Cellulose Nanofiber–Alginate Biotemplated Cobalt Composite Multifunctional Aerogels for Energy Storage Electrodes
Abstract
:1. Introduction
2. Results and Discussion
2.1. CNF–Alginate–Cobalt Aerogel Synthesis
2.2. Fourier Transform Infrared Spectroscopy (FTIR)
2.3. Scanning Electron Microscopy (SEM)
2.4. X-ray Diffractometry (XRD)
2.5. X-ray Photoelectron Spectroscopy (XPS)
2.6. Thermogravimetric Analysis (TGA)
2.7. Nitrogen Gas Adsorption–Desorption
2.8. Mechanical Characterization
2.9. Vibrating Sample Magnetometry (VSM)
2.10. Electrochemical Characterization
2.11. Aerogel Comparison
3. Conclusions
4. Materials and Methods
4.1. CNF–Alginate–Cobalt Aerogel Synthesis
4.2. Fourier Transform Infrared Spectroscopy (FTIR)
4.3. Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray Spectroscopy (EDS)
4.4. X-ray Diffractometry (XRD)
4.5. X-ray Photoelectron Spectroscopy (XPS)
4.6. Thermal Gravimetric Analysis (TGA)
4.7. Nitrogen Adsorption–Desorption Analysis
4.8. Mechanical Characterization
4.9. Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES)
4.10. Vibrating Sample Magnetometry (VSM)
4.11. Electrochemical Characterization
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sadasivuni, K.K.; Cabibihan, J.-J.; Deshmukh, K.; Goutham, S.; Abubasha, M.K.; Gogoi, J.P.; Klemenoks, I.; Sakale, G.; Sekhar, B.S.; Rama Sreekanth, P.S.; et al. A Review on Porous Polymer Composite Materials for Multifunctional Electronic Applications. Polym. -Plast. Technol. Mater. 2019, 58, 1253–1294. [Google Scholar] [CrossRef]
- Yuan, Y.F.; Xia, X.H.; Wu, J.B.; Yang, J.L.; Chen, Y.B.; Guo, S.Y. Nickel Foam-Supported Porous Ni(OH)2/NiOOH Composite Film as Advanced Pseudocapacitor Material. Electrochim. Acta 2011, 56, 2627–2632. [Google Scholar] [CrossRef]
- Xia, X.H.; Tu, J.P.; Zhang, Y.Q.; Mai, Y.J.; Wang, X.L.; Gu, C.D.; Zhao, X.B. Three-Dimentional Porous Nano-Ni/Co(OH)2 Nanoflake Composite Film: A Pseudocapacitive Material with Superior Performance. J. Phys. Chem. C 2011, 115, 22662–22668. [Google Scholar] [CrossRef]
- Chen, Z.; Augustyn, V.; Jia, X.; Xiao, Q.; Dunn, B.; Lu, Y. High-Performance Sodium-Ion Pseudocapacitors Based on Hierarchically Porous Nanowire Composites. ACS Nano 2012, 6, 4319–4327. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.-M.; Liao, W.-S. Designing Sensing Devices Using Porous Composite Materials. J. Compos. Sci. 2021, 5, 35. [Google Scholar] [CrossRef]
- Jiang, X.; Du, R.; Hübner, R.; Hu, Y.; Eychmüller, A. A Roadmap for 3D Metal Aerogels: Materials Design and Application Attempts. Matter 2021, 4, 54–94. [Google Scholar] [CrossRef]
- Miller, J.R.; Simon, P. Electrochemical Capacitors for Energy Management. Science 2008, 321, 651–652. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Feng, H.; Wu, X.; Wang, L.; Zhang, A.; Xia, T.; Dong, H.; Li, X.; Zhang, L. Progress of Electrochemical Capacitor Electrode Materials: A Review. Int. J. Hydrogen Energy 2009, 34, 4889–4899. [Google Scholar] [CrossRef]
- Chen, C.; Zhao, D.; Wang, X. Influence of Addition of Tantalum Oxide on Electrochemical Capacitor Performance of Molybdenum Nitride. Mater. Chem. Phys. 2006, 97, 156–161. [Google Scholar] [CrossRef]
- Kötz, R.; Carlen, M. Principles and Applications of Electrochemical Capacitors. Electrochim. Acta 2000, 45, 2483–2498. [Google Scholar] [CrossRef]
- Zhang, Y.; Gui, Y.; Wu, X.; Feng, H.; Zhang, A.; Wang, L.; Xia, T. Preparation of Nanostructures NiO and Their Electrochemical Capacitive Behaviors. Int. J. Hydrogen Energy 2009, 34, 2467–2470. [Google Scholar] [CrossRef]
- Simon, P.; Gogotsi, Y. Materials for Electrochemical Capacitors. Nat. Mater. 2008, 7, 845–854. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Yi, X.; Luo, X.; Shi, Y.; Xu, J. Fabrication of Co3O4 Pseudocapacitor Electrodes from Nanoscale Cobalt–Organic Frameworks. Polyhedron 2016, 109, 26–32. [Google Scholar] [CrossRef]
- Hu, X.; Wei, L.; Chen, R.; Wu, Q.; Li, J. Reviews and Prospectives of Co3O4-Based Nanomaterials for Supercapacitor Application. ChemistrySelect 2020, 5, 5268–5288. [Google Scholar] [CrossRef]
- Ali, A.; Ammar, M.; Hameed, I.; Ali, M.; Tayyab, M.; Mujahid, R.; Ali, I.; Zia-ul-Haq, M.; Ashraf, M. Hydrothermally Synthesized Cobalt Oxide Nanowires on Nickel Foam for High-Performance Energy-Storage Applications. J. Electrochem. Soc. 2020, 167, 100509. [Google Scholar] [CrossRef]
- Yang, L.; Cheng, S.; Ding, Y.; Zhu, X.; Wang, Z.L.; Liu, M. Hierarchical Network Architectures of Carbon Fiber Paper Supported Cobalt Oxide Nanonet for High-Capacity Pseudocapacitors. Nano Lett. 2012, 12, 321–325. [Google Scholar] [CrossRef]
- Chen, X.; Cheng, J.P.; Shou, Q.L.; Liu, F.; Zhang, X.B. Effect of Calcination Temperature on the Porous Structure of Cobalt Oxide Micro-Flowers. CrystEngComm 2012, 14, 1271–1276. [Google Scholar] [CrossRef]
- Hayashi, H.; Hakuta, Y. Hydrothermal Synthesis of Metal Oxide Nanoparticles in Supercritical Water. Materials 2010, 3, 3794–3817. [Google Scholar] [CrossRef]
- Wei, T.-Y.; Chen, C.-H.; Chang, K.-H.; Lu, S.-Y.; Hu, C.-C. Cobalt Oxide Aerogels of Ideal Supercapacitive Properties Prepared with an Epoxide Synthetic Route. Chem. Mater. 2009, 21, 3228–3233. [Google Scholar] [CrossRef]
- Peterson, G.R.; Hung-Low, F.; Gumeci, C.; Bassett, W.P.; Korzeniewski, C.; Hope-Weeks, L.J. Preparation–Morphology–Performance Relationships in Cobalt Aerogels as Supercapacitors. ACS Appl. Mater. Interfaces 2014, 6, 1796–1803. [Google Scholar] [CrossRef]
- Herrera-Beurnio, M.C.; Hidalgo-Carrillo, J.; López-Tenllado, F.J.; Martin-Gómez, J.; Estévez, R.C.; Urbano, F.J.; Marinas, A. Bio-Templating: An Emerging Synthetic Technique for Catalysts. A Review. Catalysts 2021, 11, 1364. [Google Scholar] [CrossRef]
- Liu, Y.; Zhu, C.; Wan, F.; Fang, W.; Xue, B.; Zheng, Z.; Ping, H.; Xie, H.; Wang, H.; Wang, W.; et al. Biotemplating Synthesis of Organized Structures Inspired by Biological Processes. Giant 2022, 11, 100108. [Google Scholar] [CrossRef]
- Ping, H.; Xie, H.; Fu, Z. Novel Synthesis Approaches for New Structures in Confined Space Inspired by Natural Structure-Forming Processes. J. Mater. 2017, 3, 83–95. [Google Scholar] [CrossRef]
- Jeon, D.; Park, J.; Shin, C.; Kim, H.; Jang, J.-W.; Lee, D.W.; Ryu, J. Superaerophobic Hydrogels for Enhanced Electrochemical and Photoelectrochemical Hydrogen Production. Sci. Adv. 2020, 6, eaaz3944. [Google Scholar] [CrossRef] [PubMed]
- Burpo, F.J.; Mitropoulos, A.N.; Nagelli, E.A.; Palmer, J.L.; Morris, L.A.; Ryu, M.Y.; Wickiser, J.K. Cellulose Nanofiber Biotemplated Palladium Composite Aerogels. Molecules 2018, 23, 1405. [Google Scholar] [CrossRef]
- Burpo, F.J.; Mitropoulos, A.N.; Nagelli, E.A.; Ryu, M.Y.; Palmer, J.L. Gelatin Biotemplated Platinum Aerogels. MRS Adv. 2018, 3, 2875–2880. [Google Scholar] [CrossRef]
- Fang, K.-M.; Wang, Z.-Z.; Zhang, M.; Wang, A.-J.; Meng, Z.-Y.; Feng, J.-J. Gelatin-Assisted Hydrothermal Synthesis of Single Crystalline Zinc Oxide Nanostars and Their Photocatalytic Properties. J. Colloid Interface Sci. 2013, 402, 68–74. [Google Scholar] [CrossRef]
- Courchesne, N.-M.D.; Klug, M.T.; Chen, P.-Y.; Kooi, S.E.; Yun, D.S.; Hong, N.; Fang, N.X.; Belcher, A.M.; Hammond, P.T. Assembly of a Bacteriophage-Based Template for the Organization of Materials into Nanoporous Networks. Adv. Mater. 2014, 26, 3398–3404. [Google Scholar] [CrossRef]
- Salehi, M.H.; Golbaten-Mofrad, H.; Jafari, S.H.; Goodarzi, V.; Entezari, M.; Hashemi, M.; Zamanlui, S. Electrically Conductive Biocompatible Composite Aerogel Based on Nanofibrillated Template of Bacterial Cellulose/Polyaniline/Nano-Clay. Int. J. Biol. Macromol. 2021, 173, 467–480. [Google Scholar] [CrossRef]
- Mitropoulos, A.N.; Burpo, F.J.; Nguyen, C.K.; Nagelli, E.A.; Ryu, M.Y.; Wang, J.; Sims, R.K.; Woronowicz, K.; Wickiser, J.K. Noble Metal Composite Porous Silk Fibroin Aerogel Fibers. Materials 2019, 12, 894. [Google Scholar] [CrossRef]
- Yates, M.D.; Logan, B.E. Biotemplated Palladium Catalysts Can Be Stabilized on Different Support Materials. ChemElectroChem 2014, 1, 1867–1873. [Google Scholar] [CrossRef]
- Sun, Q.; Chen, B. Biotemplated Fabrication of 3D Hierarchically Porous MgAl-LDH/CF Composites with Effective Adsorption of Organic Dyes from Wastewater. Ind. Eng. Chem. Res. 2020, 59, 16838–16850. [Google Scholar] [CrossRef]
- Ramay, H.R.R.; Zhang, M. Biphasic Calcium Phosphate Nanocomposite Porous Scaffolds for Load-Bearing Bone Tissue Engineering. Biomaterials 2004, 25, 5171–5180. [Google Scholar] [CrossRef]
- Gan, Y.; Xu, F.; Luo, J.; Yuan, H.; Jin, C.; Zhang, L.; Fang, C.; Sheng, O.; Huang, H.; Xia, Y.; et al. One-Pot Biotemplate Synthesis of FeS2 Decorated Sulfur-Doped Carbon Fiber as High Capacity Anode for Lithium-Ion Batteries. Electrochim. Acta 2016, 209, 201–209. [Google Scholar] [CrossRef]
- Ohmura, J.F.; Burpo, F.J.; Lescott, C.J.; Ransil, A.; Yoon, Y.; Records, W.C.; Belcher, A.M. Highly Adjustable 3D Nano-Architectures and Chemistries via Assembled 1D Biological Templates. Nanoscale 2019, 11, 1091–1102. [Google Scholar] [CrossRef] [PubMed]
- Xiong, W.; Gao, Y.; Wu, X.; Hu, X.; Lan, D.; Chen, Y.; Pu, X.; Zeng, Y.; Su, J.; Zhu, Z. Composite of Macroporous Carbon with Honeycomb-Like Structure from Mollusc Shell and NiCo2O4 Nanowires for High-Performance Supercapacitor. ACS Appl. Mater. Interfaces 2014, 6, 19416–19423. [Google Scholar] [CrossRef]
- Li, L.; Meng, J.; Zhang, M.; Liu, T.; Zhang, C. Recent Advances in Conductive Polymer Hydrogel Composites and Nanocomposites for Flexible Electrochemical Supercapacitors. Chem. Commun. 2021, 58, 185–207. [Google Scholar] [CrossRef]
- Siró, I.; Plackett, D. Microfibrillated Cellulose and New Nanocomposite Materials: A Review. Cellulose 2010, 17, 459–494. [Google Scholar] [CrossRef]
- Dufresne, A. Nanocellulose: A New Ageless Bionanomaterial. Mater. Today 2013, 16, 220–227. [Google Scholar] [CrossRef]
- Cai, J.; Kimura, S.; Wada, M.; Kuga, S. Nanoporous Cellulose as Metal Nanoparticles Support. Biomacromolecules 2009, 10, 87–94. [Google Scholar] [CrossRef]
- Li, Y.; Xu, L.; Xu, B.; Mao, Z.; Xu, H.; Zhong, Y.; Zhang, L.; Wang, B.; Sui, X. Cellulose Sponge Supported Palladium Nanoparticles as Recyclable Cross-Coupling Catalysts. ACS Appl. Mater. Interfaces 2017, 9, 17155–17162. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Shi, Z.; Fu, S.; Chen, J.; Berry, R.M.; Tam, K.C. Strategy for Synthesizing Porous Cellulose Nanocrystal Supported Metal Nanocatalysts. ACS Sustain. Chem. Eng. 2016, 4, 5929–5935. [Google Scholar] [CrossRef]
- Cirtiu, C.M.; Dunlop-Brière, A.F.; Moores, A. Cellulose Nanocrystallites as an Efficient Support for Nanoparticles of Palladium: Application for Catalytic Hydrogenation and Heck Coupling under Mild Conditions. Green Chem. 2011, 13, 288–291. [Google Scholar] [CrossRef]
- Missoum, K.; Belgacem, M.N.; Bras, J. Nanofibrillated Cellulose Surface Modification: A Review. Materials 2013, 6, 1745–1766. [Google Scholar] [CrossRef] [PubMed]
- Abdul Khalil, H.P.S.; Davoudpour, Y.; Islam, M.N.; Mustapha, A.; Sudesh, K.; Dungani, R.; Jawaid, M. Production and Modification of Nanofibrillated Cellulose Using Various Mechanical Processes: A Review. Carbohydr. Polym. 2014, 99, 649–665. [Google Scholar] [CrossRef] [PubMed]
- Lin, N.; Dufresne, A. Nanocellulose in Biomedicine: Current Status and Future Prospect. Eur. Polym. J. 2014, 59, 302–325. [Google Scholar] [CrossRef]
- Jorfi, M.; Foster, E.J. Recent Advances in Nanocellulose for Biomedical Applications. J. Appl. Polym. Sci. 2015, 132, 41719. [Google Scholar] [CrossRef]
- Jeon, J.G.; Kim, H.C.; Palem, R.R.; Kim, J.; Kang, T.J. Cross-Linking of Cellulose Nanofiber Films with Glutaraldehyde for Improved Mechanical Properties. Mater. Lett. 2019, 250, 99–102. [Google Scholar] [CrossRef]
- Cheng, H.; Li, Y.; Wang, B.; Mao, Z.; Xu, H.; Zhang, L.; Zhong, Y.; Sui, X. Chemical Crosslinking Reinforced Flexible Cellulose Nanofiber-Supported Cryogel. Cellulose 2018, 25, 573–582. [Google Scholar] [CrossRef]
- Burpo, F.J.; Palmer, J.L.; Mitropoulos, A.N.; Nagelli, E.A.; Morris, L.A.; Ryu, M.Y.; Wickiser, J.K. Synthesis Method for Cellulose Nanofiber Biotemplated Palladium Composite Aerogels. J. Vis. Exp. JoVE 2019, 147, e59176. [Google Scholar] [CrossRef]
- Shen, M.; Hu, W.; Duan, C.; Li, J.; Ding, S.; Zhang, L.; Zhu, J.; Ni, Y. Cellulose Nanofibers Carbon Aerogel Based Single-Cobalt-Atom Catalyst for High-Efficiency Oxygen Reduction and Zinc-Air Battery. J. Colloid Interface Sci. 2023, 629, 778–785. [Google Scholar] [CrossRef] [PubMed]
- Yan, C.; Jia, S.; Wei, J.; Shao, Z. Construction of Hierarchical Porous Derived from the Cellulose Nanofiber/Graphene/Zn/Co ZIF 3D Conductive Carbon Aerogels for High-Performance Supercapacitors. J. Alloys Compd. 2022, 920, 165868. [Google Scholar] [CrossRef]
- Jiang, Y.; Liu, M.; Zhang, X.; Su, Z. Construction of a Biomimetic Wood Structure with Cellulose Nanofiber/Molybdenum Disulfide Hybrid Aerogel for Highly-Efficient Solar-Driven Interfacial Evaporation. Desalination 2023, 568, 117023. [Google Scholar] [CrossRef]
- Abka-khajouei, R.; Tounsi, L.; Shahabi, N.; Patel, A.K.; Abdelkafi, S.; Michaud, P. Structures, Properties and Applications of Alginates. Mar. Drugs 2022, 20, 364. [Google Scholar] [CrossRef]
- Jost, A.; Sapra, A. Alginate. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- Ahmad Raus, R.; Wan Nawawi, W.M.F.; Nasaruddin, R.R. Alginate and Alginate Composites for Biomedical Applications. Asian J. Pharm. Sci. 2021, 16, 280–306. [Google Scholar] [CrossRef]
- Lee, K.Y.; Mooney, D.J. Alginate: Properties and Biomedical Applications. Prog Polym. Sci. 2012, 37, 106–126. [Google Scholar] [CrossRef] [PubMed]
- Neves, M.I.; Moroni, L.; Barrias, C.C. Modulating Alginate Hydrogels for Improved Biological Performance as Cellular 3D Microenvironments. Front. Bioeng. Biotechnol. 2020, 8, 665. [Google Scholar] [CrossRef]
- Shan, C.; Wang, L.; Li, Z.; Zhong, X.; Hou, Y.; Zhang, L.; Shi, F. Graphene Oxide Enhanced Polyacrylamide-Alginate Aerogels Catalysts. Carbohydr. Polym. 2019, 203, 19–25. [Google Scholar] [CrossRef]
- Mohd Kaus, N.H.; Imam, S.S.; Aziz, A.W.; Lee, H.L.; Adnan, R.; Ibrahim, M.L.; Yudha, S.S. Controlled Growth of BiFeO3 Nanoparticles in the Presence of Alginate Template for Adsorptive Removal of Different Dyes. Colloids Surf. A Physicochem. Eng. Asp. 2021, 615, 126294. [Google Scholar] [CrossRef]
- Prevot, V.; Touati, S.; Mousty, C. Confined Growth of NiAl-Layered Double Hydroxide Nanoparticles within Alginate Gel: Influence on Electrochemical Properties. Front. Chem. 2020, 8, 561975. [Google Scholar] [CrossRef]
- Mandal, S.; Sarkar, A.; Mukherjee, P.; Das, S.; Banerjee, D.; Ganguly, S.; Kargupta, K. Organic Alginate Encapsulated rGO-CdS Millispheres for Remarkable Photocatalytic Solar Hydrogen Production. Int. J. Hydrogen Energy 2023. [Google Scholar] [CrossRef]
- Roquero, D.M.; Othman, A.; Melman, A.; Katz, E. Iron(Iii)-Cross-Linked Alginate Hydrogels: A Critical Review. Mater. Adv. 2022, 3, 1849–1873. [Google Scholar] [CrossRef]
- Heggset, E.B.; Strand, B.L.; Sundby, K.W.; Simon, S.; Chinga-Carrasco, G.; Syverud, K. Viscoelastic Properties of Nanocellulose Based Inks for 3D Printing and Mechanical Properties of CNF/Alginate Biocomposite Gels. Cellulose 2019, 26, 581–595. [Google Scholar] [CrossRef]
- Aarstad, O.; Heggset, E.B.; Pedersen, I.S.; Bjørnøy, S.H.; Syverud, K.; Strand, B.L. Mechanical Properties of Composite Hydrogels of Alginate and Cellulose Nanofibrils. Polymers 2017, 9, 378. [Google Scholar] [CrossRef] [PubMed]
- Serafin, A.; Murphy, C.; Rubio, M.C.; Collins, M.N. Printable Alginate/Gelatin Hydrogel Reinforced with Carbon Nanofibers as Electrically Conductive Scaffolds for Tissue Engineering. Mater. Sci. Eng. C 2021, 122, 111927. [Google Scholar] [CrossRef]
- Habib, A.; Sathish, V.; Mallik, S.; Khoda, B. 3D Printability of Alginate-Carboxymethyl Cellulose Hydrogel. Materials 2018, 11, 454. [Google Scholar] [CrossRef]
- Sirviö, J.A.; Kolehmainen, A.; Liimatainen, H.; Niinimäki, J.; Hormi, O.E.O. Biocomposite Cellulose-Alginate Films: Promising Packaging Materials. Food Chem. 2014, 151, 343–351. [Google Scholar] [CrossRef]
- Zhao, H.; Ouyang, X.-K.; Yang, L.-Y. Adsorption of Lead Ions from Aqueous Solutions by Porous Cellulose Nanofiber–Sodium Alginate Hydrogel Beads. J. Mol. Liq. 2021, 324, 115122. [Google Scholar] [CrossRef]
- Cai, R.; Chen, Y.; Hu, J.; Xiong, J.; Lu, J.; Liu, J.; Tan, X.; Liu, W.; Zhou, Y.; Chen, Y. A Self-Supported Sodium Alginate Composite Hydrogel Membrane and Its Performance in Filtering Heavy Metal Ions. Carbohydr. Polym. 2023, 300, 120278. [Google Scholar] [CrossRef]
- Xu, Z.; Zhou, J.; Li, D.; Zhu, G.; Lin, N. Flexible Conductive Fibers from Alginate, Cellulose Nanocrystals, and Polyaniline by Wet Spinning. ACS Sustain. Chem. Eng. 2023, 11, 10895–10905. [Google Scholar] [CrossRef]
- Kang, Y.-S.; Kim, D.Y.; Yoon, J.; Park, J.; Kim, G.; Ham, Y.; Park, I.; Koh, M.; Park, K. Shape Control of Hierarchical Lithium Cobalt Oxide Using Biotemplates for Connected Nanoparticles. J. Power Source. 2019, 436, 226836. [Google Scholar] [CrossRef]
- Huggins, T.M.; Whiteley, J.M.; Love, C.T.; Lee, K.; Lee, S.-H.; Ren, Z.J.; Biffinger, J.C. Controlled Growth of Nanostructured Biotemplates with Cobalt and Nitrogen Codoping as a Binderless Lithium-Ion Battery Anode. ACS Appl. Mater. Interfaces 2016, 8, 26868–26877. [Google Scholar] [CrossRef] [PubMed]
- Li, K.; Xiao, Y.; Zheng, T.; Sun, Q.; Zhang, Y.; Teng, H.; Wang, W.; Yao, K.; Rao, J.; Zhang, Y. Vanadium Doping and Phosphorus Vacancy Co-Regulation of Biotemplate Derived Three-Dimensional Cobalt Phosphide to Enhance Pseudocapacitance Performance. Appl. Surf. Sci. 2023, 622, 156950. [Google Scholar] [CrossRef]
- Liu, Y.; Lv, B.; Li, P.; Chen, Y.; Gao, B.; Lin, B. Biotemplate-Assisted Hydrothermal Synthesis of Tubular Porous Co3O4 with Excellent Charge-Discharge Cycle Stability for Supercapacitive Electrodes. Mater. Lett. 2018, 210, 231–234. [Google Scholar] [CrossRef]
- Yan, D.; Zhang, Y.; Zhang, X.; Yu, Z.; Zhao, Y.; Zhu, G.; Chen, G.; Ma, C.; Xu, H.; Yu, A. Co3O4 Microtubules Derived from a Biotemplated Method for Improved Lithium Storage Performance. Ceram. Int. 2017, 43, 9235–9240. [Google Scholar] [CrossRef]
- Sun, Y.; Li, Y.; Chen, B.; Cui, M.; Xu, W.; Li, L.; Wang, M.; Zhang, Y.; Chen, K.; Du, Q.; et al. High-Efficiency Adsorption Performance of Cobalt Alginate/Graphene Oxide Aerogel Prepared by Green Method for Methylene Blue. ChemistrySelect 2022, 7, e202201216. [Google Scholar] [CrossRef]
- Inbamani, M.B.; Dass, A.J.; Inbamani, R. Carboxymethyl Cellulose Grafted on Mesoporous Cobalt Oxide Milieu: Synthesis, Formation Mechanism and Electrochemical Features. ChemistrySelect 2022, 7, e202103936. [Google Scholar] [CrossRef]
- Burpo, F.J.; Nagelli, E.A.; Morris, L.A.; McClure, J.P.; Ryu, M.Y.; Palmer, J.L. Direct Solution-Based Reduction Synthesis of Au, Pd, and Pt Aerogels. J. Mater. Res. 2017, 32, 4153–4165. [Google Scholar] [CrossRef]
- Burpo, F.J.; Nagelli, E.A.; Morris, L.A.; McClure, J.P.; Ryu, M.Y.; Palmer, J.L. A Rapid Synthesis Method for Au, Pd, and Pt Aerogels Via Direct Solution-Based Reduction. JoVE 2018, 136, e57875. [Google Scholar] [CrossRef]
- Burpo, J.F.; Nagelli, A.E.; Morris, A.L.; Woronowicz, K.; Mitropoulos, N.A. Salt-Mediated Au-Cu Nanofoam and Au-Cu-Pd Porous Macrobeam Synthesis. Molecules 2018, 23, 1701. [Google Scholar] [CrossRef]
- Burpo, F.J.; Nagelli, E.A.; Winter, S.J.; McClure, J.P.; Bartolucci, S.F.; Burns, A.R.; O’Brien, S.F.; Chu, D.D. Salt-Templated Hierarchically Porous Platinum Macrotube Synthesis. ChemistrySelect 2018, 3, 4542–4546. [Google Scholar] [CrossRef]
- Burpo, F.J.; Nagelli, E.A.; Mitropoulos, A.N.; Bartolucci, S.F.; McClure, J.P.; Baker, D.R.; Losch, A.R.; Chu, D.D. Salt-Templated Platinum–Palladium Porous Macrobeam Synthesis. MRS Commun. 2019, 9, 280–287. [Google Scholar] [CrossRef]
- Burpo, F.J.; Nagelli, E.A.; Losch, A.R.; Bui, J.K.; Forcherio, G.T.; Baker, D.R.; McClure, J.P.; Bartolucci, S.F.; Chu, D.D. Salt-Templated Platinum-Copper Porous Macrobeams for Ethanol Oxidation. Catalysts 2019, 9, 662. [Google Scholar] [CrossRef]
- Kim, S.Y.; Cho, Y.; Kang, S.W. Correlation between Functional Group and Formation of Nanoparticles in PEBAX/Ag Salt/Al Salt Complexes for Olefin Separation. Polymers 2020, 12, 667. [Google Scholar] [CrossRef] [PubMed]
- Elnour, A.Y.; Alghyamah, A.A.; Shaikh, H.M.; Poulose, A.M.; Al-Zahrani, S.M.; Anis, A.; Al-Wabel, M.I. Effect of Pyrolysis Temperature on Biochar Microstructural Evolution, Physicochemical Characteristics, and Its Influence on Biochar/Polypropylene Composites. Appl. Sci. 2019, 9, 1149. [Google Scholar] [CrossRef]
- Khalil, A.T.; Ovais, M.; Ullah, I.; Ali, M.; Shinwari, Z.K.; Maaza, M. Physical Properties, Biological Applications and Biocompatibility Studies on Biosynthesized Single Phase Cobalt Oxide (Co3O4) Nanoparticles via Sageretia Thea (Osbeck.). Arab. J. Chem. 2020, 13, 606–619. [Google Scholar] [CrossRef]
- Jiang, Y.; Pang, X.; Deng, Y.; Sun, X.; Zhao, X.; Xu, P.; Shao, P.; Zhang, L.; Li, Q.; Li, Z. An Alginate Hybrid Sponge with High Thermal Stability: Its Flame Retardant Properties and Mechanism. Polymers 2019, 11, 1973. [Google Scholar] [CrossRef]
- Zhao, W.; Qi, Y.; Wang, Y.; Xue, Y.; Xu, P.; Li, Z.; Li, Q. Morphology and Thermal Properties of Calcium Alginate/Reduced Graphene Oxide Composites. Polymers 2018, 10, 990. [Google Scholar] [CrossRef]
- Hafeez, M.; Shaheen, R.; Akram, B.; Zain-ul-Abdin; Haq, S.; Mahsud, S.; Ali, S.; Khan, R.T. Green Synthesis of Cobalt Oxide Nanoparticles for Potential Biological Applications. Mater. Res. Express 2020, 7, 025019. [Google Scholar] [CrossRef]
- Cao, D.; Dong, Y.; Tang, Y.; Ye, Y.; Hu, S.; Guo, Z.; Li, X. Amorphous Manganese–Cobalt Nanosheets as Efficient Catalysts for Hydrogen Evolution Reaction (HER). Catal. Surv. Asia 2021, 25, 437–444. [Google Scholar] [CrossRef]
- Khassin, A.A.; Yurieva, T.M.; Kaichev, V.V.; Bukhtiyarov, V.I.; Budneva, A.A.; Paukshtis, E.A.; Parmon, V.N. Metal–Support Interactions in Cobalt-Aluminum Co-Precipitated Catalysts: XPS and CO Adsorption Studies. J. Mol. Catal. A Chem. 2001, 175, 189–204. [Google Scholar] [CrossRef]
- Cabrera-German, D.; Gomez-Sosa, G.; Herrera-Gomez, A. Accurate Peak Fitting and Subsequent Quantitative Composition Analysis of the Spectrum of Co 2p Obtained with Al Kα Radiation: I: Cobalt Spinel. Surf. Interface Anal. 2016, 48, 252–256. [Google Scholar] [CrossRef]
- Biesinger, M.C.; Payne, B.P.; Grosvenor, A.P.; Lau, L.W.M.; Gerson, A.R.; Smart, R.S.C. Resolving Surface Chemical States in XPS Analysis of First Row Transition Metals, Oxides and Hydroxides: Cr, Mn, Fe, Co and Ni. Appl. Surf. Sci. 2011, 257, 2717–2730. [Google Scholar] [CrossRef]
- Flores-Hernández, C.G.; Cornejo-Villegas, M.D.L.A.; Moreno-Martell, A.; Del Real, A. Synthesis of a Biodegradable Polymer of Poly (Sodium Alginate/Ethyl Acrylate). Polymers 2021, 13, 504. [Google Scholar] [CrossRef] [PubMed]
- Yildirim, N.; Shaler, S. A Study on Thermal and Nanomechanical Performance of Cellulose Nanomaterials (CNs). Materials 2017, 10, 718. [Google Scholar] [CrossRef]
- Abebe, A.M.; Soraru, G.D.; Thothadri, G.; Andoshe, D.M.; Zambotti, A.; Ahmed, G.M.S.; Tirth, V.; Algahtani, A. Synthesis and Characterization of High Surface Area Transparent SiOC Aerogels from Hybrid Silicon Alkoxide: A Comparison between Ambient Pressure and Supercritical Drying. Materials 2022, 15, 1277. [Google Scholar] [CrossRef]
- Thapliyal, P.C.; Singh, K. Aerogels as Promising Thermal Insulating Materials: An Overview. J. Mater. 2014, 2014, e127049. [Google Scholar] [CrossRef]
- James, L.E.; Crescentini, L.; Fisher, W.B. Process for Making a Cobalt Oxide Catalyst. U.S. Patent No. 4,389,339, 21 June 1983. [Google Scholar]
- Sing, K.S.W. Reporting Physisorption Data for Gas/Solid Systems with Special Reference to the Determination of Surface Area and Porosity (Recommendations 1984). Pure Appl. Chem. 1985, 57, 603–619. [Google Scholar] [CrossRef]
- Brunauer, S.; Emmett, P.H.; Teller, E. Adsorption of Gases in Multimolecular Layers. J. Am. Chem. Soc. 1938, 60, 309–319. [Google Scholar] [CrossRef]
- Barrett, E.P.; Joyner, L.G.; Halenda, P.P. The Determination of Pore Volume and Area Distributions in Porous Substances. I. Computations from Nitrogen Isotherms. J. Am. Chem. Soc. 1951, 73, 373–380. [Google Scholar] [CrossRef]
- Wang, Q.; Song, H.; Pan, S.; Dong, N.; Wang, X.; Sun, S. Initial Pyrolysis Mechanism and Product Formation of Cellulose: An Experimental and Density Functional Theory(DFT) Study. Sci. Rep. 2020, 10, 3626. [Google Scholar] [CrossRef] [PubMed]
- Qiao, Q.; Li, X.; Huang, L. Crystalline Cellulose under Pyrolysis Conditions: The Structure–Property Evolution via Reactive Molecular Dynamics Simulations. J. Chem. Eng. Data 2020, 65, 360–372. [Google Scholar] [CrossRef]
- Lai, H.; Chen, Z.; Zhuo, H.; Hu, Y.; Zhao, X.; Yi, J.; Zheng, H.; Shi, G.; Tong, Y.; Meng, L.; et al. Defect Reduction to Enhance the Mechanical Strength of Nanocellulose Carbon Aerogel. Chin. Chem. Lett. 2024, 35, 108331. [Google Scholar] [CrossRef]
- Woignier, T.; Primera, J.; Alaoui, A.; Etienne, P.; Despestis, F.; Calas-Etienne, S. Mechanical Properties and Brittle Behavior of Silica Aerogels. Gels 2015, 1, 256–275. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.; Zhou, S.; Hu, P.; Zhao, G.; Li, Y.; Zhang, X.; Han, W. Enhanced Mechanical, Thermal, and Electric Properties of Graphene Aerogels via Supercritical Ethanol Drying and High-Temperature Thermal Reduction. Sci. Rep. 2017, 7, 1439. [Google Scholar] [CrossRef]
- Sehaqui, H.; Zhou, Q.; Berglund, L.A. High-Porosity Aerogels of High Specific Surface Area Prepared from Nanofibrillated Cellulose (NFC). Compos. Sci. Technol. 2011, 71, 1593–1599. [Google Scholar] [CrossRef]
- Coey, J.M.D. Hard Magnetic Materials: A Perspective. IEEE Trans. Magn. 2011, 47, 4671–4681. [Google Scholar] [CrossRef]
- Samadi, M.S.; Shokrollahi, H.; Zamanian, A. The Magnetic-Field-Assisted Synthesis of the Co-Ferrite Nanoparticles via Reverse Co-Precipitation and Their Magnetic and Structural Properties. Mater. Chem. Phys. 2018, 215, 355–359. [Google Scholar] [CrossRef]
- Heck, C. Magnetic Materials and Their Applications; Heck, C., Ed.; Butterworth-Heinemann: Oxford, UK, 1974; ISBN 978-0-408-70399-4. [Google Scholar]
- Roth, W.L. The Magnetic Structure of Co3O4. J. Phys. Chem. Solids 1964, 25, 1–10. [Google Scholar] [CrossRef]
- Gawali, S.R.; Gandhi, A.C.; Gaikwad, S.S.; Pant, J.; Chan, T.-S.; Cheng, C.-L.; Ma, Y.-R.; Wu, S.Y. Role of Cobalt Cations in Short Range Antiferromagnetic Co3O4 Nanoparticles: A Thermal Treatment Approach to Affecting Phonon and Magnetic Properties. Sci. Rep. 2018, 8, 249. [Google Scholar] [CrossRef]
- Li, W.; Wang, Y.; Cui, X.Y.; Yu, S.; Li, Y.; Hu, Y.; Zhu, M.; Zheng, R.; Ringer, S.P. Crystal Facet Effects on Nanomagnetism of Co3O4. ACS Appl. Mater. Interfaces 2018, 10, 19235–19247. [Google Scholar] [CrossRef]
- Meher, S.K.; Rao, G.R. Effect of Microwave on the Nanowire Morphology, Optical, Magnetic, and Pseudocapacitance Behavior of Co3O4. J. Phys. Chem. C 2011, 115, 25543–25556. [Google Scholar] [CrossRef]
- Dutta, P.; Seehra, M.S.; Thota, S.; Kumar, J. A Comparative Study of the Magnetic Properties of Bulk and Nanocrystalline Co3O4. J. Phys. Condens. Matter 2007, 20, 015218. [Google Scholar] [CrossRef]
- Zhao, S.; Li, Y.; Yin, H.; Liu, Z.; Luan, E.; Zhao, F.; Tang, Z.; Liu, S. Three-Dimensional Graphene/Pt Nanoparticle Composites as Freestanding Anode for Enhancing Performance of Microbial Fuel Cells. Sci. Adv. 2015, 1, e1500372. [Google Scholar] [CrossRef]
- Kang, J.; Wen, J.; Jayaram, S.H.; Wang, X.; Chen, S.-K. Electrochemical Characterization and Equivalent Circuit Modeling of Single-Walled Carbon Nanotube (SWCNT) Coated Electrodes. J. Power Source. 2013, 234, 208–216. [Google Scholar] [CrossRef]
- Mirzaeian, M.; Akhanova, N.; Gabdullin, M.; Kalkozova, Z.; Tulegenova, A.; Nurbolat, S.; Abdullin, K. Improvement of the Pseudocapacitive Performance of Cobalt Oxide-Based Electrodes for Electrochemical Capacitors. Energies 2020, 13, 5228. [Google Scholar] [CrossRef]
- Samal, R.; Dash, B.; Sarangi, C.K.; Sanjay, K.; Subbaiah, T.; Senanayake, G.; Minakshi, M. Influence of Synthesis Temperature on the Growth and Surface Morphology of Co3O4 Nanocubes for Supercapacitor Applications. Nanomaterials 2017, 7, 356. [Google Scholar] [CrossRef] [PubMed]
- Goyal, V.; Sarki, N.; Singh, B.; Ray, A.; Poddar, M.; Bordoloi, A.; Narani, A.; Natte, K. Carbon-Supported Cobalt Nanoparticles as Catalysts for the Selective Hydrogenation of Nitroarenes to Arylamines and Pharmaceuticals. ACS Appl. Nano Mater. 2020, 3, 11070–11079. [Google Scholar] [CrossRef]
- Rasband, W.S. ImageJ, U.S. National Institutes of Health: Bethesda, MD, USA, 1997.
Sample | Cum. Pore Vol (cm3/g) | BET SSA (m2/g) | BJH SSA (m2/g) | BJH Avg Pore (nm) |
---|---|---|---|---|
Supercritically Dried | 1.53 | 190 | 228 | 26.9 |
Pyrolyzed | 0.69 | 111 | 93 | 30.0 |
Thermally Oxidized | 0.02 | 3.4 | 2.7 | 22.8 |
Sample | Ms (emu/gCo) | Mr (emu/gCo) | Hc (Oe) |
---|---|---|---|
Supercritically Dried | 1.72 | 0.1 | 46.36 |
Pyrolyzed | 114.19 | 20.07 | 311.96 |
Thermally Oxidized | 39.05 | 4.01 | 113.1 |
Sample | Supercritically Dried | Pyrolyzed | Thermally Oxidized |
---|---|---|---|
Predominant Cobalt Phase | Co(s) | Co(s) | Co3O4 |
Density (g/cm3) | 0.16 ± 0.2 | 0.27 ± 0.08 | 0.24 ± 0.3 |
Fibril Diameter (nm) | 22 ± 3 | 12 ± 2 | 77 ± 22 |
Atomic % Co:Ca | 1.0:1.3 | 1.0:0.7 | 1.0:0.5 |
Cum. Pore Volume (cm3/g) | 1.53 | 0.69 | 0.02 |
BET Specific Surface Area (m2/g) | 190 | 111 | 3.4 |
BJH Specific Surface Area (m2/g) | 228 | 93 | 2.7 |
BJH Avg Pore (nm) | 26.9 | 30.0 | 22.8 |
Ms (emu/gCo) | 1.72 | 114.19 | 39.05 |
Mr (emu/gCo) | 0.1 | 20.07 | 4.01 |
Hc (Oe) | 46.36 | 311.96 | 113.1 |
Elastic Moduli (MPa) | 0.58 ± 0.54 | 1.1 ± 2.8 | 14.3 ± 2.9 |
EIS Specific Capacitance (F/gCo) | 122 | 722 | 387 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, F.W.; Trackey, P.D.; Verma, V.; Mandes, G.T.; Calabro, R.L.; Presot, A.W.; Tsay, C.K.; Lawton, T.J.; Zammit, A.S.; Tang, E.M.; et al. Cellulose Nanofiber–Alginate Biotemplated Cobalt Composite Multifunctional Aerogels for Energy Storage Electrodes. Gels 2023, 9, 893. https://doi.org/10.3390/gels9110893
Zhang FW, Trackey PD, Verma V, Mandes GT, Calabro RL, Presot AW, Tsay CK, Lawton TJ, Zammit AS, Tang EM, et al. Cellulose Nanofiber–Alginate Biotemplated Cobalt Composite Multifunctional Aerogels for Energy Storage Electrodes. Gels. 2023; 9(11):893. https://doi.org/10.3390/gels9110893
Chicago/Turabian StyleZhang, Felita W., Paul D. Trackey, Vani Verma, Galen T. Mandes, Rosemary L. Calabro, Anthony W. Presot, Claire K. Tsay, Timothy J. Lawton, Alexa S. Zammit, Edward M. Tang, and et al. 2023. "Cellulose Nanofiber–Alginate Biotemplated Cobalt Composite Multifunctional Aerogels for Energy Storage Electrodes" Gels 9, no. 11: 893. https://doi.org/10.3390/gels9110893
APA StyleZhang, F. W., Trackey, P. D., Verma, V., Mandes, G. T., Calabro, R. L., Presot, A. W., Tsay, C. K., Lawton, T. J., Zammit, A. S., Tang, E. M., Nguyen, A. Q., Munz, K. V., Nagelli, E. A., Bartolucci, S. F., Maurer, J. A., & Burpo, F. J. (2023). Cellulose Nanofiber–Alginate Biotemplated Cobalt Composite Multifunctional Aerogels for Energy Storage Electrodes. Gels, 9(11), 893. https://doi.org/10.3390/gels9110893