Cellulose Fabrics Functionalized with Sol–Gel Photocatalytic Coatings Based on Iron (III) Phthalocyanine Tetracarboxylic Acids–TiO2–Silica Hybrids
Abstract
:1. Introduction
2. Results and Discussion
2.1. Structural Characterization by FTIR Spectroscopy
2.2. XRD Analysis
2.3. Surface Analysis by Scanning Electron Microscopy
2.4. Topography of the Coatings by Atomic Force Microscopy (AFM)
2.5. Water Contact Angle Measurements
2.6. Textural Properties
2.7. Sensitizer Stability to Light by CIEL*a*b* Color Measurements
2.8. Photocatalytic Efficiency
2.9. Dynamic Mechanical Analysis (DMA)
3. Conclusions
4. Materials and Methods
4.1. Materials
4.2. Methods
4.2.1. Preparation of Photocatalytic Nanosols and the Pad–Dry–Cure Procedure
4.2.2. Characterization Methods and Equipment
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sharma, S.; Bhattacharya, A. Drinking water contamination and treatment techniques. Appl. Water Sci. 2017, 7, 1043–1067. [Google Scholar] [CrossRef]
- Ike, I.A.; Karanfil, T.; Cho, J.; Hur, J. Oxidation byproducts from the degradation of dissolved organic matter by advanced oxidation processes—A critical review. Water Res. 2019, 164, 114929. [Google Scholar] [CrossRef]
- Rayaroth, M.P.; Aravindakumar, C.T.; Shah, N.S.; Boczkaj, G. Advanced oxidation processes (AOPs) based wastewater treatment—Unexpected nitration side reactions—A serious environmental issue: A review. Chem. Eng. J. 2022, 430, 133002. [Google Scholar] [CrossRef]
- Haounati, R.; Ighnih, H.; Ouachtak, H.; Malekshah, R.E.; Hafid, N.; Jada, A.; Ait Addi, A. Z-Scheme g-C3N4/Fe3O4/Ag3PO4 @Sep magnetic nanocomposites as heterojunction photocatalysts for green malachite degradation and dynamic molecular studies. Colloids Surf. A Physicochem. Eng. Asp. 2023, 671, 131509. [Google Scholar] [CrossRef]
- Liu, H.; Yang, L.; Zhan, Y.; Lan, J. A robust and antibacterial superhydrophobic cotton fabric with sunlight-driven self-cleaning performance for oil/water separation. Cellulose 2021, 28, 1715–1729. [Google Scholar] [CrossRef]
- Wang, J.; Zhao, J.; Sun, L.; Wang, X. A review on the application of photocatalytic materials on textiles. Text. Res. J. 2015, 85, 1104–1118. [Google Scholar] [CrossRef]
- Pillai, O.M.; Sundaramoorthy, S. Development of photocatalytic self-cleaning textiles using tin oxide and titanium dioxide nanoparticles mixture. J. Text. Inst. 2023, 114, 674–681. [Google Scholar] [CrossRef]
- Wang, W.; Liu, R.; Chi, H.; Zhang, T.; Xu, Z.; Zhao, Y. Durable Superamphiphobic and Photocatalytic Fabrics: Tackling the Loss of Super-Non-Wettability Due to Surface Organic Contamination. ACS Appl. Mater. Interfaces 2019, 11, 35327–35332. [Google Scholar] [CrossRef]
- Arfa, U.; Alshareef, M.; Nadeem, N.; Javid, A.; Nawab, Y.; Alshammari, K.F.; Zubair, U. Sunlight-Driven Photocatalytic Active Fabrics through Immobilization of Functionalized Doped Titania Nanoparticles. Polymers 2023, 15, 2775. [Google Scholar] [CrossRef]
- Schneider, J.; Matsuoka, M.; Takeuchi, M.; Zhang, J.; Horiuchi, Y.; Anpo, M.; Bahnemann, D.W. Understanding TiO2 Photocatalysis: Mechanisms and Materials. Chem. Rev. 2014, 114, 9919–9986. [Google Scholar] [CrossRef]
- Anucha, C.B.; Altin, I.; Bacaksiz, E.; Stathopoulos, V.N. Titanium dioxide (TiO2)-based photocatalyst materials activity enhancement for contaminants of emerging concern (CECs) degradation: In the light of modification strategies. Chem. Eng. J. Adv. 2022, 10, 100262. [Google Scholar] [CrossRef]
- Guo, Q.; Zhou, C.; Ma, Z.; Yang, X. Fundamentals of TiO2 Photocatalysis: Concepts, Mechanisms, and Challenges. Adv. Mater. 2019, 31, 1901997. [Google Scholar] [CrossRef] [PubMed]
- Zahra Shayegan, Z.; Lee, C.-S.; Haghighat, F. TiO2 photocatalyst for removal of volatile organic compounds in gas phase—A review. Chem. Eng. J. 2018, 334, 2408–2439. [Google Scholar] [CrossRef]
- Hamzah, S.R.; Rosli, M.A.; Natar, N.S.; Ghani, N.I.A.; Muhamad, N.A.; Azami, M.S.; Ishak, M.A.M.; Nordin, R.; Nawawi, W.I. The Crosslinking and Porosity Surface Effects of Photoetching Process on Immobilized Polymer-Based Titanium Dioxide for the Decolorization of Anionic Dye. Colorants 2023, 2, 73–89. [Google Scholar] [CrossRef]
- Dong, H.; Zeng, G.; Tang, L.; Fan, C.; Zhang, C.; He, X.; He, Y. An overview on limitations of TiO2-based particles for photocatalytic degradation of organic pollutants and the corresponding countermeasures. Water Res. 2015, 79, 128–146. [Google Scholar] [CrossRef]
- Mahmood, M.Z.; Ismail, S. Fabrication and optimization of immobilized bentonite and TiO2 photocatalyst in unilayer and bilayer system for the photocatalytic adsorptive removal of methylene blue dye under UV light. AIP Conf. Proc. 2019, 2124, 020039. [Google Scholar] [CrossRef]
- Rosales, A.; Esquivel, K. SiO2@TiO2 Composite Synthesis and Its Hydrophobic Applications: A Review. Catalysts 2020, 10, 171. [Google Scholar] [CrossRef]
- Zhu, Q.; Gao, Q.; Guo, Y.; Yang, C.Q.; Shen, L. Modified Silica Sol Coatings for Highly Hydrophobic Cotton and Polyester Fabrics Using a One-Step Procedure. Ind. Eng. Chem. Res. 2011, 50, 5881–5888. [Google Scholar] [CrossRef]
- Raduly, F.M.; Rădițoiu, V.; Rădițoiu, A.; Frone, A.N.; Nicolae, C.A.; Răut, I.; Constantin, M.; Grapin, M. Multifunctional Finishing of Cotton Fabric with Curcumin Derivatives Coatings Obtained by Sol–Gel Method. Gels 2023, 9, 369. [Google Scholar] [CrossRef]
- Tasleem, S.; Sabah, A.; Cheema, U.A.; Sabir, A. Transparent Hydrophobic Hybrid Silica Films by Green and Chemical Surfactants. ACS Omega 2019, 4, 13543–13552. [Google Scholar] [CrossRef]
- Pinto, T.V.; Costa, P.; Sousa, C.M.; Sousa, C.A.D.; Pereira, C.; Silva, C.J.S.M.; Pereira, M.F.R.; Coelho, P.J.; Freire, C. Screen-Printed Photochromic Textiles through New Inks Based on SiO2@naphthopyran Nanoparticles. ACS Appl. Mater. Interfaces 2016, 8, 28935–28945. [Google Scholar] [CrossRef]
- Mazrouei-Sebdani, Z.; Begum, H.; Schoenwald, S.; Horoshenkov, K.V.; Malfait, W.J. A review on silica aerogel-based materials for acoustic applications. J. Non-Cryst. Solids 2021, 562, 120770. [Google Scholar] [CrossRef]
- Plutino, M.R.; Colleoni, C.; Donelli, I.G.; Guido, F.E.; Maschi, O.; Mezzi, A.; Rosace, G. Sol-gel 3-glycidoxypropyltriethoxysilane finishing on different fabrics: The role of precursor concentration and catalyst on the textile performances and cytotoxic activity. J. Colloid Interface Sci. 2017, 506, 504–517. [Google Scholar] [CrossRef]
- Periyasamy, A.P.; Venkataraman, M.; Kremenakova, D.; Militky, J.; Zhou, Y. Progress in Sol-Gel Technology for the Coatings of Fabrics. Materials 2020, 13, 1838. [Google Scholar] [CrossRef]
- Raditoiu, V.; Raditoiu, A.; Raduly, M.F.; Amariutei, V.; Gifu, I.C.; Anastasescu, M. Photocatalytic Behavior of Water-Based Styrene-Acrylic Coatings Containing TiO2 Sensitized with Metal-Phthalocyanine Tetracarboxylic Acids. Coatings 2017, 7, 229. [Google Scholar] [CrossRef]
- Grancaric, A.M.; Colleoni, C.; Guido, E.; Botteri, L.; Rosace, G. Thermal behaviour and flame retardancy of monoethanolamine-doped sol–gel coatings of cotton fabric. Prog. Org. Coatings. 2017, 103, 174–181. [Google Scholar] [CrossRef]
- Tanpichai, S.; Phoothong, F.; Boonmahitthisud, A. Superabsorbent cellulose-based hydrogels cross-liked with borax. Sci Rep 2022, 12, 8920. [Google Scholar] [CrossRef]
- Raghunath, P.; Lin, M.C. Adsorption Configurations and Reactions of Boric Acid on a TiO2 Anatase (101) Surface. J. Phys. Chem. C 2008, 112, 8276–8287. [Google Scholar] [CrossRef]
- Sun, X.; Wang, L.; Tan, Z. Improved Synthesis of Soluble Metal-Free/Metal Phthalocyanine Tetracarboxylic Acids and Their Application in the Catalytic Epoxidation of Cyclohexene. Catal. Lett. 2015, 145, 1094–1102. [Google Scholar] [CrossRef]
- Chung, C.; Lee, M.; Kyung Choe, E. Characterization of cotton fabric scouring by FT-IR ATR spectroscopy. Carbohydr. Polym. 2004, 58, 417–420. [Google Scholar] [CrossRef]
- Ellerbrock, R.; Stein, M.; Schaller, J. Comparing amorphous silica, short-range-ordered silicates and silicic acid species by FTIR. Sci. Rep. 2022, 12, 11708. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.J.; Karim, Z.; Charnnok, B.; Poonsawat, T.; Posoknistakul, P.; Laosiripojana, N.; Wu, K.C.-W.; Sakdaronnarong, C. Fabrication and Characterization of Functional Biobased Membranes from Postconsumer Cotton Fabrics and Palm Waste for the Removal of Dyes. Int. J. Mol. Sci. 2023, 24, 6030. [Google Scholar] [CrossRef] [PubMed]
- Dotto, G.L.; Santos, J.M.N.; Rodrigues, I.L.; Rosa, R.; Pavan, F.A.; Lima, E.C. Adsorption of methylene blue by ultrasonic surface modified chitin. J. Colloid Interface Sci. 2015, 446, 133–140. [Google Scholar] [CrossRef] [PubMed]
- ISO/CIE 11664-6:2014; Colorimetry—Part 6: CIEDE2000 Color-Difference Formula. CIE Central Bureau: Vienna, Austria, 2014.
- Teli, M.D.; Annaldewar, B.N. Superhydrophobic and ultraviolet protective nylon fabrics by modified nano silica coating. J. Text. Institute 2016, 108, 460–466. [Google Scholar] [CrossRef]
- Chatterjee, D. Effect of excited state redox properties of dye sensitizers on hydrogen production through photo-splitting of water over TiO2 photocatalyst. Catal. Commun. 2010, 11, 336–339. [Google Scholar] [CrossRef]
- Houas, A.; Lachheb, H.; Ksibi, M.; Elaloni, E.; Guillard, C.; Herrmann, J.M. Photocatalytic degradation pathway of methylene blue in water. Appl. Catal. B 2001, 31, 145–157. [Google Scholar] [CrossRef]
- Mustapha, F.H.; Jalil, A.A.; Mohamed, M.; Triwahyono, S.; Hassan, N.S.; Khusnun, N.F.; Hitam, C.N.C.; Rahman, A.F.A.; Firmanshah, L.; Zolkifli, A.S. New insight into self-modified surfaces with defect-rich rutile TiO2 as a visible-light-driven photocatalyst. J. Clean. Prod. 2017, 168, 1150–1162. [Google Scholar] [CrossRef]
- ISO 105-C06; ISO Textiles—Test for Color Fastness—Part C06: Colour Fastness to Domestic and Commercial Laundering. International Organization for Standardization: Geneva, Switzerland, 2010.
- ISO 105-X12; ISO Textiles—Tests for Colour Fastness—Part X12: Colour Fastness to Rubbing. International Organization for Standardization: Geneva, Switzerland, 2016.
- ISO 105-B02; Textiles—Tests for Colour Fastness—Part B02: Colour Fastness to Artificial Light: Xenon Arc Fading Lamp Test. International Organization for Standardization: Geneva, Switzerland, 2014.
Sample | TEOS [g] | GLYMO [g] | MIM [g] | TGIC [g] | BORAX [g] | TiO2-FeTCPc [g] |
---|---|---|---|---|---|---|
D1 | 1.5 | 1.7 | - | 0.4 | - | 0.45 |
D2 | 1.5 | 1.7 | - | 0.4 | 0.25 (subseq. stage) | 0.45 |
D3 | 1.5 | 1.7 | - | 0.4 | 0.25 | 0.45 |
D4 | 1.5 | 1.7 | 0.01 | - | - | 0.45 |
D5 | 1.5 | 1.7 | 0.01 | - | 0.25 (subseq. stage) | 0.45 |
D6 | 1.5 | 1.7 | 0.01 | 0.4 | - | 0.45 |
D7 | 1.5 | 1.7 | 0.01 | 0.4 | 0.25 (subseq. stage) | 0.45 |
D8 | 1.5 | 1.7 | 0.01 | 0.4 | - | 0.45 |
D9 | 1.5 | 1.7 | 0.01 | 0.4 | 0.25 | 0.45 |
Sample | Surface Area [m2/g] | Pore Volume [cm3/g] | Pore Size [nm] |
---|---|---|---|
Cotton fabric | 3.8 (±0.5) | 0.004 (±0.001) | 2.97 (±0.03) |
D1 | 5.1 (±0.2) | 0.007 (±0.002) | 3.11 (±0.04) |
D2 | 3.0 (±0.2) | 0.004 (±0.001) | 2.96 (±0.03) |
D3 | 3.7 (±0.4) | 0.004 (±0.001) | 2.97 (±0.03) |
D4 | 3.0 (±0.3) | 0.004 (±0.001) | 4.24 (±0.04) |
D5 | 3.2 (±0.3) | 0.004 (±0.001) | 4.27 (±0.04) |
D6 | 2.7 (±0.4) | 0.004 (±0.001) | 3.44 (±0.04) |
D7 | 3.3 (±0.4) | 0.004 (±0.001) | 2.96 (±0.03) |
D8 | 3.4 (±0.2) | 0.005 (±0.001) | 2.97 (±0.03) |
D9 | 3.1 (±0.2) | 0.005 (±0.001) | 3.82 (±0.04) |
Sample (30 °C) | Storage Modulus (G′) (MPa) | Stiffness (N/m) | Loss Modulus | Loss Factor | ||
---|---|---|---|---|---|---|
Temperature (°C) | (G″) (MPa) | Temperature (°C) | Tan δ | |||
D4 initial | 1332 | 2,530,980 | 191.09 | 197.3 | 193.24 | 0.2259 |
D4 LED | 1804 | 3,487,350 | 175.07 | 145.6 | 176.61 | 0.1048 |
D4 xenon | 2087 | 3,755,500 | 175.37 | 126.1 | 178.15 | 0.07197 |
D6 initial | 1527 | 2,952,510 | 117.76 | 92.91 | 124.54 | 0.07339 |
D6 LED | 1764 | 3,411,160 | 117.76 | 79.91 | 122.69 | 0.05239 |
D6 xenon | 2061 | 3,847,290 | 130.7 | 71.92 | 138.71 | 0.04058 |
D8 initial | 1756 | 3,395,640 | 94.65 | 80.03 | 106.98 | 0.05179 |
D8 LED | 1820 | 3,578,840 | 102.05 | 81.96 | 107.28 | 0.05201 |
D8 xenon | 1850 | 3,576,450 | 149.49 | 72.5 | 153.5 | 0.04735 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Raditoiu, A.; Raditoiu, V.; Raduly, M.F.; Gabor, A.R.; Frone, A.N.; Grapin, M.; Anastasescu, M. Cellulose Fabrics Functionalized with Sol–Gel Photocatalytic Coatings Based on Iron (III) Phthalocyanine Tetracarboxylic Acids–TiO2–Silica Hybrids. Gels 2023, 9, 860. https://doi.org/10.3390/gels9110860
Raditoiu A, Raditoiu V, Raduly MF, Gabor AR, Frone AN, Grapin M, Anastasescu M. Cellulose Fabrics Functionalized with Sol–Gel Photocatalytic Coatings Based on Iron (III) Phthalocyanine Tetracarboxylic Acids–TiO2–Silica Hybrids. Gels. 2023; 9(11):860. https://doi.org/10.3390/gels9110860
Chicago/Turabian StyleRaditoiu, Alina, Valentin Raditoiu, Monica Florentina Raduly, Augusta Raluca Gabor, Adriana Nicoleta Frone, Maria Grapin, and Mihai Anastasescu. 2023. "Cellulose Fabrics Functionalized with Sol–Gel Photocatalytic Coatings Based on Iron (III) Phthalocyanine Tetracarboxylic Acids–TiO2–Silica Hybrids" Gels 9, no. 11: 860. https://doi.org/10.3390/gels9110860
APA StyleRaditoiu, A., Raditoiu, V., Raduly, M. F., Gabor, A. R., Frone, A. N., Grapin, M., & Anastasescu, M. (2023). Cellulose Fabrics Functionalized with Sol–Gel Photocatalytic Coatings Based on Iron (III) Phthalocyanine Tetracarboxylic Acids–TiO2–Silica Hybrids. Gels, 9(11), 860. https://doi.org/10.3390/gels9110860