The Influence of Bubbles on Foamed Cement Viscosity Using an Extended Stokesian Dynamics Approach
Abstract
:1. Introduction
2. Methods
2.1. Model Assumptions
2.2. Stokesian Dynamics and Fast Lubrication Dynamics
2.3. Governing Equations
2.4. Bubble Interaction Modeling
2.5. Simulation Framework
2.6. Simulation Inputs
2.7. Implementation of the Shearing Flow
2.8. Calculation of Viscosity Ratio of Simulated Suspensions
3. Results
3.1. Foamed Cement Viscosity from Prior Experimental Results
3.1.1. Cement Rheology
3.1.2. Rheology of Foamed Cement
3.2. Viscosity Ratio of Suspensions
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
MDPI | Multidisciplinary Digital Publishing Institute |
FLD | Fast Lubrication Dynamics |
LAMMPS | Large-scale Atomic/Molecular Massively Parallel Simulator |
FYSA | Fann Yield Stress Adapter |
API | American Petroleum Institute |
References
- Frisch, G.J.; Services, H.E.; Graham, W.L. SPE 55649 Assessment of Foamed—Cement Slurries Using Conventional Cement Evaluation Logs and Improved Interpretation Methods. In Proceedings of the SPE Rocky Mountain Regional Meeting, Gillette, Wyoming, 15–18 May 1999. [Google Scholar]
- Rae, P. Cement Job Design. In Well Cementing; Nelson, E.B., Ed.; Schlumberger Educational Services: Sugar Land, TX, USA, 1990; Chapter 11; pp. 11.1–11.17. [Google Scholar]
- American Petroleum Institute. Isolating Potential Flow Zones During Well Construction—API Standard 65 Part 2; American Petroleum Institute: Washington, DC, USA, 2010. [Google Scholar]
- Benge, O.G.; McDermott, J.R.; Langlinais, J.C.; Griffith, J.E. Foamed cement job successful in deep HTHP offshore well. Oil Gas J. 1996, 94, 58–63. [Google Scholar]
- Bour, D.; Rickard, B. Application of Foamed Cement on Hawaiian Geothermal Well. Geotherm. Resour. Counc. Trans. 2000, 24, 55–60. [Google Scholar]
- O’Rourke, T.J.N.S.C.; Crombie, D.N.S.C. A Unique Solution to Zonal Isolation Utilizing Foam-Cement and Coiled-Tubing Technologies. In Proceedings of the SPE/ICoTA Coiled Tubing Roundtable, Houston, TX, USA, 25–26 May 1999. [Google Scholar]
- White, J.; Moore, S.; Miller, M.; Faul, R.; Services, H.E. IADC/SPE 59136 Foaming Cement as a Deterrent to Compaction Damage in Deepwater Production. In Proceedings of the 2000 IADC/SPE Drilling Conference, New Orleans, LA, USA, 23–25 February 2000. [Google Scholar]
- Dusterhoft, D.M. Foamed & Lightweight Cements. In Proceedings of the Canadian International Petroleum Conference, Calgary, AB, Canada, 10–12 June 2003. [Google Scholar]
- Economides, M.J. 1. Implications of Cementing on Well Performance. In Well Cementing; Nelson, E.B., Ed.; Schlumberger Educational Services: Sugar Land, TX, USA, 1990; Chapter 1; pp. 1.1–1.6. [Google Scholar]
- Nelson, E.B. Well Cementing; Elsevier: Oxford, UK, 1990; Volume 28. [Google Scholar]
- Loeffler, N. Foamed Cement: A Second Generation. In Proceedings of the Permian Basin Oil and Gas Recovery Conference, Midland, TX, USA, 8–9 March 1984. [Google Scholar]
- Griffith, J.E.; Lende, G.; Ravi, K.; Saasen, A.; Nø dland, N.E.; Jordal, O.H. Foam Cement Engineering and Implementation for Cement Sheath Integrity at High Temperature and High Pressure. In Proceedings of the IADC/SPE Drilling Conference, Dallas, TX, USA, 2–4 March 2004. [Google Scholar]
- Rosenbaum, E.; Massoudi, M.; Dayal, K. Effects of Polydispersity on Structuring and Rheology in Flowing Suspensions. J. Appl. Mech. 2019, 86, 081001. [Google Scholar] [CrossRef]
- Kutchko, B.; Crandall, D.; Gill, M.; McIntyre, D.; Spaulding, R.; Strazisar, B.; Rosenbaum, E.; Haljasmaa, I.; Benge, G.; Cunningham, E.; et al. Computed Tomography and Statistical Analysis of Bubble Size Distributions in Atmospheric-Generated Foamed Cement; Technical Report August; U.S. Department of Energy: Pittsburgh, PA, USA, 2013.
- Dalton, L.E.; Brown, S.; Moore, J.; Crandall, D.; Gill, M. Evolution Using CT Scanning: Insights from Elevated-Pressure Generation; SPE: Richardson, TX, USA, 2018; pp. 1–11. [Google Scholar]
- Rosenbaum, E.; Massoudi, M.; Dayal, K. Surfactant Stabilized Bubbles Flowing in a Newtonian Fluid. Math. Mech. Solids 2019. [Google Scholar] [CrossRef]
- Kutchko, B.; Crandall, D.; Moore, J.; Gill, M.; McIntyre, D.; Rosenbaum, E.; Haljasmaa, I.; Strazisar, B.; Spaulding, R.; Harbert, W.; et al. Field-Generated Foamed Cement: Initial Collection, Computed Tomography, and Analysis; Technical Report July; U.S. Department of Energy, National Energy Technology Laboratory: Pittsburgh, PA, USA, 2015.
- Brady, J. Stokesian Dynamics. Annu. Rev. Fluid Mech. 1988, 20, 111–157. [Google Scholar] [CrossRef]
- Bybee, M.D. Hydrodynamic Simulations of Colloidal Gels: Microstructure, Dynamics, and Rheology. Ph.D. Thesis, University of Illinois, Champaign County, IL, USA, 2009. [Google Scholar]
- Kumar, A. Microscale Dynamics in Suspensions of Non-Spherical Particles. Ph.D. Thesis, University of Illinois, Champaign County, IL, USA, 2010. [Google Scholar]
- Kim, S.; Karrila, S.J. Microhydrodynamics: Principles and Selected Applications, 2nd ed.; Dover Publications, Inc.: Mineola, NY, USA, 2005. [Google Scholar]
- Kumar, A.; Higdon, J.J.L. Origins of the anomalous stress behavior in charged colloidal suspensions under shear. Phys. Rev. Stat. Nonlinear Soft Matter Phys. 2010, 82, 1–7. [Google Scholar] [CrossRef]
- Bossis, G.; Brady, J.F. Dynamic simulations of sheared suspensions. {I.} General method. J. Chem. Phys. 1984, 80, 5141–5154. [Google Scholar] [CrossRef]
- Jeffrey, D.J.; Onishi, Y. Calculation of the resistance and mobility functions for two unequal rigid spheres in low-Reynolds-number flow. J. Fluid Mech. 1984, 139, 261. [Google Scholar] [CrossRef]
- Ball, R.; Melrose, J.R. A simulation technique for many spheres in quasi-static motion under frame-invariant pair drag and Brownian forces. Phys. Stat. Mech. Appl. 1997, 247, 444–472. [Google Scholar] [CrossRef]
- Bechinger, C.; Sciortino, F.; Ziherl, P. Physics of Complex Colloids; IOS Press: Washington, DC, USA, 2013. [Google Scholar]
- Rognon, P.G.; Einav, I.; Gay, C. Internal relaxation time in immersed particulate materials. Phys. Rev. Stat. Nonlinear Soft Matter Phys. 2010, 81, 1–9. [Google Scholar] [CrossRef]
- Tabakova, S.S.; Danov, K.D. Effect of disjoining pressure on the drainage and relaxation dynamics of liquid films with mobile interfaces. J. Colloid Interface Sci. 2009, 336, 273–284. [Google Scholar] [CrossRef] [PubMed]
- Rognon, P.G.; Einav, I.; Gay, C. Flowing resistance and dilatancy of dense suspensions: lubrication and repulsion. J. Fluid Mech. 2011, 689, 75–96. [Google Scholar] [CrossRef] [Green Version]
- LAMMPS Users Manual; Sandia National Laboratories: Washington, DC, USA, 2003.
- Davis, R.H.; Schonberg, J.; Rallison, J.M. The lubrication force between two viscous drops. Phys. Fluids Fluid Dyn. 1989, 77. [Google Scholar] [CrossRef]
- Rosenbaum, E. A Computational Study of Bubble Suspensions and Foamed Cement using Extended Stokesian Dynamics. Ph.D. Thesis, Carnegie Mellon University, Pittsburgh, PA, USA, 2019. [Google Scholar] [CrossRef]
- Dayal, K.; James, R.D. Nonequilibrium molecular dynamics for bulk materials and nanostructures. J. Mech. Phys. Solids 2010, 58, 145–163. [Google Scholar] [CrossRef]
- Tadmor, E.B.; Miller, R.E. Modeling Materials: Continuum, Atomistic and Multiscale Techniques; Cambridge University Press: Cambridge, UK, 2011. [Google Scholar]
- Guillot, D. Rheology of Well Cement Slurries. Dev. Pet. Sci. 1990, 28, 4-1–4-37. [Google Scholar] [CrossRef]
- Tao, C.; Kutchko, B.G.; Rosenbaum, E.; Wu, W.T.; Massoudi, M. Steady Flow of a Cement Slurry. Energies 2019, 12, 2604. [Google Scholar] [CrossRef]
- Roussel, N. Steady and transient flow behaviour of fresh cement pastes. Cem. Concr. Res. 2005, 35, 1656–1664. [Google Scholar] [CrossRef]
- Banfill, P.F.G. Rheology of Fresh Cement and Concrete. Rheol. Rev. 2006, 2006, 61–130. [Google Scholar] [CrossRef]
- de Rozieres, J.; Griffin, T.J. Chapter 14 Foamed Cements. In Well Cementing; Nelson, E.B., Ed.; 300 Schlumberger Drive; Schlumberger Educational Services: Sugar Land, TX, USA, 1990; pp. 14.1–14.19. [Google Scholar]
- Al-Mashat, A.M. Rheology of Foam Cement. Ph.D. Thesis, Colorado School of Mines, Golden, CO, USA, 1977. [Google Scholar]
- Ahmed, R.M.; Takach, N.E.; Khan, U.M.; Taoutaou, S.; James, S.; Saasen, A.; Godø y, R. Rheology of foamed cement. Cem. Concr. Res. 2009, 39, 353–361. [Google Scholar] [CrossRef]
- Olowolagba, K.O.; Brenneis, C. Techniques for the study of foamed cement rheology. In Proceedings of the SPE Production and Operations Conference and Exhibition. Society of Petroleum Engineers, Tunis, Tunisia, 8–10 June 2010. [Google Scholar]
- API 10B-4. Recommended Practice on Preparation and Testing of Foamed Cement Slurries at Atmospheric Pressure ANSI / API Recommended Practice 10B-4; Technical Report July; ISO: London, UK, 2004. [Google Scholar]
- Massoudi, M.; Wang, P. Slag behavior in gasifiers. Part II: Constitutive modeling of slag. Energies 2013, 6, 807–838. [Google Scholar] [CrossRef]
- Einstein, A. Investigations on the Theory of the Brownian Movement; Dover Publications: New York, NY, USA, 1956; Volume 58. [Google Scholar]
- Krieger, I.M.; Dougherty, T.J. A mechanism for non-Newtonian flow in suspensions of rigid spheres. Trans. Soc. Rheol. 1959, 3, 137–152. [Google Scholar] [CrossRef]
- Batchelor, G.; Green, J. The determination of the bulk stress in a suspension of spherical particles to order c 2. J. Fluid Mech. 1972, 56, 401–427. [Google Scholar] [CrossRef]
- Taylor, G.I. The viscosity of a fluid containing small drops of another fluid. Math. Phys. 1932, 138, 41–48. [Google Scholar] [CrossRef]
Coefficient | Monodisperse Particle | Polydisperse Particle | Monodisperse Bubble | Polydisperse Bubble |
---|---|---|---|---|
k | 7.463 | 3.578 | 2.479 | 0.4661 |
l | 0.1605 | 0.1609 | 0.1665 | 0.09995 |
m | 1.057 | 1.014 | 1.048 | 0.9535 |
n | 0.02799 | 0.02725 | 0.0281 | 0.0198 |
o | 0.9777 | 0.9 | 0.943 | 1.006 |
p | 0.007433 | 1.777 | 3.793 | 0.01958 |
q | 0.003042 | 0.003415 | 0.003393 | 0.001581 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rosenbaum, E.; Massoudi, M.; Dayal, K. The Influence of Bubbles on Foamed Cement Viscosity Using an Extended Stokesian Dynamics Approach. Fluids 2019, 4, 166. https://doi.org/10.3390/fluids4030166
Rosenbaum E, Massoudi M, Dayal K. The Influence of Bubbles on Foamed Cement Viscosity Using an Extended Stokesian Dynamics Approach. Fluids. 2019; 4(3):166. https://doi.org/10.3390/fluids4030166
Chicago/Turabian StyleRosenbaum, Eilis, Mehrdad Massoudi, and Kaushik Dayal. 2019. "The Influence of Bubbles on Foamed Cement Viscosity Using an Extended Stokesian Dynamics Approach" Fluids 4, no. 3: 166. https://doi.org/10.3390/fluids4030166
APA StyleRosenbaum, E., Massoudi, M., & Dayal, K. (2019). The Influence of Bubbles on Foamed Cement Viscosity Using an Extended Stokesian Dynamics Approach. Fluids, 4(3), 166. https://doi.org/10.3390/fluids4030166