Adaptive Free-Form Deformation Parameterization Based on Spring Analogy Method for Aerodynamic Shape Optimization
Abstract
:1. Introduction
2. Methodology
2.1. Optimization Frame
2.2. The Adaptive FFD Parameterization Strategy Based on the Spring Analogy Method
2.2.1. Spring Analogy Method
2.2.2. Verification of Control Points Adaptive Spline Curve Fitting Capability
- B-spline Curve fitting
- b.
- Verification test
2.2.3. Optimization Process for Adaptive Control Point Parameterization Based on FFD
3. Optimization Results
3.1. Optimization Design of RAE2822 Airfoil Based on Adaptive FFD Parameterization Method
3.1.1. Uniform FFD Control Point
3.1.2. Adaptive FFD Control Point
3.2. From NACA0012 to RAE2822
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Martins, J.R. Aerodynamic design optimization: Challenges and perspectives. Comput. Fluids 2022, 239, 105391. [Google Scholar] [CrossRef]
- Kim, J.E.; Rao, V.N.; Koomullil, R.P.; Ross, D.H.; Soni, B.K.; Shih, A.M. Development of an efficient aerodynamic shape optimization framework. Math. Comput. Simul. 2009, 79, 2373–2384. [Google Scholar] [CrossRef]
- Nejat, A.; Mirzabeygi, P.; Shariat Panahi, M. Airfoil shape optimization using improved Multiobjective Territorial Particle Swarm algorithm with the objective of improving stall characteristics. Struct. Multidiscip. Optim. 2014, 49, 953–967. [Google Scholar] [CrossRef]
- Yiğit, S.; Abuhanieh, S.; Biçer, B. An Open-Source Aerodynamic Shape Optimization Application for an Unmanned Aerial Vehicle (UAV) Propeller: An open-source aerodynamic shape optimization application. J. Aeronaut. Space Technol. 2022, 15, 1–12. [Google Scholar]
- Li, J.; Du, X.; Martins, J.R. Machine learning in aerodynamic shape optimization. Prog. Aerosp. Sci. 2022, 134, 100849. [Google Scholar] [CrossRef]
- Raul, V.; Leifsson, L. Surrogate-based aerodynamic shape optimization for delaying airfoil dynamic stall using Kriging regression and infill criteria. Aerosp. Sci. Technol. 2021, 111, 106555. [Google Scholar] [CrossRef]
- Han, Z.H.; Abu-Zurayk, M.; Görtz, S.; Ilic, C. Surrogate-based aerodynamic shape optimization of a wing-body transport aircraft configuration. In Proceedings of the AeroStruct: Enable and Learn How to Integrate Flexibility in Design: Contributions to the Closing Symposium of the German Research Initiative AeroStruct, Braunschweig, Germany, 13–14 October 2015; Springer: Berlin/Heidelberg, Germany, 2018; pp. 257–282. [Google Scholar]
- Skinner, S.N.; Zare-Behtash, H. State-of-the-art in aerodynamic shape optimisation methods. Appl. Soft Comput. 2018, 62, 933–962. [Google Scholar] [CrossRef]
- Kenway, G.K.; Martins, J.R. Multipoint aerodynamic shape optimization investigations of the common research model wing. AIAA J. 2016, 54, 113–128. [Google Scholar] [CrossRef]
- Lyu, Z.; Martins, J.R. Aerodynamic shape optimization of an adaptive morphing trailing-edge wing. J. Aircr. 2015, 52, 1951–1970. [Google Scholar] [CrossRef]
- Jameson, A.; Kim, S. Reduction of the adjoint gradient formula for aerodynamic shape optimization problems. AIAA J. 2003, 41, 2114–2129. [Google Scholar] [CrossRef]
- He, X.; Li, J.; Mader, C.A.; Yildirim, A.; Martins, J.R. Robust aerodynamic shape optimization—from a circle to an airfoil. Aerosp. Sci. Technol. 2019, 87, 48–61. [Google Scholar] [CrossRef]
- Masters, D.A.; Taylor, N.J.; Rendall, T.; Allen, C.B.; Poole, D.J. Geometric comparison of aerofoil shape parameterization methods. AIAA J. 2017, 55, 1575–1589. [Google Scholar] [CrossRef]
- Wu, X.; Zhang, W.; Peng, X.; Wang, Z. Benchmark aerodynamic shape optimization with the POD-based CST airfoil parametric method. Aerosp. Sci. Technol. 2019, 84, 632–640. [Google Scholar] [CrossRef]
- Anderson, G.R.; Aftosmis, M.J. Adaptive Shape Parameterization for Aerodynamic Design; NASA Technical Report NAS-2015-02; National Aeronautics and Space Administration, Ames Research Center: Moffett Field, CA, USA, 2015.
- Désidéri, J.A.; Abou El Majd, B.; Janka, A. Nested and self-adaptive Bézier parameterizations for shape optimization. J. Comput. Phys. 2007, 224, 117–131. [Google Scholar] [CrossRef]
- Abou El Majd, B.; Duvigneau, R.; Désidéri, J.A. Aerodynamic shape optimization using a full and adaptive multilevel algorithm. In Proceedings of the ERCOFTAC Conference Design Optimization: Methods and Applications, Canary Island, Spain, 31 March–2 April 2004. [Google Scholar]
- Han, X.; Zingg, D.W. An adaptive geometry parametrization for aerodynamic shape optimization. Optim. Eng. 2014, 15, 69–91. [Google Scholar] [CrossRef]
- Yu, Y.; Lyu, Z.; Xu, Z.; Martins, J.R. On the influence of optimization algorithm and initial design on wing aerodynamic shape optimization. Aerosp. Sci. Technol. 2018, 75, 183–199. [Google Scholar] [CrossRef]
- Yang, G.; Da Ronch, A.; Drofelnik, J.; Xie, Z.T. Sensitivity assessment of optimal solution in aerodynamic design optimisation using SU2. Aerosp. Sci. Technol. 2018, 81, 362–374. [Google Scholar] [CrossRef]
- Allmaras, S.R.; Johnson, F.T. Modifications and clarifications for the implementation of the Spalart–Allmaras turbulence model. In Proceedings of the Seventh International Conference on Computational Fluid Dynamics (ICCFD7), Big Island, HI, USA, 9–13 July 2012; Volume 1902, pp. 1–11. [Google Scholar]
- Shima, E.; Kitamura, K.; Haga, T. Green–gauss/weighted-least-squares hybrid gradient reconstruction for arbitrary polyhedra unstructured grids. AIAA J. 2013, 51, 2740–2747. [Google Scholar] [CrossRef]
- Saad, Y. A flexible inner-outer preconditioned GMRES algorithm. SIAM J. Sci. Comput. 1993, 14, 461–469. [Google Scholar] [CrossRef]
- Lyu, Z.; Xu, Z.; Martins, J. Benchmarking optimization algorithms for wing aerodynamic design optimization. In Proceedings of the 8th International Conference on Computational Fluid Dynamics, Chengdu, China, 11–13 November 2014; Volume 11, p. 585. [Google Scholar]
- Gnoffo, P. A finite-volume, adaptive grid algorithm applied to planetary entry flowfields. AIAA J. 1983, 21, 1249–1254. [Google Scholar] [CrossRef]
- Nakahashi, K.; Deiwert, G.S. Self-adaptive-grid method with application to airfoil flow. AIAA J. 1987, 25, 513–520. [Google Scholar] [CrossRef]
Function/Variable Description | Quantity | ||
---|---|---|---|
Minimize | Drag coefficient | - | |
With respect to | Angle of attack | 1/1/1 | |
z | FFD control point z-coordinates | 6/12/24 | |
Subject to | = 0.824 | Lift coefficient constraint | 1 |
Moment coefficient constraint | 1 | ||
Area constraint | 1 |
Level | Mesh Cells Quantity | |||
---|---|---|---|---|
1 | 3205 | 3.01 | 0.022083 | −0.093304 |
2 | 7698 | 2.94 | 0.021246 | −0.094703 |
3 | 12,537 | 3.24 | 0.023112 | −0.085896 |
4 | 23,426 | 3.22 | 0.022827 | −0.086603 |
5 | 29,812 | 3.20 | 0.022580 | −0.086949 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, J.; Wu, X.; Jia, H.; Yu, J. Adaptive Free-Form Deformation Parameterization Based on Spring Analogy Method for Aerodynamic Shape Optimization. Fluids 2024, 9, 256. https://doi.org/10.3390/fluids9110256
Zhou J, Wu X, Jia H, Yu J. Adaptive Free-Form Deformation Parameterization Based on Spring Analogy Method for Aerodynamic Shape Optimization. Fluids. 2024; 9(11):256. https://doi.org/10.3390/fluids9110256
Chicago/Turabian StyleZhou, Jinxin, Xiaojun Wu, Hongyin Jia, and Jing Yu. 2024. "Adaptive Free-Form Deformation Parameterization Based on Spring Analogy Method for Aerodynamic Shape Optimization" Fluids 9, no. 11: 256. https://doi.org/10.3390/fluids9110256
APA StyleZhou, J., Wu, X., Jia, H., & Yu, J. (2024). Adaptive Free-Form Deformation Parameterization Based on Spring Analogy Method for Aerodynamic Shape Optimization. Fluids, 9(11), 256. https://doi.org/10.3390/fluids9110256