtz, J.H.; Holtz, J.S.W.; Munro, C.H.; Asher, S.A. Intelligent Polymerized Crystalline Colloidal Arrays: Novel Chemical Sensor Materials. Anal. Chem. 1998, 70, 780–791. [Google Scholar] [CrossRef]
- Kanai, T.; Yano, H.; Kobayashi, N.; Sawada, T. Enhancement of Thermosensitivity of Gel-Immobilized Tunable Colloidal Photonic Crystals with Anisotropic Contraction. ACS Macro Lett. 2017, 6, 1196–1200. [Google Scholar] [CrossRef]
- Katsura, C.; Nobukawa, S.; Sugimoto, H.; Nakanishi, E.; Inomata, K. Solvent-Responsive Coloring Behavior of Colloidal Crystal Films Consisting of Cross-Linked Polymer Nanoparticles. Colloid Polym. Sci. 2017, 295, 1709–1715. [Google Scholar] [CrossRef]
- Foulger, S.H.; Jiang, P.; Lattam, A.C.; Smith, D.W.; Ballato, J. Mechanochromic Response of Poly(ethylene glycol) Methacrylate Hydrogel Encapsulated Crystalline Colloidal Arrays. Langmuir 2001, 17, 6023–6029. [Google Scholar] [CrossRef]
- Fenzl, C.; Wilhelm, S.; Hirsch, T.; Wolfbeis, O.S. Optical Sensing of the Ionic Strength Using Photonic Crystals in a Hydrogel Matrix. ACS. Appl. Mater. Interface 2013, 5, 173–178. [Google Scholar] [CrossRef]
- Tajima, H.; Amano, A.; Kanai, T. Elastomer-Immobilized Tunable Colloidal Photonic Crystal Films with High Optical Qualities and High Maximum Strain. Mater. Adv. 2021, 2, 3294–3299. [Google Scholar] [CrossRef]
- Miwa, E.; Watanabe, K.; Asai, F.; Seki, T.; Urayama, K.; Odent, J.; Raquez, J.M.; Takeoka, Y. Composite Elastomer Exhibiting a Stress-Dependent Color Change and High Toughness Prepared by Self-Assembly of Silica Particles in a Polymer Network. ACS Appl. Polym. Mater. 2020, 2, 4078–4089. [Google Scholar] [CrossRef]
- Kubo, S.; Gu, Z.Z.; Takahashi, K.; Fujishima, A.; Segawa, H.; Sato, O. Tunable Photonic Band Gap Crystals Based on a Liquid Crystal-Infiltrated Inverse Opal Structure. J. Am. Chem. Soc. 2004, 126, 8314–8319. [Google Scholar] [CrossRef]
- Wang, H.; Liu, Y.; Chen, Z.; Sun, L.; Zhao, Y. Anisotropic Structural Color Particles from Colloidal Phase Separation. Sci. Adv. 2020, 6, 1438. [Google Scholar] [CrossRef] [Green Version]
- Arsenault, A.C.; Puzzo, D.P.; Manners, I.; Ozin, G.A. Photonic-Crystal Full-Colour Displays. Nat. Photonics 2007, 1, 468–472. [Google Scholar] [CrossRef] [Green Version]
- Han, M.G.; Heo, C.J.; Shin, C.G.; Shim, H.S.; Kim, J.W.; Jin, Y.W.; Lee, S.Y. Electrically Tunable Photonic Crystals from Long-Range Ordered Crystalline Arrays Composed of Copolymer Colloids. J. Mater. Chem. C 2013, 1, 5791–5798. [Google Scholar] [CrossRef]
- Holtz, J.H.; Asher, S.A. Polymerized Colloidal Crystal Hydrogel Films as Intelligent Chemical Sensing Materials. Nature 1997, 389, 829–832. [Google Scholar] [CrossRef] [PubMed]
- Furumi, S.; Kanai, T.; Sawada, T. Widely Tunable Lasing in a Colloidal Crystal Gel Film Permanently Stabilized by an Ionic Liquid. Adv. Mater. 2011, 23, 3815–3820. [Google Scholar] [CrossRef]
- Iwayama, Y.; Yamanaka, J.; Takiguchi, Y.; Takasaka, M.; Ito, K.; Shinohara, T.; Sawada, T.; Yonese, M. Optically Tunable Gelled Photonic Crystal Covering Almost the Entire Visible Light Wavelength Region. Langmuir 2003, 19, 977–980. [Google Scholar] [CrossRef]
- Kanai, T.; Sawada, T.; Yamanaka, J.; Kitamura, K. Critical Concentration for Colloidal Crystallization Determined with Microliter Centrifuged Suspensions. Langmuir 2005, 21, 7633–7637. [Google Scholar] [CrossRef]
- Ryan, C.C.; Delezuk, J.A.M.; Pavinatto, A.; Oliveira , O.N., Jr.; Fudouzi, H.; Pemble, M.E.; Bardosova, M. Silica-Based Photonic Crystals Embedded in a Chitosan-TEOS Matrix: Preparation, Properties and Proposed Applications. J. Mater. Sci. 2016, 51, 5388–5396. [Google Scholar] [CrossRef]
- Jiang, P.; Ostojic, G.N.; Narat, R.; Mittleman, D.M.; Colvin, V.L. The Fabrication and Bandgap Engineering of Photonic Multilayers. Adv. Mater 2001, 13, 389–393. [Google Scholar] [CrossRef]
- Park, J.H.; Choi, W.S.; Koo, H.Y.; Hong, J.C.; Kim, D.Y. Doped Colloidal Photonic Crystal Structure with Refractive Index Chirping to the [111] Crystallographic Axis. Langmuir 2006, 22, 94–100. [Google Scholar] [CrossRef]
- Kanai, T.; Sawada, T.; Toyotama, A.; Yamanaka, J.; Kitamura, K. Tuning the Effective Width of the Optical Stop Band in Colloidal Photonic Crystals. Langmuir 2007, 23, 3503–3505. [Google Scholar] [CrossRef]
- Saito, H.; Takeoka, Y.; Watanabe, M. Simple and Precision Design of Porous Gel as a Visible Indicator for Ionic Species and Concentration. Chem. Commun. 2003, 3, 2126–2127. [Google Scholar] [CrossRef] [PubMed]
- Pagonis, K.; Bokias, G. Temperature- and Solvent-Sensitive Hydrogels Based on N-isopropylacrylamide and N,N-dimethylacrylamide. Polym. Bull. 2007, 58, 289–294. [Google Scholar] [CrossRef]
- Lee, K.; Asher, S.A. Photonic Crystal Chemical Sensors: pH and Ionic Strength. J. Am. Chem. Soc. 2000, 122, 9534–9537. [Google Scholar] [CrossRef]
- Sakiyama, T.; Takata, H.; Toga, T.; Nakanishi, K. pH-Sensitive Shrinking of a Dextran Sulfate/Chitosan Complex Gel and Its Promotion Effect on the Release of Polymeric Substances. J. Appl. Polym. Sci. 2001, 81, 667–674. [Google Scholar] [CrossRef]
- Toyotama, A.; Kanai, T.; Sawada, T.; Yamanaka, J.; Ito, K.; Kitamura, K. Gelation of Colloidal Crystals without Degradation in Their Transmission Quality and Chemical Tuning. Langmuir 2005, 21, 10268–10270. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wang, Y.; Wang, H.; Yu, Y.; Zhong, Q.; Zhao, Y. Super-Elastic Magnetic Structural Color Hydrogels. Small 2019, 15, 1902198. [Google Scholar] [CrossRef]
- Kanai, T.; Sawada, T.; Kitamura, K. Optical Determination of the Lattice Constants of Colloidal Crystals without Use of the Refractive Index. Langmuir 2003, 19, 1984–1986. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, X.; Li, L.; Wu, R.; Zhang, S.; Wu, J.; Wu, W. A Novel Polyacrylamide-Based Superabsorbent with Temperature Switch for Steam Breakthrough Blockage. J. Appl. Polym. Sci. 2015, 132, 42067. [Google Scholar] [CrossRef]
- Călina, I.; Demeter, M.; Scărișoreanu, A.; Micutz, M. Development of Novel Superabsorbent Hybrid Hydrogels by E-Beam Crosslinking. Gels 2021, 7, 189. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amano, A.; Kanai, T. Tuning of Optical Stopband Wavelength and Effective Bandwidth of Gel-Immobilized Colloidal Photonic Crystal Films. Gels 2023, 9, 56. https://doi.org/10.3390/gels9010056
Amano A, Kanai T. Tuning of Optical Stopband Wavelength and Effective Bandwidth of Gel-Immobilized Colloidal Photonic Crystal Films. Gels. 2023; 9(1):56. https://doi.org/10.3390/gels9010056
Chicago/Turabian StyleAmano, Ami, and Toshimitsu Kanai. 2023. "Tuning of Optical Stopband Wavelength and Effective Bandwidth of Gel-Immobilized Colloidal Photonic Crystal Films" Gels 9, no. 1: 56. https://doi.org/10.3390/gels9010056
APA StyleAmano, A., & Kanai, T. (2023). Tuning of Optical Stopband Wavelength and Effective Bandwidth of Gel-Immobilized Colloidal Photonic Crystal Films. Gels, 9(1), 56. https://doi.org/10.3390/gels9010056