Electrical Capacitance Volume Tomography (ECVT) for Characterization of Additively Manufactured Lattice Structures (AMLS) in Gas-Liquid Systems
Abstract
:1. Introduction
2. Experimental Procedures
2.1. Measuring Technique
- permittivity of free space or vacuum
- relative permittivity of dielectric material
- the quantity of polarizability of the material (decisive for calculating the capacitance of a capacitor)
- dielectric losses due to friction
- position vector
- dielectric constant (permittivity distribution)
- potential distribution
- charge density
2.2. Experimental Setup
2.3. Visual Reference Method
- hR = liquid level during gas bubbling
- h0 = initial liquid level without gas bubbling
3. Results and Discussion
3.1. Case 1: Aerated System without Packing
3.2. Case 2: Aerated System with Packing
3.2.1. Gas Holdup Distribution for 6 mm Cubic Regular
3.2.2. Gas Holdup Distribution for 6 mm Cubic on the Tip
3.2.3. Gas Holdup Distribution for 5 mm Cubic on the Tip
3.2.4. Gas Holdup Distribution for 5 mm/6 mm Modified Cubic Structure Regular
3.3. Case 3: Aerated System with Co-Current Liquid Flow without Packing
3.4. Case 4: Aerated System with Co-Current Liquid Flow with Packing
3.4.1. Gas Holdup Distribution for 6 mm Cubic on the Tip
3.4.2. Gas Holdup Distribution for 5 mm Cubic on the Tip
3.4.3. Gas Holdup Distribution for 5 mm/6 mm Modified Cubic Structure Regular
3.5. Comparison with A2PS-B-POP
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Glossary
Symbols | ||
a | (m−1) | specific surface area |
(m2) | capacitor plate size area | |
(F) | capacitance | |
d32 | (mm) | Sauter mean diameter |
d | (mm) | column diameter |
(mm) | distance between the capacitor plates | |
h | (mm) | reactor height |
(Fm−1) | intensity vector | |
r | (mm) | radial position |
(-) | position vector | |
R | (-) | normalized radial position |
S | (-) | sensitivity matrix |
ub | (ms−1) | mean bubble velocity |
uG | (ms−1) | superficial gas velocity |
uL | (ms−1) | superficial liquid velocity |
(Lmin−1) | gas flow rate | |
Greek symbols | ||
εG | (-) | local gas holdup |
(Fm−1) | permittivity of free space or vacuum | |
(Fm−1) | relative permittivity of dielectric material | |
(Fm−1) | dielectric constant (permittivity distribution) | |
(Fm−1) | the quantity of polarizability of the material | |
(Fm−1) | dielectric losses due to friction | |
(Fm−1) | measuring vector | |
ϕ | (-) | dimensionless radius |
(-) | potential distribution | |
(Cm−3) | charge density | |
Sub- and Superscripts | ||
local | local | |
global | global | |
Abbreviations | ||
AC | Alternating-current | |
AMLS | Additively manufactured lattice structures | |
A2PS B-POP | A2 Photonic Sensors B-POP optical needle probe | |
ECT | Electrical capacitance tomography | |
ECVT | Electrical capacitance volume tomography | |
ERT | Electrical resistance tomography | |
HZDR | Helmholtz Zentrum Dresden Rossendorf | |
POCS | Periodic open-cell structures | |
VR | Visual reference |
References
- Chen, R.C.; Reese, J.; Fan, L.-S. Flow structure in a three-dimensional bubble column and three-phase fluidized bed. AIChE J. 1994, 40, 1093–1104. [Google Scholar] [CrossRef]
- Deckwer, W.-D. (Ed.) Reaktionstechnik in Blasensäulen; 1. Aufl.; Salle: Frankfurt am Main, Germany, 1985; ISBN 9783794126064. [Google Scholar]
- Roy, S.; Bauer, T.; Al-Dahhan, M.; Lehner, P.; Turek, T. Monoliths as multiphase reactors: A review. AIChE J. 2004, 50, 2918–2938. [Google Scholar] [CrossRef]
- Blaß, E.; Koch, K.-H. Strömungstechnische untersuchungen an einem blasensäulen-kaskadenreaktor bei gleichstrom von gas und flüssigkeit. Chem. Ing. Tech. 1972, 44, 913–921. [Google Scholar] [CrossRef]
- Dreher, A.J.; Krishna, R. Liquid-phase backmixing in bubble columns, structured by introduction of partition plates. Catal. Today 2001, 69, 165–170. [Google Scholar] [CrossRef]
- Therning, P.; Rasmuson, A. Liquid dispersion and gas holdup in packed bubble columns at atmospheric pressure. Chem. Eng. J. 2001, 81, 69–81. [Google Scholar] [CrossRef]
- Carleton, A.J.; Flain, R.J.; Rennie, J.; Valentin, F.H.H. Some properties of a packed bubble column. Chem. Eng. Sci. 1967, 22, 1839–1845. [Google Scholar] [CrossRef]
- Hölemann, K.; Czapla, F.; Kaibel, G. Fluiddynamik und Stofftransport in gepackten Blasensäulen. Chem. Ing. Tech. 2005, 77, 1814–1818. [Google Scholar] [CrossRef]
- Lesniak, A. Strukturierung von Blasensäulen; 1. Auflage; Verlag Dr. Hut: München, Germany, 2019; ISBN 978-3-8439-4113-6. [Google Scholar]
- Lesniak, A.K.; Grünewald, M. Influence of structured packings on local phase distribution in a semi-batch bubble column operated in the homogeneous regime. J. Chem. Eng. Jpn. 2018, 51, 366–372. [Google Scholar] [CrossRef]
- Hooshyar, N.; Vervloet, D.; Kapteijn, F.; Hamersma, P.J.; Mudde, R.F.; van Ommen, J.R. Intensifying the Fischer–Tropsch Synthesis by reactor structuring—A model study. Chem. Eng. J. 2012, 207–208, 865–870. [Google Scholar] [CrossRef]
- Miller, C.; Kaibel, G.; Benfer, R. Packungseinbauten—Neue anwendungen bei reaktivdestillationen und in reaktoren. Chem. Ing. Tech. 2004, 76, 730–733. [Google Scholar] [CrossRef]
- Salden, A.; Göbbel, H.-G.; Kaibel, G.; Kotrel, S. Blasensäulenreaktoren mit packungen. Chem. Ing. Tech. 2003, 75, 1045. [Google Scholar] [CrossRef]
- Parra-Cabrera, C.; Achille, C.; Kuhn, S.; Ameloot, R. 3D printing in chemical engineering and catalytic technology: Structured catalysts, mixers and reactors. Chem. Soc. Rev. 2018, 47, 209–230. [Google Scholar] [CrossRef] [PubMed]
- Inayat, A.; Klumpp, M.; Lämmermann, M.; Freund, H.; Schwieger, W. Development of a new pressure drop correlation for open-cell foams based completely on theoretical grounds: Taking into account strut shape and geometric tortuosity. Chem. Eng. J. 2016, 287, 704–719. [Google Scholar] [CrossRef]
- Bianchi, E.; Schwieger, W.; Freund, H. Assessment of periodic open cellular structures for enhanced heat conduction in catalytic fixed-bed reactors. Adv. Eng. Mater. 2016, 18, 608–614. [Google Scholar] [CrossRef]
- Busse, C.; Freund, H.; Schwieger, W. Intensification of heat transfer in catalytic reactors by additively manufactured periodic open cellular structures (POCS). Chem. Eng. Process.-Process. Intensif. 2018, 124, 199–214. [Google Scholar] [CrossRef]
- Do, G.; Geißelbrecht, M.; Schwieger, W.; Freund, H. Additive manufacturing of interpenetrating periodic open cellular structures (interPOCS) with in operando adjustable flow characteristics. Chem. Eng. Process.-Process. Intensif. 2020, 148, 107786. [Google Scholar] [CrossRef]
- Klumpp, M.; Inayat, A.; Schwerdtfeger, J.; Körner, C.; Singer, R.F.; Freund, H.; Schwieger, W. Periodic open cellular structures with ideal cubic cell geometry: Effect of porosity and cell orientation on pressure drop behavior. Chem. Eng. J. 2014, 242, 364–378. [Google Scholar] [CrossRef]
- Lämmermann, M.; Horak, G.; Schwieger, W.; Freund, H. Periodic open cellular structures (POCS) for intensification of multiphase reactors: Liquid holdup and two-phase pressure drop. Chem. Eng. Process.-Process. Intensif. 2018, 126, 178–189. [Google Scholar] [CrossRef]
- Lämmermann, M.; Schwieger, W.; Freund, H. Experimental investigation of gas-liquid distribution in periodic open cellular structures as potential catalyst supports. Catal. Today 2016, 273, 161–171. [Google Scholar] [CrossRef]
- Schwieger, W.; Machoke, A.G.; Weissenberger, T.; Inayat, A.; Selvam, T.; Klumpp, M.; Inayat, A. Hierarchy concepts: Classification and preparation strategies for zeolite containing materials with hierarchical porosity. Chem. Soc. Rev. 2016, 45, 3353–3376. [Google Scholar] [CrossRef] [Green Version]
- Spille, C.; Lyberis, A.; Maiwald, M.I.; Herzog, D.; Hoffmann, M.; Emmelmann, C.; Schlüter, M. SMART-Reactors: Tailoring gas holdup distribution by additively manufactured lattice structures. Chem. Eng. Technol. 2020, 43, 2053–2061. [Google Scholar] [CrossRef]
- Hu, X.; Spille, C.; Schlüter, M.; Smirnova, I. Smart structures: Additive manufacturing of smart materials for adaptive packings. Ind. Eng. Chem. Res. 2020, 59, 19458–19464. [Google Scholar] [CrossRef]
- Büscher, N.; Spille, C.; Kracht, J.K.; Sayoga, G.V.; Dawood, A.W.H.; Maiwald, M.I.; Herzog, D.; Schlüter, M.; Liese, A. Countercurrently operated reactive extractor with an additively manufactured enzyme carrier structure. Org. Process. Res. Dev. 2020, 24, 1621–1628. [Google Scholar] [CrossRef]
- Spille, C.; Hu, X.; Maiwald, M.I.; Herzog, D.; Hoffmann, M.; Emmelmann, C.; Smirnova, I.; Schlüter, M. SMART reactors: Intelligente additiv gefertigte strukturierte einbauten zur optimierung von Gas/Flüssig-Reaktionen. Chem. Ing. Tech. 2020, 92, 1328. [Google Scholar] [CrossRef]
- Eixenberger, D.; Büscher, N.; Hu, X.; Dawood, A.; Smirnova, I.; Liese, A. Smart reactors—Surface enhancement for enzyme immobilization on additively manufactured packings. Chem. Ing. Tech. 2020, 92, 1223. [Google Scholar] [CrossRef]
- Möller, C.-O.; Hoffmann, M.; Schlüter, M. Experimental study of mass transfer and local flow parameters of bubbly flows in Periodic Open Cell Structures (POCS). In Proceedings of the 3rd International Symposium on Multiscale Multiphase Process Engineering (MMPE), Toyama City, Japan, 8–11 May 2017. [Google Scholar]
- Hecht, C. Experimentelle Untersuchungen zum Einsatz Neuartig Strukturierter Einbauten in Blasensäulen-und Rieselphasenreaktoren. Ph.D Thesis, Ruhr Unviversity Bochum, Bochum, Germany, 2017. [Google Scholar]
- Hecht, C.; Grünewald, M. Erstes design und einsatz 3D-gedruckter strukturen in blasensäulenreaktoren. Chem. Ing. Tech. 2019, 91, 1273–1280. [Google Scholar] [CrossRef]
- Llamas, C.G.; Spille, C.; Kastens, S.; Paz, D.G.; Schlüter, M.; Kameke, A. Potential of lagrangian analysis methods in the study of chemical reactors. Chem. Ing. Tech. 2020, 92, 540–553. [Google Scholar] [CrossRef] [Green Version]
- Wagner, M.; Möller, C.-O.; Hessenkemper, H.; Bieberle, M.; Hampel, U.; Schlüter, M. Hydrodynamics in cellular grid packed bubble columns disclosed with ultrafast X-ray tomography. In Proceedings of the 8th World Congress on Industrial Process Tomography, Foz do Iguaçu, Brazil, 26–29 September 2016. [Google Scholar]
- Zuanon, N. B-POP: Phase Detection Optical Probe for Bubbly Flows-User Manual. Grenoble, France, 2013. Available online: https://pdf.directindustry.com/pdf/a2-photonic-sensors/b-pop-mono-optical-probe-bubbly-flow-analysis/65114-319159.html (accessed on 10 May 2021).
- Fransolet, E.; Crine, M.; L’Homme, G.; Toye, D.; Marchot, P. Analysis of electrical resistance tomography measurements obtained on a bubble column. Meas. Sci. Technol. 2001, 12, 1055–1060. [Google Scholar] [CrossRef]
- Wang, A.; Marashdeh, Q.; Fan, L.-S. ECVT imaging and model analysis of the liquid distribution inside a horizontally installed passive cyclonic gas–liquid separator. Chem. Eng. Sci. 2016, 141, 231–239. [Google Scholar] [CrossRef]
- Wang, A.; Marashdeh, Q.; Fan, L.-S. ECVT imaging of 3D spiral bubble plume structures in gas-liquid bubble columns. Can. J. Chem. Eng. 2014, 92, 2078–2087. [Google Scholar] [CrossRef]
- Wang, A.; Marashdeh, Q.; Motil, B.J.; Fan, L.-S. Electrical capacitance volume tomography for imaging of pulsating flows in a trickle bed. Chem. Eng. Sci. 2014, 119, 77–87. [Google Scholar] [CrossRef]
- Sines, J.N.; Hwang, S.; Marashdeh, Q.M.; Tong, A.; Wang, D.; He, P.; Straiton, B.J.; Zuccarelli, C.E.; Fan, L.-S. Slurry bubble column measurements using advanced electrical capacitance volume tomography sensors. Powder Technol. 2019, 355, 474–480. [Google Scholar] [CrossRef]
- Marashdeh, Q.; Warsito, W.; Fan, L.-S.; Teixeira, F.L. A nonlinear image reconstruction technique for ECT using a combined neural network approach. Meas. Sci. Technol. 2006, 17, 2097–2103. [Google Scholar] [CrossRef]
- Chowdhury, S.; Marashdeh, Q.M.; Teixeira, F.L. Velocity profiling of multiphase flows using capacitive sensor sensitivity gradient. IEEE Sens. J. 2016, 16, 8365–8373. [Google Scholar] [CrossRef]
- Marashdeh, Q.; Teixeira, F.L.; Fan, L.-S. Electrical capacitance tomography. In Industrial Tomography; Woodhead Publishing: Shaxton, UK, 2015; pp. 3–21. [Google Scholar] [CrossRef]
- Warsito, W.; Marashdeh, Q.; Fan, L.-S. Electrical capacitance volume tomography. IEEE Sens. J. 2007, 7, 525–535. [Google Scholar] [CrossRef]
- Deckwer, W.-D. (Ed.) Bubble Column Reactors; Wiley: Chichester, UK, 1992; ISBN 9780471918110. [Google Scholar]
- Ueyama, K.; Miyauchi, T. Properties of recirculating turbulent two phase flow in gas bubble columns. AIChE J. 1979, 25, 258–266. [Google Scholar] [CrossRef]
- Bothe, M. Experimental Analysis and Modeling of Industrial Two-Phase Flows in Bubble Column Reactors, 1st ed.; Cuvillier Verlag: Göttingen, Germany, 2016; ISBN 978-3-7369-9193-4. [Google Scholar]
Temperature T [°C] | Pressure p [Pa] × 102 | Superficial Liquid Velocity ul [m∙s−1] × 10−3 | Superficial Gas Velocity ug [m∙s−1] × 10−3 |
---|---|---|---|
20 ± 1 | 1013 ± 30 | {0, 8.8, 20} | {2.6, 5.2, 7.7, 10.3, 12.9, 15.5} |
Case: | Liquid Flow Mode: | Packing: |
---|---|---|
1 | Bubble Column | w/o POCS |
2 | Bubble Column | POCS |
3 | Co-current Flow | w/o POCS |
4 | Co-current Flow | POCS |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Spille, C.; Tholan, V.P.; Straiton, B.; Johannsen, M.; Hoffmann, M.; Marashdeh, Q.; Schlüter, M. Electrical Capacitance Volume Tomography (ECVT) for Characterization of Additively Manufactured Lattice Structures (AMLS) in Gas-Liquid Systems. Fluids 2021, 6, 321. https://doi.org/10.3390/fluids6090321
Spille C, Tholan VP, Straiton B, Johannsen M, Hoffmann M, Marashdeh Q, Schlüter M. Electrical Capacitance Volume Tomography (ECVT) for Characterization of Additively Manufactured Lattice Structures (AMLS) in Gas-Liquid Systems. Fluids. 2021; 6(9):321. https://doi.org/10.3390/fluids6090321
Chicago/Turabian StyleSpille, Claas, Vaishakh Prasannan Tholan, Benjamin Straiton, Monika Johannsen, Marko Hoffmann, Qussai Marashdeh, and Michael Schlüter. 2021. "Electrical Capacitance Volume Tomography (ECVT) for Characterization of Additively Manufactured Lattice Structures (AMLS) in Gas-Liquid Systems" Fluids 6, no. 9: 321. https://doi.org/10.3390/fluids6090321
APA StyleSpille, C., Tholan, V. P., Straiton, B., Johannsen, M., Hoffmann, M., Marashdeh, Q., & Schlüter, M. (2021). Electrical Capacitance Volume Tomography (ECVT) for Characterization of Additively Manufactured Lattice Structures (AMLS) in Gas-Liquid Systems. Fluids, 6(9), 321. https://doi.org/10.3390/fluids6090321