Integration of Fluidic Nozzles in the New Low Emission Dual Fuel Combustion System for MGT Gas Turbines
Abstract
:1. Introduction
2. Dual-Fuel Combustor Design
2.1. Overview of the Combustor Design
2.2. Design of the Pilot Stage
3. Main Stage Injectors Design
3.1. Requirements for the Main Liquid-Fuel Stage
3.2. Investigations of Fluidic Oscillators
3.3. Integration of the Fluidic Injectors in the Main Stage of the Combustor
3.4. Main Stages Nozzles without Liquid Fuel Flow
4. Validation
4.1. Experimental Facilities
4.2. High Pressure Tests of Different Fluidic Nozzles as Main Stage
4.3. Performance of Serial Liquid-Fuel System at Engine Test
5. Summary and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lefebvre, A.H.; Ballal, D.R. Gas Turbine Combustion; CRC Press: Boca Raton, FL, USA, 2010. [Google Scholar]
- Lefebvre, A.H.; McDonell, V.G. Atomization and Sprays; CRC Press: Boca Raton, FL, USA, 2017; ISBN 9781498736268. [Google Scholar]
- Liu, Y.; Sun, X.; Sethi, V.; Nalianda, D.; Li, Y.G.; Wang, L. Review of modern low emissions combustion technologies for aero gas turbine engines. Prog. Aerosp. Sci. 2017, 94, 12–45. [Google Scholar] [CrossRef] [Green Version]
- Lindman, O.; Andersson, M.; Persson, M.; Munktell, E. Development of a liquid fuel combustion system for SGT-750. In Proceedings of the ASME Turbo Expo, Düsseldorf, Germany, 16–20 June 2014; Volume 4A. [Google Scholar]
- Zucca, A.; Khayrulin, S.; Vyazemskaya, N.; Shershnyov, B.; Myers, G. Development of a liquid fuel system for GE MS5002E gas turbine: Rig test validation of the combustor performance. In Proceedings of the ASME Turbo Expo, Düsseldorf, Germany, 16–20 June 2014. [Google Scholar]
- Zucca, A.; Asti, A.; Evulet, A.; Khayrulin, S.; Shershnyov, B.; Myers, G. Development of a simplified back-up liquid fuel system for a heavy duty industrial gas turbine. In Proceedings of the ASME Turbo Expo, Copenhagen, Denmark, 11–15 June 2012. [Google Scholar]
- Taylor, P.; McMILLAN, R.; Baker, D. Dual fuel DLE typhoon commercial operating experience and improvement upgrades. In Proceedings of the ASME Turbo Expo, Munich, Germany, 8–11 May 2000; Volume 2. [Google Scholar]
- Algner, M.; Engelbrecht, E.G.; Eroglu, A.; Hellat, J.; Syed, K.J. Development of an oil injection system optimised to the abb double cone burner. In Proceedings of the ASME Turbo Expo, Indianapolis, IN, USA, 7–10 June 1999. [Google Scholar]
- Steinbach, C.; Ruck, T.; Lloyd, J.; Jansohn, P.; Döbbeling, K.; Sattelmayer, T.; Strand, T. ABB’s advanced EV burner-A dual fuel dry low NOx burner for stationary gas turbines. In Proceedings of the ASME Turbo Expo, Stockholm, Sweden, 2–5 June 1998; Volume 3. [Google Scholar]
- Alkabie, H.; McMillan, R.; Noden, R.; Morris, C. Dual fuel dry low emissions (DLE) combustion system for the ABB ALSTOM POWER 13,4 MW cyclone gas turbine. In Proceedings of the ASME Turbo Expo, Munich, Germany, 8–11 May 2000; Volume 2. [Google Scholar]
- Røkke, P.E.; Hustad, J.E.; Røkke, N.A.; Svendsgaard, O.B. Technology update on gas turbine dual fuel, dry low emission combustion systems. In Turbo Expo: Power for Land, Sea, and Air; International Gas Turbine Institute, Turbo Expo (Publication) IGTI: Prague, Czech Republic, 2003. [Google Scholar]
- Lauer, G.; Meisl, J.; Belting, C.; Hoffmann, S. Further development of low-emissions oil combustion in the Vx4.3A hybrid burner. VGB PowerTech 2002, 82, 51–55. [Google Scholar]
- Cramb, D.J.; McMillan, R. Tempest dual fuel DLE development and commercial operating experience and ultra low NOx gas operation. In Proceedings of the ASME Turbo Expo, New Orleans, LA, USA, 4–7 June 2001; Volume 2, pp. 1–7. [Google Scholar]
- Ciani, A.; Eroglu, A.; Güthe, F.; Paikert, B. Full-scale atmospheric tests of sequential combustion. In Proceedings of the ASME Turbo Expo, Glasgow, UK, 14–18 June 2010; Volume 2, pp. 759–768. [Google Scholar]
- Gicquel, L.Y.M.; Staffelbach, G.; Poinsot, T. Large Eddy Simulations of gaseous flames in gas turbine combustion chambers. Prog. Energy Combust. Sci. 2012, 38, 782–817. [Google Scholar] [CrossRef] [Green Version]
- Westbrook, C.K.; Mizobuchi, Y.; Poinsot, T.J.; Smith, P.J.; Warnatz, J. Computational combustion. Proc. Combust. Inst. 2005, 30, 125–157. [Google Scholar] [CrossRef] [Green Version]
- Reiss, F.; Wiers, S.H.; Orth, U.; Aschenbruck, E.; Lauer, M.; Masalme, J. El Combustion system development and testing for MAN’s new industrial gas turbines MGT 6100 and MGT 6200. In Proceedings of the ASME Turbo Expo, Düsseldorf, Germany, 16–20 June 2014; Volume 4A. [Google Scholar]
- Aschenbruck, E.; Cagna, M.; Langusch, V.; Orth, U.; Spiegel, A.; Wiedermann, A.; Wiers, S.H. MAN’s new gas turbines for mechanical drive and power generation applications. In Proceedings of the ASME Turbo Expo, San Antonio, TX, USA, 3–7 June 2013; Volume 5B. [Google Scholar]
- Saidi, K.; Orth, U.; Boje, S.; Frekers, C. A comparative study of combined heat and power systems for a typical food industry application. In Proceedings of the ASME Turbo Expo, Düsseldorf, Germany, 16–20 June 2014; Volume 3A. [Google Scholar]
- Bobusch, B.C.; Woszidlo, R.; Bergada, J.M.; Nayeri, C.N.; Paschereit, C.O. Experimental study of the internal flow structures inside a fluidic oscillator. Exp. Fluids 2013, 54. [Google Scholar] [CrossRef]
- Yoshida, S.; Hassa, C.; Yamamoto, T.; Heinze, J.; Schroll, M. Influence of Fluidic Control in a Staged Lean Jet Engine Burner on Combustor Performance. Fluids 2019, 4, 188. [Google Scholar] [CrossRef]
- Bobusch, B.C.; Berndt, P.; Paschereit, C.O.; Klein, R. Investigation of fluidic devices for mixing enhancement for the shockless explosion combustion process. Notes Numer. Fluid Mech. Multidiscip. Des. 2014, 127, 281–297. [Google Scholar] [CrossRef] [Green Version]
- Lacarelle, A.; Paschereit, C.O. Increasing the passive scalar mixing quality of jets in crossflow with fluidics actuators. J. Eng. Gas Turbines Power 2012, 134. [Google Scholar] [CrossRef]
- Tomac, M.N. Novel jet impingement atomization by synchronizing the sweeping motion of the fluidic oscillators. J. Vis. 2020, 23, 373–375. [Google Scholar] [CrossRef]
- Raghu, S. Fluidic oscillators for flow control. Exp. Fluids 2013, 54, 1455. [Google Scholar] [CrossRef]
- Seele, R.; Tewes, P.; Woszidlo, R.; McVeigh, M.A.; Lucas, N.J.; Wygnanski, I.J. Discrete Sweeping Jets as Tools for Improving the Performance of the V-22. J. Aircr. 2009, 46, 2098–2106. [Google Scholar] [CrossRef]
- Raman, G.; Raghu, S. Cavity Resonance Suppression Using Miniature Fluidic Oscillators. AIAA J. 2004, 42, 2608–2612. [Google Scholar] [CrossRef]
- Ghanami, S.; Farhadi, M. Fluidic Oscillators’ Applications, Structures and Mechanisms-A review. Nano Micro Scales 2019, 7, 9–27. [Google Scholar] [CrossRef]
- Ostermann, F.; Woszidlo, R.; Nayeri, C.N.; Paschereit, C.O. Interaction Between a Crossflow and a Spatially Oscillating Jet at Various Angles. AIAA J. 2020, 58, 2450–2461. [Google Scholar] [CrossRef]
- Eroglu, A.; Breidenthal, R.E. Structure, Penetration, and Mixing of Pulsed Jets in Crossflow. AIAA J. 2001, 39, 417–423. [Google Scholar] [CrossRef]
- Ostermann, F.; Woszidlo, R.; Nayeri, C.N.; Paschereit, C.O. The interaction between a spatially oscillating jet emitted by a fluidic oscillator and a cross-flow. J. Fluid Mech. 2019, 863, 215–241. [Google Scholar] [CrossRef] [Green Version]
- Brandauer, M.; Schulz, A.; Wittig, S. Mechanisms of Coke Formation in Gas Turbine Combustion Chambers. In Proceedings of the ASME Turbo Expo, Houston, TX, USA, 5–8 June 1995; Volume 3, p. V003T06A005. [Google Scholar]
- Chin, J.S.; Lefebvre, A.H. Experimental study on hydrocarbon fuel thermal stability. J. Therm. Sci. 1992, 1, 70–74. [Google Scholar] [CrossRef]
- Bobusch, B.C.; Moeck, J.P.; Paschereit, C.O.; Sadig, S. Thermoacoustic stability analysis of a kerosene-fueled lean direct injection combustor employing acoustically and optically measured transfer matrices. In Proceedings of the ASME Turbo Expo, Copenhagen, Denmark, 11–15 June 2012; American Society of Mechanical Engineers Digital Collection: New York, NY, USA, 2012; Volume 2, pp. 781–794. [Google Scholar]
Purge Medium | Purge Scheme | Result |
---|---|---|
Water | 2 bar pressure pulse for 5 s | First coking after 40 runs |
Air | 2 bar pressure pulse for 5 s | First coking after 30 runs |
Air | Continuous | No coking, test aborted after 80 runs |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ćosić, B.; Waßmer, D.; Genin, F. Integration of Fluidic Nozzles in the New Low Emission Dual Fuel Combustion System for MGT Gas Turbines. Fluids 2021, 6, 129. https://doi.org/10.3390/fluids6030129
Ćosić B, Waßmer D, Genin F. Integration of Fluidic Nozzles in the New Low Emission Dual Fuel Combustion System for MGT Gas Turbines. Fluids. 2021; 6(3):129. https://doi.org/10.3390/fluids6030129
Chicago/Turabian StyleĆosić, Bernhard, Dominik Waßmer, and Franklin Genin. 2021. "Integration of Fluidic Nozzles in the New Low Emission Dual Fuel Combustion System for MGT Gas Turbines" Fluids 6, no. 3: 129. https://doi.org/10.3390/fluids6030129
APA StyleĆosić, B., Waßmer, D., & Genin, F. (2021). Integration of Fluidic Nozzles in the New Low Emission Dual Fuel Combustion System for MGT Gas Turbines. Fluids, 6(3), 129. https://doi.org/10.3390/fluids6030129