Application of Silica-Aerogel-Fibre-Based Thermal Renders for Retrofits in Building Walls: A Comparative Assessment with Benchmark Solutions
Abstract
:1. Introduction
2. Inputs for Numerical Simulation
2.1. Simulated Facade Multilayer Walls
2.2. Aerogel-Fibre-Based Thermal Renders
2.3. Thermal Insulation Benchmark Solutions
2.4. Climate
2.5. Calculation Parameters
3. Numerical Simulation Modelling
4. Results and Discussion
4.1. Aerogel-Fibre-Based Thermal Renders
4.2. Benchmark Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lassandro, P.; Di Turi, S. Façade Retrofitting: From Energy Efficiency to Climate Change Mitigation. Energy Procedia 2017, 140, 182–193. [Google Scholar] [CrossRef]
- Naboni, E.; Milella, A.; Vadalà, R.; Fiorito, F. On the Localised Climate Change Mitigation Potential of Building Facades. Energy Build. 2020, 224, 110284. [Google Scholar] [CrossRef]
- Sarihi, S.; Mehdizadeh Saradj, F.; Faizi, M. A Critical Review of Façade Retrofit Measures for Minimizing Heating and Cooling Demand in Existing Buildings. Sustain. Cities Soc. 2021, 64, 102525. [Google Scholar] [CrossRef]
- Mostafazadeh, F.; Eirdmousa, S.J.; Tavakolan, M. Energy, Economic and Comfort Optimization of Building Retrofits Considering Climate Change: A Simulation-Based NSGA-III Approach. Energy Build. 2023, 280, 112721. [Google Scholar] [CrossRef]
- Ma, D.; Li, X.; Lin, B.; Zhu, Y.; Yue, S. A Dynamic Intelligent Building Retrofit Decision-Making Model in Response to Climate Change. Energy Build. 2023, 284, 112832. [Google Scholar] [CrossRef]
- Aruta, G.; Ascione, F.; Bianco, N.; Iovane, T.; Mauro, G.M. A Responsive Double-Skin Façade for the Retrofit of Existing Buildings: Analysis on an Office Building in a Mediterranean Climate. Energy Build. 2023, 284, 112850. [Google Scholar] [CrossRef]
- Batra, U.; Singhal, S. Optimum Level of Insulation for Energy Efficient Envelope of Office Buildings. Int. J. Environ. Sci. Technol. 2017, 14, 2389–2398. [Google Scholar] [CrossRef]
- Malka, L.; Kuriqi, A.; Haxhimusa, A. Optimum Insulation Thickness Design of Exterior Walls and Overhauling Cost to Enhance the Energy Efficiency of Albanian’s Buildings Stock. J. Clean. Prod. 2022, 381, 135160. [Google Scholar] [CrossRef]
- Shittu, E.; Stojceska, V.; Gratton, P.; Kolokotroni, M. Environmental Impact of Cool Roof Paint: Case-Study of House Retrofit in Two Hot Islands. Energy Build. 2020, 217, 110007. [Google Scholar] [CrossRef]
- Calama-González, C.M.; Symonds, P.; León-Rodríguez, Á.L.; Suárez, R. Optimal Retrofit Solutions Considering Thermal Comfort and Intervention Costs for the Mediterranean Social Housing Stock. Energy Build. 2022, 259, 111915. [Google Scholar] [CrossRef]
- Pargana, N.; Pinheiro, M.D.; Silvestre, J.D.; De Brito, J. Comparative Environmental Life Cycle Assessment of Thermal Insulation Materials of Buildings. Energy Build. 2014, 82, 466–481. [Google Scholar] [CrossRef]
- Sierra-Pérez, J.; Boschmonart-Rives, J.; Gabarrell, X. Environmental Assessment of Façade-Building Systems and Thermal Insulation Materials for Different Climatic Conditions. J. Clean. Prod. 2016, 113, 102–113. [Google Scholar] [CrossRef]
- Cuce, E.; Cuce, P.M.; Alvur, E.; Yilmaz, Y.N.; Saboor, S.; Ustabas, I.; Linul, E.; Asif, M. Experimental Performance Assessment of a Novel Insulation Plaster as an Energy-Efficient Retrofit Solution for External Walls: A Key Building Material towards Low/Zero Carbon Buildings. Case Stud. Therm. Eng. 2023, 49, 103350. [Google Scholar] [CrossRef]
- Karim, A.N.; Johansson, P.; Sasic Kalagasidis, A. Increasing Water Absorptivity of an Aerogel-Based Coating Mortar in Subsequent Wetting and Drying. Gels 2022, 8, 764. [Google Scholar] [CrossRef]
- Baetens, R.; Jelle, B.P.; Gustavsen, A. Aerogel Insulation for Building Applications: A State-of-the-Art Review. Energy Build. 2011, 43, 761–769. [Google Scholar] [CrossRef]
- Schultz, J.M.; Jensen, K.I.; Kristiansen, F.H. Super Insulating Aerogel Glazing. Sol. Energy Mater. Sol. Cells 2005, 89, 275–285. [Google Scholar] [CrossRef]
- Kueh, A.B.H.; Razali, A.W.; Lee, Y.Y.; Hamdan, S.; Yakub, I.; Suhaili, N. Acoustical and Mechanical Characteristics of Mortars with Pineapple Leaf Fiber and Silica Aerogel Infills—Measurement and Modeling. Mater. Today Commun. 2023, 35, 105540. [Google Scholar] [CrossRef]
- Mazrouei-Sebdani, Z.; Begum, H.; Schoenwald, S.; Horoshenkov, K.V.; Malfait, W.J. A review on silica aerogel-based materials for acoustic applications. J. Non Cryst. Solids 2021, 562, 120770. [Google Scholar] [CrossRef]
- Ibrahim, M.; Wurtz, E.; Biwole, P.H.; Achard, P.; Sallee, H. Hygrothermal performance of exterior walls covered with aerogel-based insulating rendering. Energy Build. 2014, 84, 241–251. [Google Scholar] [CrossRef]
- Pedroso, M.; Silvestre, J.D.; Flores-Colen, I.; Gomes, M.G. Environmental Impact of Wall Multilayer Coating Systems Containing Aerogel-Based Fibre-Enhanced Thermal Renders. J. Build. Eng. 2023, 76, 107322. [Google Scholar] [CrossRef]
- Pedroso, M.; Flores-Colen, I.; Silvestre, J.D.; Gomes, M.G.; Silva, L.; Ilharco, L. Physical, Mechanical, and Microstructural Characterisation of an Innovative Thermal Insulating Render Incorporating Silica Aerogel. Energy Build. 2020, 211, 109793. [Google Scholar] [CrossRef]
- Lamy-Mendes, A.; Pontinha, A.D.R.; Alves, P.; Santos, P.; Durães, L. Progress in Silica Aerogel-Containing Materials for Buildings’ Thermal Insulation. Constr. Build. Mater. 2021, 286, 122815. [Google Scholar] [CrossRef]
- Mazrouei-Sebdani, Z.; Naeimirad, M.; Peterek, S.; Begum, H.; Galmarini, S.; Pursche, F.; Baskin, E.; Zhao, S.; Gries, T.; Malfait, W.J. Multiple Assembly Strategies for Silica Aerogel-Fiber Combinations—A Review. Mater. Des. 2022, 223, 111228. [Google Scholar] [CrossRef]
- Garrido, R.; Silvestre, J.D.; Flores-Colen, I. Economic and Energy Life Cycle Assessment of Aerogel-Based Thermal Renders. J. Clean. Prod. 2017, 151, 537–545. [Google Scholar] [CrossRef]
- Huang, H.; Zhou, Y.; Huang, R.; Wu, H.; Sun, Y.; Huang, G.; Xu, T. Optimum Insulation Thicknesses and Energy Conservation of Building Thermal Insulation Materials in Chinese Zone of Humid Subtropical Climate. Sustain. Cities Soc. 2020, 52, 101840. [Google Scholar] [CrossRef]
- Berardi, U. The Benefits of Using Aerogel-Enhanced Systems in Building Retrofits. Energy Procedia 2017, 134, 626–635. [Google Scholar] [CrossRef]
- Appleton, J. Old Buildings Rehabilitation, 2nd ed.; ORION: Lisbon, Portugal, 2011. (In Portuguese) [Google Scholar]
- INE Statistical Data of Portugal. Available online: https://www.ine.pt/xportal/xmain?xpgid=ine_main&xpid=INE&xlang=en2020 (accessed on 20 June 2020).
- Pedroso, M.; Flores-Colen, I.; Silvestre, J.D.; Gomes, M.G.; Silva, L.; Sequeira, P.; de Brito, J. Characterisation of a Multilayer External Wall Thermal Insulation System. Application in a Mediterranean Climate. J. Build. Eng. 2020, 30, 101265. [Google Scholar] [CrossRef]
- Jelle, B.P. Traditional, State-of-the-Art and Future Thermal Building Insulation Materials and Solutions—Properties, Requirements and Possibilities. Energy Build. 2011, 43, 2549–2563. [Google Scholar] [CrossRef]
- Dos Santos, C.P.; Matias, L. ITE50—Thermal Transmittance of Building Envelope Elements, 1st ed.; LNEC: Lisbon, Portugal, 2006. (In Portuguese) [Google Scholar]
- Pedroso, M.; Flores-Colen, I.; Silvestre, J.D.; Gomes, M.G.; Hawreen, A.; Ball, R.J. Synergistic Effect of Fibres on the Physical, Mechanical, and Microstructural Properties of Aerogel-Based Thermal Insulating Renders. Cem. Concr. Compos. 2023, 139, 105045. [Google Scholar] [CrossRef]
- Pedroso, M.; Silvestre, J.D.; Gomes, M.G.; Hawreen, A.; Flores-Colen, I. Integrated Performance Evaluation of Aerogel-Based Fi-Bre-Enhanced Thermal Renders Applied on Building Walls. Gels 2023. Under review. [Google Scholar]
- Vailati, M.; Mercuri, M.; Angiolilli, M.; Gregori, A. Natural-Fibrous Lime-Based Mortar for the Rapid Retrofitting of Heritage Masonry Buildings. Fibers 2021, 9, 68. [Google Scholar] [CrossRef]
- Wernet, G.; Bauer, C.; Steubing, B.; Reinhard, J.; Moreno-Ruiz, E.; Weidema, B. The Ecoinvent Database Version 3 (Part I): Overview and Methodology. Int. J. Life Cycle Assess. 2016, 21, 1218–1230. [Google Scholar] [CrossRef]
- Al-Homoud, M.S. Performance Characteristics and Practical Applications of Common Building Thermal Insulation Materials. Build. Environ. 2005, 40, 353–366. [Google Scholar] [CrossRef]
- Raimundo, A.M.; Saraiva, N.B.; Oliveira, A.V.M. Thermal insulation cost optimality of opaque constructive solutions of buildings under Portuguese temperate climate. Build. Environ. 2020, 182, 107107. [Google Scholar] [CrossRef]
- Silvestre, J.D.; Pargana, N.; De Brito, J.; Pinheiro, M.D.; Durão, V. Insulation Cork Boards-Environmental Life Cycle Assessment of an Organic Construction Material. Materials 2016, 9, 394. [Google Scholar] [CrossRef] [PubMed]
- Gomes, M.G.; Flores-Colen, I.; Melo, H.; Soares, A. Physical Performance of Industrial and EPS and Cork Experimental Thermal Insulation Renders. Constr. Build. Mater. 2019, 198, 786–795. [Google Scholar] [CrossRef]
- Silvestre, J.D.; Castelo, A.M.P.; Silva, J.J.B.C.; Brito, J.M.C.L.; Pinheiro, M.D. Retrofitting a Building’s Envelope: Sustainability Performance of ETICS with ICB or EPS. Appl. Sci. 2019, 9, 1285. [Google Scholar] [CrossRef]
- Silvestre, J.D.; Castelo, A.M.P.; Silva, J.J.B.C.; De Brito, J.M.C.L.; Pinheiro, M.D. Energy Retrofitting of a Buildings’ Envelope: Assessment of the Environmental, Economic and Energy (3E) Performance of a Cork-Based Thermal Insulating Rendering Mortar. Energies 2019, 13, 143. [Google Scholar] [CrossRef]
- IPMA Portuguese Institute for Sea and Atmosphere. Climate Normals. 2020. Available online: https://www.ipma.pt/en/oclima/normais.clima/ (accessed on 25 June 2020).
- Peel, M.C.; Finlayson, B.L.; McMahon, T.A. Updated World Map of the Köppen-Geiger Climate Classification. Hydrol. Earth Syst. Sci. 2007, 11, 1633–1644. [Google Scholar] [CrossRef]
- Beck, H.E.; Zimmermann, N.E.; McVicar, T.R.; Vergopolan, N.; Berg, A.; Wood, E.F. Present and Future Köppen-Geiger Climate Classification Maps at 1-Km Resolution. Sci. Data 2018, 5, 180214. [Google Scholar] [CrossRef]
- Kaynakli, O. Parametric Investigation of Optimum Thermal Insulation Thickness for External Walls. Energies 2011, 4, 913–927. [Google Scholar] [CrossRef]
- Sisman, N.; Kahya, E.; Aras, N.; Aras, H. Determination of Optimum Insulation Thicknesses of the External Walls and Roof (Ceiling) for Turkey’s Different Degree-Day Regions. Energy Policy 2007, 35, 5151–5155. [Google Scholar] [CrossRef]
- Ozel, M. Determination of Optimum Insulation Thickness Based on Cooling Transmission Load for Building Walls in a Hot Climate. Energy Convers. Manag. 2013, 66, 106–114. [Google Scholar] [CrossRef]
- Harvey, L.D.D. Using Modified Multiple Heating-Degree-Day (HDD) and Cooling-Degree-Day (CDD) Indices to Estimate Building Heating and Cooling Loads. Energy Build. 2020, 229, 110475. [Google Scholar] [CrossRef]
- Eurostat. Cooling and Heating Degree Days by Country—Annual Data. 2020. Available online: https://ec.europa.eu/eurostat/web/products-datasets/-/nrg_chdd_a (accessed on 3 July 2020).
- Assembleia da Republica. Dispatch 15793-F/2013—Establishing the Parameters for the Climatic Zoning of Portugal; Diário da República: Lisbon, Portugal, 2013. (In Portuguese) [Google Scholar]
- BizEE. Degree Days: Weather Data for Energy Saving. 2020. Available online: https://www.degreedays.net/ (accessed on 23 July 2020).
- Stojanovic, A.; Zhao, S.; Angelica, E.; Malfait, W.J.; Koebel, M.M. Three Routes to Superinsulating Silica Aerogel Powder. J. Solgel Sci. Technol. 2019, 90, 57–66. [Google Scholar] [CrossRef]
- PORDATA. Accomodations and Their Characteristics. 2019. (In Portuguese). Available online: https://www.pordata.pt/Subtema/Portugal/Alojamentos-53 (accessed on 5 September 2019).
- Assembleia da República. Decree-Law No. 80/2006 Regulation of the Thermal Behaviour of Buildings; Diário da República: Lisbon, Portugal, 2006. (In Portuguese) [Google Scholar]
- Assembleia da Republica. Ordinance 17-A/2016; Diário da República: Lisbon, Portugal, 2016. [Google Scholar]
- Assembleia da República. Statute 297/2019—4th Alteration to Statute 349-B/2013, Presenting the Requisites for Small Scale Retroffiting Interventions; Diário da República: Lisbon, Portugal, 2019. (In Portuguese) [Google Scholar]
- Assembleia da República. Decree-Law 95/2019—6th Alteration to the Decree-Law 118/2013; Diário da República: Lisbon, Portugal, 2019. (In Portuguese) [Google Scholar]
- Sagbansua, L.; Balo, F. Ecological Impact & Financial Feasibility of Energy Recovery (EIFFER) Model for Natural Insulation Material Optimization. Energy Build. 2017, 148, 1–14. [Google Scholar] [CrossRef]
- Dombayci, Ö.A.; Gölcü, M.; Pancar, Y. Optimization of Insulation Thickness for External Walls Using Different Energy-Sources. Appl. Energy 2006, 83, 921–928. [Google Scholar] [CrossRef]
- Kurekci, N.A. Determination of Optimum Insulation Thickness for Building Walls by Using Heating and Cooling Degree-Day Values of All Turkey’s Provincial Centers. Energy Build. 2016, 118, 197–213. [Google Scholar] [CrossRef]
- Ozel, M. Cost Analysis for Optimum Thicknesses and Environmental Impacts of Different Insulation Materials. Energy Build. 2012, 49, 552–559. [Google Scholar] [CrossRef]
- Daouas, N. A Study on Optimum Insulation Thickness in Walls and Energy Savings in Tunisian Buildings Based on Analytical Calculation of Cooling and Heating Transmission Loads. Appl. Energy 2011, 88, 156–164. [Google Scholar] [CrossRef]
- Yu, J.; Yang, C.; Tian, L.; Liao, D. A Study on Optimum Insulation Thicknesses of External Walls in Hot Summer and Cold Winter Zone of China. Appl. Energy 2009, 86, 2520–2529. [Google Scholar] [CrossRef]
- Çomaklı, K.; Yüksel, B. Optimum Insulation Thickness of External Walls for Energy Saving. Appl. Therm. Eng. 2003, 23, 473–479. [Google Scholar] [CrossRef]
- Cuce, E.; Cuce, P.M.; Wood, C.J.; Riffat, S.B. Optimizing Insulation Thickness and Analysing Environmental Impacts of Aerogel-Based Thermal Superinsulation in Buildings. Energy Build. 2014, 77, 28–39. [Google Scholar] [CrossRef]
- Akyüz, M.K.; Altuntaş, Ö.; Söğüt, M.Z. Economic and Environmental Optimization of an Airport Terminal Building’s Wall and Roof Insulation. Sustainability 2017, 9, 1849. [Google Scholar] [CrossRef]
- Assembleia da República. Statute n.o 379-A/2015 of October 22—Requirements for the Energy Performance of Housing Buildings (REH)—Requirements; Diário da República: Lisbon, Portugal, 2015. (In Portuguese) [Google Scholar]
- Ibrahim, M.; Biwole, P.H.; Achard, P.; Wurtz, E. Aerogel-Based Materials for Improving the Building Envelope’s Thermal Behavior: A Brief Review with a Focus on a New Aerogel-Based Rendering. In Energy Sustainability Through Green Energy; Sharma, A., Kar, S., Eds.; Springer: New Delhi, India, 2015; pp. 163–188. [Google Scholar]
- Garrido, R.; Silvestre, J.D.; Flores-Colen, I.; de Júlio, M.F.; Pedroso, M. Economic Assessment of the Production of Subcritically Dried Silica-Based Aerogels. J. Non Cryst. Solids 2019, 516, 26–34. [Google Scholar] [CrossRef]
- Ahmad, S.; Ahmad, S.; Sheikh, J.N. Silica Centered Aerogels as Advanced Functional Material and Their Applications: A Review. J. Non Cryst. Solids 2023, 611, 122322. [Google Scholar] [CrossRef]
- Maleki, H.; Durães, L.; García-González, C.A.; del Gaudio, P.; Portugal, A.; Mahmoudi, M. Synthesis and Biomedical Applications of Aerogels: Possibilities and Challenges. Adv. Colloid. Interface Sci. 2016, 236, 1–27. [Google Scholar] [CrossRef]
- Vareda, J.P.; García-González, C.A.; Valente, A.J.M.; Simón-Vázquez, R.; Stipetic, M.; Durães, L. Insights on Toxicity, Safe Handling and Disposal of Silica Aerogels and Amorphous Nanoparticles. Environ. Sci. Nano 2021, 8, 1177–1195. [Google Scholar] [CrossRef]
- Eurostat. Cooling and Heating Degree Days by Country—Annual Data. 2022. Available online: https://ec.europa.eu/eurostat/databrowser/view/nrg_chdd_a/default/table?lang=en (accessed on 17 September 2023).
- Ibrahim, M.; Biwole, P.H.; Achard, P.; Wurtz, E.; Ansart, G. Building Envelope with a New Aerogel-Based Insulating Rendering: Experimental and Numerical Study, Cost Analysis, and Thickness Optimization. Appl. Energy 2015, 159, 490–501. [Google Scholar] [CrossRef]
- Huang, M.; Tang, G.H.; Si, Q.; Pu, J.H.; Sun, Q.; Du, M. Plasmonic Aerogel Window with Structural Coloration for Energy-Efficient and Sustainable Building Envelopes. Renew. Energy 2023, 216, 119006. [Google Scholar] [CrossRef]
- Khaled Mohammad, A.; Ghosh, A. Exploring Energy Consumption for Less Energy-Hungry Building in UK Using Advanced Aerogel Window. Sol. Energy 2023, 253, 389–400. [Google Scholar] [CrossRef]
- Ganobjak, M.; Malfait, W.J.; Just, J.; Käppeli, M.; Mancebo, F.; Brunner, S.; Wernery, J. Get the Light & Keep the Warmth—A Highly Insulating, Translucent Aerogel Glass Brick for Building Envelopes. J. Build. Eng. 2023, 64, 105600. [Google Scholar] [CrossRef]
- Singh, I.; Bansal, N.K. Thermal and Optical Parameters for Different Window Systems in India. Int. J. Ambient. Energy 2002, 23, 201–211. [Google Scholar] [CrossRef]
Material | Thickness [m] | R [m2∙K∙W−1] |
---|---|---|
Air layer [31] | 0.030 | 0.150 |
Fired clay hollow brick [31] | 0.110 | 0.250 |
Internal plaster [31] | 0.020 | 0.011 |
Multilayer coating system [29,30] | 0.0055 | 0.007 |
Formulation | Non-Optimised Scenario | Optimised Scenario |
---|---|---|
TR reference | 2478 €∙m−3 | 1021 €∙m−3 |
TR aramid | 2596 €∙m−3 | 1146 €∙m−3 |
TR sisal | 2477 €∙m−3 | 1021 €∙m−3 |
Material | Density [kg∙m−3] | λ [W∙m−1∙K−1] | ADP−ff [MJ∙m−3] | GWP [kg CO2 eq∙m−3] |
---|---|---|---|---|
TR aramid | 165 | 0.032 | 9303.2 | 720.4 |
TR sisal | 160 | 0.030 | 8452.3 | 672.2 |
Material | Density [kg∙m−3] | Thickness [m] | λ [W∙m−1∙K−1] | R [m2∙K∙W−1] | Cost [€∙m−3] | ADP−ff [MJ∙m−3] | GWP [kg CO2 eq∙m−3] |
---|---|---|---|---|---|---|---|
Adhesive mortar [30] | 1300 | 0.005 | 0.450 | 0.011 | 1040.0 * | 4797.0 | 455.0 |
EPS [11,31] | 20 | 0.040 | 65.8 * | 2800.0 | 111.0 | ||
ICB [31,38] | 110 | 0.045 | 333.6 * | 821.0 | 40.2 | ||
MW [11,31] | 150 | 0.042 | 158.0 * | 2295.0 | 208.5 | ||
TR cork [39] | 825 | 0.095 | 566.0 * | 2739.0 | 333.3 | ||
XPS [31,40] | 30 | 0.037 | 118.0 * | 2625.0 | 291.9 |
Material | Ecoinvent Processes and Literature References |
---|---|
EPS | EPS insulation board at plant/kg [11] |
ICB | [38,40] |
Mineral wool | Stone wool, packed {GLO} | market for | Cut-off, S [11] |
XPS | Polystyrene, extruded {GLO} | market for | Cut-off, S [11] |
TR cork | [41] |
Adhesive mortar | [30] |
Ecoinvent Process | Cost [€∙kWh−1] | ADP−ff [MJ∙kWh−1] | GWP [kg CO2 eq∙kWh−1] | Lower Heating Value (Hu) [J∙kW∙h−1] |
---|---|---|---|---|
Electricity, low voltage {PT} | market for | Cut-off, S | 0.22 | 3.90 | 0.42 | 3.60 × 106 |
Region | Thermal Render | U [W∙m−2∙°C−1] | xopt [m] | Cins [€∙m−2] | SSL [€∙m−2] | PP [year] | SL ADP−ff Savings [MJ∙m−2] | PP ADP−ff [year] | SL GWP Savings [kg CO2 eq∙m−2] | PP GWP [year] |
---|---|---|---|---|---|---|---|---|---|---|
Azores | TR aramid | 0.86 | 0.01 | 25.96 | 9.74 | >30 | 464.80 | 5.00 | 52.87 | 3.60 |
TR sisal | 0.85 | 0.01 | 24.77 | 12.65 | >30 | 500.22 | 4.34 | 56.25 | 3.20 | |
TRopt aramid | 0.56 | 0.03 | 34.40 | 34.71 | 29.7 | 800.59 | 7.75 | 94.66 | 5.58 | |
TRopt sisal | 0.53 | 0.03 | 30.65 | 40.57 | 22.6 | 859.17 | 6.84 | 99.67 | 5.05 | |
Bragança | TR aramid | 0.47 | 0.04 | 103.84 | 174.86 | 17.8 | 3982.13 | 2.56 | 440.12 | 1.84 |
TR sisal | 0.45 | 0.04 | 99.09 | 186.82 | 15.9 | 4128.83 | 2.27 | 454.16 | 1.68 | |
TRopt aramid | 0.30 | 0.08 | 91.72 | 256.06 | 10.7 | 4689.30 | 4.11 | 527.52 | 2.95 | |
TRopt sisal | 0.28 | 0.08 | 81.74 | 271.61 | 9.0 | 4844.26 | 3.67 | 540.73 | 2.71 |
Material Designation | HDD [°C·day] | U [W∙m−2∙°C−1] | xopt [m] | Cins [€∙m−2] | SSL [€∙m−2] | PP [year] | SL ADP−ff Savings [MJ∙m−2] | PP ADP−ff [year] | SL GWP Savings [kg CO2 eq∙m−2] | PP GWP [year] |
---|---|---|---|---|---|---|---|---|---|---|
TRopt aramid | 500 | 0.68 | 0.02 | 22.93 | 23.43 | 29.4 | 538.3 | 10.4 | 63.6 | 6.8 |
1000 | 0.47 | 0.04 | 45.86 | 83.71 | 16.4 | 1652.0 | 6.8 | 189.2 | 4.6 | |
1500 | 0.36 | 0.06 | 68.79 | 155.22 | 13.3 | 2941.7 | 5.7 | 333.7 | 3.9 | |
2000 | 0.33 | 0.07 | 80.26 | 232.05 | 10.4 | 4228.1 | 4.6 | 475.1 | 3.2 | |
2500 | 0.30 | 0.08 | 91.72 | 312.49 | 8.8 | 5570.9 | 4.0 | 622.5 | 2.8 | |
TRopt sisal | 500 | 0.66 | 0.02 | 20.43 | 27.67 | 22.2 | 582.5 | 8.7 | 67.5 | 6.0 |
1000 | 0.46 | 0.04 | 40.87 | 92.05 | 13.3 | 1738.6 | 5.8 | 196.8 | 4.1 | |
1500 | 0.35 | 0.06 | 61.30 | 167.14 | 11.0 | 3062.0 | 5.0 | 344.1 | 3.5 | |
2000 | 0.31 | 0.07 | 71.52 | 246.31 | 8.7 | 4374.0 | 4.1 | 488.0 | 2.9 | |
2500 | 0.28 | 0.08 | 81.74 | 328.94 | 7.5 | 5740.0 | 3.5 | 638.0 | 2.5 | |
TR cork | 500 | 0.96 | 0.02 | 11.40 | 9.84 | 34.7 | 279.0 | 5.9 | 29.0 | 6.9 |
1000 | 0.80 | 0.04 | 22.80 | 48.15 | 14.2 | 1006.0 | 3.3 | 106.0 | 3.8 | |
1500 | 0.69 | 0.06 | 34.20 | 102.83 | 10.0 | 1988.0 | 2.5 | 212.0 | 2.8 | |
2000 | 0.64 | 0.07 | 39.90 | 159.16 | 7.5 | 2934.0 | 2.0 | 313.0 | 2.2 | |
2500 | 0.60 | 0.08 | 45.60 | 221.13 | 6.2 | 3969.0 | 1.7 | 424.0 | 1.9 | |
EPS | 500 | 0.83 | 0.02 | 8.19 | 24.04 | 10.2 | 427.7 | 5.3 | 49.4 | 3.0 |
1000 | 0.59 | 0.04 | 9.51 | 97.69 | 2.9 | 1541.8 | 2.6 | 173.0 | 1.2 | |
1500 | 0.46 | 0.06 | 10.83 | 185.45 | 1.8 | 2876.0 | 2.0 | 320.0 | 0.9 | |
2000 | 0.41 | 0.07 | 11.49 | 266.75 | 1.3 | 4128.0 | 1.6 | 457.0 | 0.7 | |
2500 | 0.37 | 0.08 | 12.15 | 352.55 | 1.0 | 5450.0 | 1.4 | 601.0 | 0.6 | |
XPS | 500 | 0.81 | 0.02 | 9.00 | 24.97 | 10.8 | 457.0 | 4.8 | 49.0 | 4.6 |
1000 | 0.57 | 0.04 | 11.40 | 99.85 | 3.4 | 1612.0 | 2.3 | 173.0 | 2.3 | |
1500 | 0.44 | 0.06 | 13.80 | 188.19 | 2.2 | 2976.0 | 1.8 | 320.0 | 1.8 | |
2000 | 0.39 | 0.07 | 15.00 | 270.50 | 1.7 | 4255.0 | 1.4 | 458.0 | 1.5 | |
2500 | 0.35 | 0.08 | 16.20 | 357.12 | 1.4 | 5600.0 | 1.2 | 603.0 | 1.3 | |
MW | 500 | 0.84 | 0.02 | 9.60 | 21.57 | 13.4 | 419.0 | 4.8 | 46.0 | 4.1 |
1000 | 0.60 | 0.04 | 12.80 | 91.86 | 4.2 | 1521.0 | 2.2 | 165.6 | 1.9 | |
1500 | 0.47 | 0.06 | 16.00 | 176.66 | 2.7 | 2850.0 | 1.7 | 309.5 | 1.4 | |
2000 | 0.42 | 0.07 | 17.60 | 256.01 | 2.1 | 4092.0 | 1.3 | 443.5 | 1.1 | |
2500 | 0.39 | 0.08 | 19.20 | 339.97 | 1.7 | 5405.0 | 1.1 | 585.0 | 1.0 | |
ICB | 500 | 0.85 | 0.02 | 12.23 | 17.48 | 21.0 | 418.0 | 3.3 | 46.0 | 2.5 |
1000 | 0.62 | 0.04 | 18.93 | 82.15 | 6.9 | 1517.0 | 1.2 | 165.0 | 0.8 | |
1500 | 0.49 | 0.06 | 25.63 | 161.83 | 4.8 | 2850.0 | 0.8 | 309.0 | 0.5 | |
2000 | 0.44 | 0.07 | 28.98 | 237.96 | 3.7 | 4083.0 | 0.6 | 443.0 | 0.4 | |
2500 | 0.40 | 0.08 | 32.33 | 318.85 | 3.0 | 5391.0 | 0.5 | 584.0 | 0.3 |
Material Designation | HDD [°C·day] | U [W∙m−2∙°C−1] | x [m] | Cins [€∙m−2] | SSL [€∙m−2] | PP [year] | SL ADP−ff Savings [MJ∙m−2] | PP ADP−ff [year] | SL GWP Savings [kg CO2 eq∙m−2] | PP GWP [year] |
---|---|---|---|---|---|---|---|---|---|---|
TRopt aramid | 500 | 0.68 | 0.02 | 22.93 | 23.43 | 29.4 | 538.3 | 10.4 | 63.6 | 6.8 |
1000 | 69.80 | 9.9 | 1262.7 | 4.4 | 141.6 | 3.1 | ||||
1500 | 116.16 | 5.9 | 1987.0 | 2.8 | 219.6 | 2.0 | ||||
2000 | 162.53 | 4.2 | 2711.4 | 2.1 | 297.6 | 1.5 | ||||
2500 | 208.89 | 3.3 | 3435.8 | 1.6 | 375.6 | 1.2 | ||||
TRopt sisal | 500 | 0.66 | 20.43 | 27.67 | 22.2 | 582.5 | 8.7 | 67.5 | 6.0 | |
1000 | 75.77 | 8.1 | 1334.0 | 3.8 | 148.4 | 2.7 | ||||
1500 | 123.87 | 4.9 | 2085.5 | 2.4 | 229.4 | 1.8 | ||||
2000 | 171.97 | 3.6 | 2837.0 | 1.8 | 310.3 | 1.3 | ||||
2500 | 220.07 | 2.8 | 3588.5 | 1.4 | 391.2 | 1.0 | ||||
TR cork | 500 | 0.96 | 11.40 | 10.02 | 34.1 | 279.7 | 5.9 | 29.3 | 6.9 | |
1000 | 31.44 | 10.9 | 614.4 | 2.7 | 65.4 | 3.1 | ||||
1500 | 52.86 | 6.5 | 949.0 | 1.7 | 101.4 | 2.0 | ||||
2000 | 74.29 | 4.6 | 1283.7 | 1.3 | 137.5 | 1.5 | ||||
2500 | 95.71 | 3.6 | 1618.4 | 1.0 | 173.5 | 1.2 | ||||
EPS | 500 | 0.83 | 8.19 | 24.04 | 10.2 | 427.6 | 5.3 | 49.4 | 3.0 | |
1000 | 56.28 | 4.4 | 931.2 | 2.4 | 103.6 | 1.4 | ||||
1500 | 88.51 | 2.8 | 1434.8 | 1.6 | 157.8 | 0.9 | ||||
2000 | 120.74 | 2.0 | 1938.4 | 1.2 | 212.1 | 0.7 | ||||
2500 | 152.98 | 1.6 | 2442.0 | 0.9 | 266.3 | 0.5 | ||||
XPS | 500 | 0.81 | 9.00 | 24.97 | 10.8 | 457.7 | 4.8 | 49.6 | 4.6 | |
1000 | 58.93 | 4.6 | 988.4 | 2.2 | 106.7 | 2.1 | ||||
1500 | 92.90 | 2.9 | 1519.1 | 1.4 | 163.9 | 1.4 | ||||
2000 | 126.87 | 2.1 | 2049.8 | 1.1 | 221.0 | 1.0 | ||||
2500 | 160.84 | 1.7 | 2580.5 | 0.8 | 278.2 | 0.8 | ||||
MW | 500 | 0.84 | 9.60 | 21.57 | 13.4 | 419.3 | 4.8 | 46.1 | 4.1 | |
1000 | 52.74 | 5.5 | 906.3 | 2.2 | 98.6 | 1.9 | ||||
1500 | 83.92 | 3.4 | 1393.4 | 1.5 | 151.0 | 1.3 | ||||
2000 | 115.09 | 2.5 | 1880.4 | 1.1 | 203.5 | 0.9 | ||||
2500 | 146.26 | 2.0 | 2367.4 | 0.9 | 255.9 | 0.7 | ||||
ICB | 500 | 0.85 | 12.22 | 17.48 | 21.0 | 418.5 | 3.3 | 46.2 | 2.5 | |
1000 | 47.19 | 7.8 | 882.6 | 1.5 | 96.2 | 1.2 | ||||
1500 | 76.89 | 4.8 | 1346.8 | 1.0 | 146.2 | 0.8 | ||||
2000 | 106.60 | 3.4 | 1810.9 | 0.8 | 196.1 | 0.6 | ||||
2500 | 136.31 | 2.7 | 2275.0 | 0.6 | 246.1 | 0.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pedroso, M.; Silvestre, J.D.; Gomes, M.G.; Bersch, J.D.; Flores-Colen, I. Application of Silica-Aerogel-Fibre-Based Thermal Renders for Retrofits in Building Walls: A Comparative Assessment with Benchmark Solutions. Gels 2023, 9, 861. https://doi.org/10.3390/gels9110861
Pedroso M, Silvestre JD, Gomes MG, Bersch JD, Flores-Colen I. Application of Silica-Aerogel-Fibre-Based Thermal Renders for Retrofits in Building Walls: A Comparative Assessment with Benchmark Solutions. Gels. 2023; 9(11):861. https://doi.org/10.3390/gels9110861
Chicago/Turabian StylePedroso, Marco, José Dinis Silvestre, M. Glória Gomes, Jéssica D. Bersch, and Inês Flores-Colen. 2023. "Application of Silica-Aerogel-Fibre-Based Thermal Renders for Retrofits in Building Walls: A Comparative Assessment with Benchmark Solutions" Gels 9, no. 11: 861. https://doi.org/10.3390/gels9110861
APA StylePedroso, M., Silvestre, J. D., Gomes, M. G., Bersch, J. D., & Flores-Colen, I. (2023). Application of Silica-Aerogel-Fibre-Based Thermal Renders for Retrofits in Building Walls: A Comparative Assessment with Benchmark Solutions. Gels, 9(11), 861. https://doi.org/10.3390/gels9110861