Structural and Morphological Features of Anisotropic Chitosan Hydrogels Obtained by Ion-Induced Neutralization in a Triethanolamine Medium
Abstract
:1. Introduction
2. Results and Discussion
2.1. Viscosity Properties
2.2. Appearance
2.3. Liesegang Patterns
2.4. Kinetic Data
2.5. SEM Morphostructure Analysis
2.6. Functionality Studies
3. Conclusions
4. Materials and Methods
4.1. Substances and Reagents
4.2. Preparation of Solutions
4.3. Preparation of Chitosan-Based Gel Films
4.4. Methods
4.5. Determining the TEA Concentration in the “Boundary by Diameter” Method
4.6. SEM Studying of Gel Films
4.7. Sorption–Diffusion Experiment Technique
4.8. Hemocompatibility Assessment
4.9. Calculation Part
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sarode, A.; Annapragada, A.; Guo, J.; Mitragotri, S. Layered self-assemblies for controlled drug delivery: A translational overview. Biomaterials 2020, 242, 119929. [Google Scholar] [CrossRef]
- Piatkowski, M.; Kitala, D.; Radwan-Praglowska, J.; Janus, Ł.; Klama-Baryła, A.; Łabuś, W.; Tomanek, E.; Glik, J.; Matýsek, D.; Kawecki, M. Chitosan/aminoacid hydrogels with antimicrobial and bioactive properties as new scaffolds for human mesenchymal stem cells culture applicable in wound healing. Expr. Polym. Lett. 2018, 12, 100–112. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, M.; Li, X.; Huang, Y.; Liang, W. A hybrid thermo-sensitive chitosan gel for sustained release of Meloxicam. J. Biomat. Sci. Polym. Ed. 2008, 19, 1239–1247. [Google Scholar] [CrossRef]
- Huang, Y.; Xiao, L.; Zhou, J.; Li, X.; Liu, J.; Zeng, M. Mechanical enhancement of graphene oxide-filled chitosan-based composite hydrogels by multiple mechanisms. J. Mater. Sci. 2020, 55, 14690–14701. [Google Scholar] [CrossRef]
- Lima, G.G.; Rocha Neto, J.B.; Carvalho, H.F.D.; Beppu, M.M. Control of Surface Properties of Hyaluronan/Chitosan Multilayered Coatings for Tumor Cell Capture. Polysaccharides 2021, 2, 387–399. [Google Scholar] [CrossRef]
- Nie, J.; Lu, W.; Ma, J.; Yang, L.; Wang, Z.; Qin, A.; Hu, Q. Orientation in multi-layer chitosan hydrogel: Morphology, mechanism and design principle. Sci. Rep. 2015, 5, 7635. [Google Scholar] [CrossRef]
- Franks, G.V.; Moss, B.; Phelan, D. Chitosan tissue scaffolds by emulsion templating. J. Biomater. Sci. Polym. Ed. 2006, 17, 1439–1450. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, X.; Feng, Y. Chitosan Hydrogel as Tissue Engineering Scaffolds for Vascular Regeneration Applications. Gels 2023, 9, 373. [Google Scholar] [CrossRef]
- Ilić-Stojanović, S.; Nikolić, L.; Cakić, S. A Review of Patents and Innovative Biopolymer-Based Hydrogels. Gels 2023, 9, 556. [Google Scholar] [CrossRef]
- Lim, J.I.; Im, H.; Lee, W.-K. Fabrication of porous chitosan-polyvinyl pyrrolidone scaffolds from a quaternary system via phase separation. J. Biomater. Sci. Polym. Ed. 2015, 26, 32–41. [Google Scholar] [CrossRef]
- Yamamoto, T.; Tomita, N.; Maki, Y.; Dobashi, T. Dynamics in the Process of Formation of Anisotropic Chitosan Hydrogel. J. Phys. Chem. B. 2010, 114, 10002–10009. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Gao, Y.; Feng, Y.; Ma, B.; Zhu, R.; Zhou, Y. Formation of Concentric Multilayers in a Chitosan Hydrogel Inspired by Liesegang Ring Phenomena. J. Biomater. Sci. Polym. Ed. 2011, 22, 2295–2304. [Google Scholar] [CrossRef] [PubMed]
- Yan, K.; Ding, F.; Bentley, W.E.; Deng, H.; Du, Y.; Payne, G.F.; Shi, X.W. Coding for hydrogel organization through signal guided self-assembly. Soft Matter. 2013, 10, 465–469. [Google Scholar] [CrossRef] [PubMed]
- Kumar, P.; Sebók, D.; Kukovecz, A.; Horváth, D.; Tóth, Á. Hierarchical Self-Assembly of Metal-Ion-Modulated Chitosan Tubules. Langmuir 2021, 37, 12690–12696. [Google Scholar] [CrossRef] [PubMed]
- Runser, J.Y.; Criado-Gonzalez, M.; Fneich, F.; Rabineau, M.; Senger, B.; Weiss, P.; Jierry, L.; Schaaf, P. Non-monotonous enzyme-assisted self-assembly profiles resulting from reaction-diffusion processes in host gels. J. Colloid Interface Sci. 2022, 620, 234–241. [Google Scholar] [CrossRef]
- Wang, Y.R.; Yang, H.; Zhao, C.; Pan, J. Research progress of self-assembling peptide hydrogels in repairing cartilage defects. Front. Mater. 2022, 9, 1022386. [Google Scholar] [CrossRef]
- Jo, M.-K.; Cho, Y.S.; Holló, G.; Choi, J.M.; Lagzi, I.; Yang, S.H. Spatiotemporal and Microscopic Analyses of Asymmetric Liesegang Bands: Diffusion-Limited Crystallization of Calcium Phosphate in a Hydrogel. Cryst. Growth Des. 2021, 21, 6119–6128. [Google Scholar] [CrossRef]
- Babicheva, T.S.; Konduktorova, A.A.; Shmakov, S.L.; Shipovskaya, A.B. Formation of Liesegang Structures under the Conditions of the Spatiotemporal Reaction of Polymer-Analogous Transformation (Salt → Base) of Chitosan. J. Phys. Chem. B. 2020, 124, 9255–9266. [Google Scholar] [CrossRef]
- Simond, M.R.; Ballerat-Busserolles, K.; Coulier, Y.; Rodier, L.; Coxam, J.Y. Dissociation Constants of Protonated Amines in Water at Temperatures from 293.15 K to 343.15 K. J. Solut. Chem. 2012, 41, 130–142. [Google Scholar] [CrossRef]
- Wang, J.; Zhou, Q.; Song, D.; Qi, B.; Zhang, Y.; Shao, Y.; Shao, Z. Chitosan–silica composite aerogels: Preparation, characterization and Congo red adsorption. J. Sol-Gel Sci. Technol. 2015, 76, 501–509. [Google Scholar] [CrossRef]
- Yang, Y.; Chen, Y.; Li, D.; Lin, S.; Chen, H.; Wu, W.; Zhang, W. Linolenic acid conjugated chitosan micelles for improving the oral absorption of doxorubicin via fatty acid transporter. Carbohydr. Polym. 2023, 300, 120233. [Google Scholar] [CrossRef] [PubMed]
- Konduktorova, A.A.; Kurochkina, V.A.; Babicheva, T.S.; Shmakov, S.L.; Shipovskaya, A.B. Study of the supramolecularly ordered layered structure of chitosan gel films. J. Phys. Conf. Ser. 2021, 2086, 012112. [Google Scholar] [CrossRef]
- Arshad, N.; Zia, K.M.; Jabeen, F.; Anjum, M.N.; Akram, N.; Zuber, M. Synthesis, characterization of novel chitosan based water dispersible polyurethanes and their potential deployment as antibacterial textile finish. Int. J. Biol. Macromol. 2018, 111, 485–492. [Google Scholar] [CrossRef] [PubMed]
- Gegel, N.O.; Zhuravleva, Y.Y.; Shipovskaya, A.B.; Malinkina, O.N.; Zudina, I.V. Influence of Chitosan Ascorbate Chirality on the Gelation Kinetics and Properties of Silicon-Chitosan-Containing Glycerohydrogels. Polymers 2018, 10, 259. [Google Scholar] [CrossRef] [PubMed]
- Kählig, H.; Hasanovic, A.; Biruss, B.; Höller, S.; Grim, J.; Valenta, C. Chitosan–glycolic acid: A possible matrix for progesterone delivery into skin. Drug Dev. Ind. Pharm. 2009, 35, 997–1002. [Google Scholar] [CrossRef] [PubMed]
- Il’ina, A.V.; Varlamov, V.P. Effect of Physicochemical Parameters on the Formation of Chitosan-Based Gels. Appl. Biochem. Microbiol. 2004, 40, 599–602. [Google Scholar] [CrossRef]
- Kumari, S.; Singh, R.P. Glycolic acid-g-chitosan-gold nanoflower nanocomposite scaffolds for drug delivery and tissue engineering. Int. J. Biol. Macromol. 2012, 50, 878–883. [Google Scholar] [CrossRef]
- Patel, B.; Manne, R.; Patel, D.B.; Gorityala, S.; Palaniappan, A.; Kurakula, M. Chitosan as Functional Biomaterial for Designing Delivery Systems in Cardiac Therapies. Gels 2021, 7, 253. [Google Scholar] [CrossRef]
- Agnihotri, S.A.; Mallikarjuna, N.N.; Aminabhavi, T.M. Recent advances on chitosan-based micro- and nanoparticles in drug delivery. J. Control Release 2004, 100, 5–28. [Google Scholar] [CrossRef]
- Taokaew, S.; Kaewkong, W.; Kriangkrai, W. Recent Development of Functional Chitosan-Based Hydrogels for Pharmaceutical and Biomedical Applications. Gels 2023, 9, 277. [Google Scholar] [CrossRef]
- Saikia, C.; Gogoi, P.; Maji, T.K. Chitosan: A promising biopolymer in drug delivery applications. J. Mol. Genet. Med. 2015, 4, 899–910. [Google Scholar] [CrossRef]
- Safari, J.B.; Bapolisi, A.M.; Krause, R.W.M. Development of pH-Sensitive Chitosan-g-poly(acrylamide-co-acrylic acid) Hydrogel for Controlled Drug Delivery of Tenofovir Disoproxil Fumarate. Polymers 2021, 13, 3571. [Google Scholar] [CrossRef] [PubMed]
- Rabelo, R.S.; Oliveira, I.F.; da Silva, V.M.; Prata, A.S.; Hubinger, M.D. Chitosan coated nanostructured lipid carriers (NLCs) for loading Vitamin D: A physical stability study. Int. J. Biol. Macromol. 2018, 119, 902–912. [Google Scholar] [CrossRef] [PubMed]
- Teng, Z.; Luo, Y.; Wang, Q. Carboxymethyl chitosan–soy protein complex nanoparticles for the encapsulation and controlled release of vitamin D3. Food Chem. 2013, 141, 524–532. [Google Scholar] [CrossRef] [PubMed]
- Tan, Y.; Li, R.; Liu, C.; Mundo, J.M.; Zhou, H.; Liu, J.; McClements, D.J. Chitosan reduces vitamin D bioaccessibility in food emulsions by binding to mixed micelles. Food Funct. 2020, 11, 187–199. [Google Scholar] [CrossRef]
- Hussain, S.; Yates, C.; Campbell, M.J. Vitamin D and Systems Biology. Nutrients 2022, 14, 5197. [Google Scholar] [CrossRef]
- Heaney, R.P.; Horst, R.L.; Cullen, D.M.; Armas, L.A. Vitamin D3 Distribution and Status in the Body. J. Am. Coll. Nutr. 2009, 28, 252–256. [Google Scholar] [CrossRef]
- Ivanov, A.S.; Pershina, L.V.; Nikolaev, K.G.; Skorb, E.V. Recent Progress of Layer-by-layer Assembly, Free-Standing Film and Hydrogel Based on Polyelectrolytes. Macromol. Biosci. 2021, 21, 2100117. [Google Scholar] [CrossRef]
- Liu, G.; Ding, Z.; Yuan, Q.; Xie, H.; Gu, Z. Multi-Layered Hydrogels for Biomedical Applications. Front. Chem. 2018, 6, 439. [Google Scholar] [CrossRef]
- Shipovskaya, A.B.; Abramov, A.Y.; Pyshnograi, G.V.; Aziz, A.J.H.N. Rheological Properties of Aqueous Acid Solutions of Chitosan: Experiment and Calculations of the Viscometric Functions on the Basis of a Mesoscopic Model. J. Eng. Phys. Thermophys. 2016, 89, 642–651. [Google Scholar] [CrossRef]
- Lugovitskaya, T.N.; Shipovskaya, A.B.; Shmakov, S.L.; Shipenok, X.M. Formation, structure, properties of chitosan aspartate and metastable state of its solutions for obtaining nanoparticles. Carbohydr. Polym. 2022, 277, 118773. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Li, J.; Lu, F.; Deng, J.; Zhang, J.; Fang, P.; Peng, X.; Zhou, S.F. A study on the hemocompatibility of dendronized chitosan derivatives in red blood cells. Drug Des. Dev. Ther. 2015, 9, 2635–2645. [Google Scholar]
- Jesus, S.; Marques, A.P.; Duarte, A.; Soares, E.; Costa, J.P.; Colaço, M.; Schmutz, M.; Som, C.; Borchard, G.; Wick, P.; et al. Chitosan Nanoparticles: Shedding Light on Immunotoxicity and Hemocompatibility. Front. Bioeng. Biotechnol. 2020, 8, 100. [Google Scholar] [CrossRef] [PubMed]
Chitosan Solution Concentration CCTS, g/dL | Serial Number of the Band | Time t of Formation of the nth Band, min | Coordinate Xn of the nth Band *, mm | Width ∆Xn of the nth Band, mm | Height hn of the nth Band, mm | Volume Rate U of Formation of the nth Band **, mm3/min | Concentration ∆CTEA of Reacted TEA, mol/L | TEA Diffusion Coefficient D·1010, m2/s | |
---|---|---|---|---|---|---|---|---|---|
Staring Section | Ending Section | ||||||||
2 | 1 | 1.2 ± 0.7 | 2.7 ± 0.5 | 4.0 ± 0.5 | 4.7 ± 0.6 | 210 ± 60 | 0.1 | 16.8 | 5.41 |
2 | 1400 ± 300 | 14.7 ± 0.5 | 10.5 ± 1.5 | 3.8 ± 0.4 | 2.3 ± 0.2 | 0.7 | |||
3 | 2600 ± 800 | 23.5 ± 0.5 | 11.0 ± 1.0 | 3.9 ± 0.5 | 1.3 ± 0.3 | 0.4 | |||
3 | 1 | 1.5 ± 0.7 | 1.3 ± 1.1 | 0.5 ± 0.2 | 4.0 ± 0.8 | 28.3 ± 2.5 | 0.1 | 14.7 | 4.16 |
2 | 4640 ± 40 | 17.6 ± 6.4 | 3.1 ± 1.2 | 4.8 ± 0.3 | 2.0 ± 0.1 | 1.0 | |||
3 | 4750 ± 80 | 23.6 ± 3.7 | 4.0 ± 0.5 | 4.8 ± 0.3 | 0.3 ± 0.1 | 1.1 | |||
4 | 4800 ± 800 | 29.5 ± 0.5 | 3.0 ± 0.5 | 4.8 ± 0.4 | 0.3 ± 0.1 | 1.1 | |||
5 | 7300 ± 500 | 32.5 ± 0.5 | 3.0 ± 0.6 | 5.1 ± 0.4 | 0.2 ± 0.1 | 1.2 | |||
4 | 1 | 2.1 ± 0.1 | 1.3 ± 0.7 | 1.5 ± 0.5 | 2.2 ± 0.3 | 50.4 ± 7.9 | 0.1 | 153 | 32.9 |
2 | 2.7 ± 0.4 | 3.0 ± 0.5 | 0.5 ± 0.2 | 2.2 ± 0.3 | 68.2 ± 10.3 | 0.1 | |||
3 | 4.3 ± 0.4 | 3.0 ± 0.5 | 1.0 ± 0.5 | 2.2 ± 0.3 | 37.1 ± 1.4 | 0.1 | |||
4 | 6.7 ± 2.2 | 4.0 ± 0.5 | 0.5 ± 0.2 | 2.2 ± 0.3 | 31.4 ± 8.1 | 0.1 | |||
5 | 10.0 ± 1.1 | 5.0 ± 0.5 | 1.0 ± 0.5 | 2.2 ± 0.3 | 19.0 ± 7.0 | 0.1 | |||
6 | 20.0 ± 6.7 | 6.0 ± 0.5 | 1.0 ± 0.5 | 2.3 ± 0.6 | 10.9 ± 2.0 | 0.3 | |||
7 | 40.0 ± 13 | 6.5 ± 0.5 | 0.5 ± 0.3 | 2.3 ± 0.6 | 10.9 ± 7.2 | 0.2 | |||
8 | 63.3 ± 10 | 7.0 ± 0.5 | 0.5 ± 0.3 | 2.6 ± 0.3 | 5.4 ± 2.2 | 0.2 | |||
9 | 80.0 ± 10 | 8.5 ± 0.5 | 1.5 ± 0.5 | 2.6 ± 0.3 | 4.7 ± 1.4 | 0.3 | |||
10 | 110 ± 10 | 11.5 ± 0.5 | 3.0 ± 0.5 | 2.7 ± 0.2 | 5.5 ± 2.3 | 0.4 | |||
11 | 170 ± 20 | 14.0 ± 0.5 | 2.5 ± 0.5 | 2.9 ± 0.3 | 3.3 ± 0.6 | 0.4 | |||
12 | 180 ± 20 | 15.5 ± 0.5 | 1.5 ± 0.5 | 3.2 ± 0.5 | 2.3 ± 1.1 | 0.8 | |||
13 | 210 ± 20 | 17.0 ± 0.5 | 1.5 ± 0.5 | 3.3 ± 0.4 | 2.5 ± 0.6 | 0.8 | |||
14 | 2700 ± 120 | 18.5 ± 0.5 | 1.5 ± 0.5 | 3.3 ± 0.4 | 1.9 ± 0.9 | 0.8 | |||
15 | 2760 ± 120 | 20.5 ± 0.5 | 2.0 ± 0.5 | 3.8 ± 0.5 | 1.9 ± 0.9 | 0.8 | |||
16 | 2800 ± 120 | 26.5 ± 0.5 | 6.0 ± 0.5 | 3.8 ± 0.5 | 1.6 ± 0.7 | 0.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shmakov, S.L.; Babicheva, T.S.; Kurochkina, V.A.; Lugovitskaya, T.N.; Shipovskaya, A.B. Structural and Morphological Features of Anisotropic Chitosan Hydrogels Obtained by Ion-Induced Neutralization in a Triethanolamine Medium. Gels 2023, 9, 876. https://doi.org/10.3390/gels9110876
Shmakov SL, Babicheva TS, Kurochkina VA, Lugovitskaya TN, Shipovskaya AB. Structural and Morphological Features of Anisotropic Chitosan Hydrogels Obtained by Ion-Induced Neutralization in a Triethanolamine Medium. Gels. 2023; 9(11):876. https://doi.org/10.3390/gels9110876
Chicago/Turabian StyleShmakov, Sergei L., Tatiana S. Babicheva, Valentina A. Kurochkina, Tatiana N. Lugovitskaya, and Anna B. Shipovskaya. 2023. "Structural and Morphological Features of Anisotropic Chitosan Hydrogels Obtained by Ion-Induced Neutralization in a Triethanolamine Medium" Gels 9, no. 11: 876. https://doi.org/10.3390/gels9110876
APA StyleShmakov, S. L., Babicheva, T. S., Kurochkina, V. A., Lugovitskaya, T. N., & Shipovskaya, A. B. (2023). Structural and Morphological Features of Anisotropic Chitosan Hydrogels Obtained by Ion-Induced Neutralization in a Triethanolamine Medium. Gels, 9(11), 876. https://doi.org/10.3390/gels9110876