Fokker-Planck Central Moment Lattice Boltzmann Method for Effective Simulations of Fluid Dynamics
Abstract
:1. Introduction
2. Construction and Analysis of 2D Central Moment Fokker-Planck Collision Model of Boltzmann Equation and 2D FPC-LBM
2.1. Choice of Diffusion Tensor Parameter
2.2. Selected Continuous Markovian Central Moment Attractors in 2D
2.3. Central Moment of Boltzmann’s Acceleration Term Due to Body Force in 2D
2.4. Construction of 2D FPC-LBM
3. Construction and Analysis of 3D Central Moment Fokker-Planck Collision Model of Boltzmann Equation and 3D FPC-LBM
3.1. Choice of Diffusion Tensor Parameter
3.2. Selected Continuous Markovian Central Moment Attractors in 3D
3.3. Central Moment of Boltzmann’s Acceleration Term Due to Body Force in 3D
3.4. Construction of 3D FPC-LBM
4. Results and Discussion
4.1. Two-Dimensional Lid-Driven Square Cavity Flow: An Accuracy Study
4.2. Doubly Periodic Shear Layers: Numerical Performance Study
4.3. Three-Dimensional Lid-Driven Cubic Cavity Flow: An Accuracy Study
4.4. Three-Dimensional Lid-Driven Cubic Cavity Flow: A Stability Study
4.5. Orthogonal Crossing Shear Waves: A Numerical Hyperviscosity Study
4.6. Fully Developed Turbulent Channel Flow: Demonstration Case Study of FPC-LBM for Turbulence Simulations
5. Summary and Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Chapman-Enskog Analysis of 2D Central Moment Formulation of the Boltzmann Equation with Fokker-Planck Collision Model
Appendix B. Algorithmic Details of 2D FPC-LBM Using the D2Q9 Lattice
Appendix C. Chapman-Enskog Analysis of 3D Central Moment Formulation of the Boltzmann Equation with Fokker-Planck Collision Model
Appendix D. Algorithmic Details of 3D FPC-LBM Using the D3Q27 Lattice
References
- Benzi, R.; Succi, S.; Vergassola, M. The lattice Boltzmann equation: Theory and applications. Phys. Rep. 1992, 222, 145–197. [Google Scholar] [CrossRef]
- Chen, S.; Doolen, G.D. Lattice Boltzmann method for fluid flows. Annu. Rev. Fluid Mech. 1998, 30, 329–364. [Google Scholar] [CrossRef]
- Aidun, C.K.; Clausen, J.R. Lattice-Boltzmann method for complex flows. Annu. Rev. Fluid Mech. 2010, 42, 439–472. [Google Scholar] [CrossRef]
- Lallemand, P.; Luo, L.s.; Krafczyk, M.; Yong, W.A. The lattice Boltzmann method for nearly incompressible flows. J. Comput. Phys. 2021, 431, 109713. [Google Scholar] [CrossRef]
- He, X.; Luo, L.S. Theory of the lattice Boltzmann method: From the Boltzmann equation to the lattice Boltzmann equation. Phys. Rev. E 1997, 56, 6811. [Google Scholar] [CrossRef]
- Qian, Y.H.; d’Humières, D.; Lallemand, P. Lattice BGK models for Navier-Stokes equation. EPL (Europhys. Lett.) 1992, 17, 479. [Google Scholar] [CrossRef]
- d’Humieres, D. Generalized lattice-Boltzmann equations. In Rarefied Gas Dynamics; AIAA: Reston, VA, USA, 1992; Available online: https://arc.aiaa.org/doi/10.2514/5.9781600866319.0450.0458 (accessed on 23 October 2024).
- d’Humieres, D. Multiple–relaxation–time lattice Boltzmann models in three dimensions. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 2002, 360, 437–451. [Google Scholar] [CrossRef]
- Geier, M.; Greiner, A.; Korvink, J.G. Cascaded digital lattice Boltzmann automata for high Reynolds number flow. Phys. Rev. E 2006, 73, 066705. [Google Scholar] [CrossRef]
- Geier, M.; Greiner, A.; Korvink, J.G. A factorized central moment lattice Boltzmann method. Eur. Phys. J. Spec. Top. 2009, 171, 55–61. [Google Scholar] [CrossRef]
- Geier, M.; Schönherr, M.; Pasquali, A.; Krafczyk, M. The cumulant lattice Boltzmann equation in three dimensions: Theory and validation. Comput. Math. Appl. 2015, 70, 507–547. [Google Scholar] [CrossRef]
- Chandrasekhar, S. Stochastic problems in physics and astronomy. Rev. Mod. Phys. 1943, 15, 1. [Google Scholar] [CrossRef]
- Wang, M.C.; Uhlenbeck, G.E. On the theory of the Brownian motion II. Rev. Mod. Phys. 1945, 17, 323. [Google Scholar] [CrossRef]
- Landau, L.; Lifshitz, E. Course of Theoretical Physics; Volume 5: Statistical Physics. Part 1; Elsevier Science: Oxford, UK, 1980. [Google Scholar]
- Van Kampen, N.G. Stochastic Processes in Physics and Chemistry; Elsevier: Amsterdam, The Netherlands, 1992; Volume 1. [Google Scholar]
- Gardiner, C. Stochastic Methods; Springer: Berlin/Heidelberg, Germany, 2009; Volume 4. [Google Scholar]
- Hornerkamp, J. Statistical Physics: An Advanced Approach with Applications; Springer: Berlin/Heidelberg, Germany, 2002. [Google Scholar]
- Ebeling, W.; Sokolov, I.M. Statistical Thermodynamics and Stochastic Theory of Nonequilibrium Systems; World Scientific: Singapore, 2005; Volume 8. [Google Scholar]
- Gillespie, D.T.; Seitaridou, E. Simple Brownian Diffusion: An Introduction to the Standard Theoretical Models; Oxford University Press: Oxford, UK, 2013. [Google Scholar]
- Romanczuk, P.; Bär, M.; Ebeling, W.; Lindner, B.; Schimansky-Geier, L. Active brownian particles. Eur. Phys. J. Spec. Top. 2012, 202, 1–162. [Google Scholar] [CrossRef]
- Libchaber, A. From Biology to Physics and Back: The Problem of Brownian Movement. Annu. Rev. Condens. Matter Phys. 2019, 10, 275–293. [Google Scholar] [CrossRef]
- Kubo, R. Brownian motion and nonequilibrium statistical mechanics. Science 1986, 233, 330–334. [Google Scholar] [CrossRef]
- Frey, E.; Kroy, K. Brownian motion: A paradigm of soft matter and biological physics. Ann. Phys. 2005, 14, 20–50. [Google Scholar] [CrossRef]
- Coffey, W.; Kalmykov, Y.P. The Langevin Equation: With Applications to Stochastic Problems in Physics, Chemistry and Electrical Engineering; World Scientific: Singapore, 2012; Volume 27. [Google Scholar]
- Risken, H. Fokker-planck equation. In The Fokker-Planck Equation; Springer: Berlin/Heidelberg, Germany, 1996; pp. 63–95. [Google Scholar]
- Frank, T.D. Nonlinear Fokker-Planck Equations: Fundamentals and Applications; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2005. [Google Scholar]
- Klimontovich, Y.L. Statistical Theory of Open Systems: Volume 1: A Unified Approach to Kinetic Description of Processes in Active Systems; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012; Volume 67. [Google Scholar]
- Peinke, J.; Tabar, M.R.; Wächter, M. TheFokker-Planck approach to complex spatiotemporal disordered systems. Annu. Rev. Condens. Matter Phys. 2019, 10, 107–132. [Google Scholar] [CrossRef]
- Friedrich, R.; Peinke, J.; Sahimi, M.; Tabar, M.R.R. Approaching complexity by stochastic methods: From biological systems to turbulence. Phys. Rep. 2011, 506, 87–162. [Google Scholar] [CrossRef]
- Kirkwood, J.G. The statistical mechanical theory of transport processes I. General theory. J. Chem. Phys. 1946, 14, 180–201. [Google Scholar] [CrossRef]
- Kirkwood, J.G.; Buff, F.P.; Green, M.S. The statistical mechanical theory of transport processes. III. The coefficients of shear and bulk viscosity of liquids. J. Chem. Phys. 1949, 17, 988–994. [Google Scholar] [CrossRef]
- Zwanzig, R.W.; Kirkwood, J.G.; Stripp, K.F.; Oppenheim, I. The statistical mechanical theory of transport processes. VI. A calculation of the coefficients of shear and bulk viscosity of liquids. J. Chem. Phys. 1953, 21, 2050–2055. [Google Scholar] [CrossRef]
- Zwanzig, R.W.; Kirkwood, J.G.; Oppenheim, I.; Alder, B.J. Statistical mechanical theory of transport processes. VII. The coefficient of thermal conductivity of monatomic liquids. J. Chem. Phys. 1954, 22, 783–790. [Google Scholar] [CrossRef]
- Heinz, S. Molecular to fluid dynamics: The consequences of stochastic molecular motion. Phys. Rev. E 2004, 70, 036308. [Google Scholar] [CrossRef]
- Lebowitz, J.; Frisch, H.; Helfand, E. Nonequilibrium distribution functions in a fluid. Phys. Fluids 1960, 3, 325–338. [Google Scholar] [CrossRef]
- Cercignani, C. The Boltzmann Equation and Its Applications; Springer: New York, NY, USA, 1988. [Google Scholar]
- Kampen, N.v. A power series expansion of the master equation. Can. J. Phys. 1961, 39, 551–567. [Google Scholar] [CrossRef]
- Desloge, E.A. Fokker-Planck Equation. Am. J. Phys. 1963, 31, 237–246. [Google Scholar] [CrossRef]
- Lewis, M. The Boltzmann and Fokker-Planck Equations. In Kinetic Processes in Gases and Plasmas; Elsevier Science: Amsterdam, The Netherlands, 1969; p. 115. [Google Scholar]
- Gombosi, T.I. Gaskinetic Theory; Number 9; Cambridge University Press: New York, NY, USA, 1994. [Google Scholar]
- Liboff, R.L. Kinetic Theory: Classical, Quantum, and Relativistic Descriptions; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2003. [Google Scholar]
- Pawula, R. Approximation of the linear Boltzmann equation by the Fokker-Planck equation. Phys. Rev. 1967, 162, 186. [Google Scholar] [CrossRef]
- Grad, H. Principles of the kinetic theory of gases. In Thermodynamik der Gase/Thermodynamics of Gases; Springer: Berlin/Heidelberg, Germany, 1958; pp. 205–294. [Google Scholar]
- Boltzmann, L. Lectures on Gas Theory; Brush, S.G., Translator; University of California Press: Berkeley, CA, USA, 1964. [Google Scholar]
- Bhatnagar, P.L.; Gross, E.P.; Krook, M. A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems. Phys. Rev. 1954, 94, 511. [Google Scholar] [CrossRef]
- Jenny, P.; Torrilhon, M.; Heinz, S. A solution algorithm for the fluid dynamic equations based on a stochastic model for molecular motion. J. Comput. Phys. 2010, 229, 1077–1098. [Google Scholar] [CrossRef]
- Gorji, M.H.; Torrilhon, M.; Jenny, P. Fokker-Planck model for computational studies of monatomic rarefied gas flows. J. Fluid Mech. 2011, 680, 574–601. [Google Scholar] [CrossRef]
- Gorji, M.H.; Jenny, P. A Fokker-Planck based kinetic model for diatomic rarefied gas flows. Phys. Fluids 2013, 25, 062002. [Google Scholar] [CrossRef]
- Singh, S.; Ansumali, S. Fokker-Planck model of hydrodynamics. Phys. Rev. E 2015, 91, 033303. [Google Scholar] [CrossRef]
- Singh, S.; Thantanapally, C.; Ansumali, S. Gaseous microflow modeling using the Fokker-Planck equation. Phys. Rev. E 2016, 94, 063307. [Google Scholar] [CrossRef]
- Mathiaud, J.; Mieussens, L. A Fokker-Planck model of the Boltzmann equation with correct Prandtl number. J. Stat. Phys. 2016, 162, 397–414. [Google Scholar] [CrossRef]
- Mathiaud, J.; Mieussens, L. A Fokker-Planck model of the Boltzmann equation with correct Prandtl number for polyatomic gases. J. Stat. Phys. 2017, 168, 1031–1055. [Google Scholar] [CrossRef]
- Sadr, M.; Gorji, M. A continuous stochastic model for non-equilibrium dense gases. Phys. Fluids 2017, 29, 122007. [Google Scholar] [CrossRef]
- Jiang, Y.; Gao, Z.; Lee, C.H. Particle simulation of nonequilibrium gas flows based on ellipsoidal statistical Fokker-Planck model. Comput. Fluids 2018, 170, 106–120. [Google Scholar] [CrossRef]
- Jun, E.; Pfeiffer, M.; Mieussens, L.; Gorji, M.H. Comparative study between cubic and ellipsoidal Fokker-Planck kinetic models. AIAA J. 2019, 57, 2524–2533. [Google Scholar] [CrossRef]
- Moroni, D.; Rotenberg, B.; Hansen, J.P.; Succi, S.; Melchionna, S. Solving the Fokker-Planck kinetic equation on a lattice. Phys. Rev. E 2006, 73, 066707. [Google Scholar] [CrossRef]
- Moroni, D.; Hansen, J.P.; Melchionna, S.; Succi, S. On the use of lattice Fokker-Planck models for hydrodynamics. EPL (Europhys. Lett.) 2006, 75, 399. [Google Scholar] [CrossRef]
- Ammar, A. Lattice Boltzmann method for polymer kinetic theory. J. Non-Newton. Fluid Mech. 2010, 165, 1082–1092. [Google Scholar] [CrossRef]
- Singh, S.; Subramanian, G.; Ansumali, S. Lattice Fokker Planck for dilute polymer dynamics. Phys. Rev. E 2013, 88, 013301. [Google Scholar] [CrossRef]
- Lewis, E. Lattice Boltzmann Methods for Flows of Complex Fluids. Ph.D. Thesis, Cardiff University, Cardiff, UK, 2017. [Google Scholar]
- Taylor, G.I. Dispersion of soluble matter in solvent flowing slowly through a tube. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 1953, 219, 186–203. [Google Scholar]
- Aris, R. On the dispersion of a solute in a fluid flowing through a tube. Proc. R. Soc. Lond. Ser. Math. Phys. Sci. 1956, 235, 67–77. [Google Scholar]
- Kremer, G.M. An Introduction to the Boltzmann Equation and Transport Processes in Gases; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Premnath, K.N.; Banerjee, S. Inertial Frame Independent Forcing for Discrete Velocity Boltzmann Equation: Implications for Filtered Turbulence Simulation. Commun. Comput. Phys. 2012, 12, 732–766. [Google Scholar] [CrossRef]
- He, X.; Chen, S.; Doolen, G.D. A novel thermal model for the lattice Boltzmann method in incompressible limit. J. Comput. Phys. 1998, 146, 282–300. [Google Scholar] [CrossRef]
- He, X.; Chen, S.; Zhang, R. A lattice Boltzmann scheme for incompressible multiphase flow and its application in simulation of Rayleigh-Taylor instability. J. Comput. Phys. 1999, 152, 642–663. [Google Scholar] [CrossRef]
- Yahia, E.; Premnath, K.N. Central moment lattice Boltzmann method on a rectangular lattice. Phys. Fluids 2021, 33, 057110. [Google Scholar] [CrossRef]
- Yahia, E.; Schupbach, W.; Premnath, K.N. Three-dimensional central moment lattice Boltzmann method on a cuboid lattice for anisotropic and inhomogeneous flows. Fluids 2021, 6, 326. [Google Scholar] [CrossRef]
- Ghia, U.; Ghia, K.N.; Shin, C. High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method. J. Comput. Phys. 1982, 48, 387–411. [Google Scholar] [CrossRef]
- Minion, M.L.; Brown, D.L. Performance of under-resolved two-dimensional incompressible flow simulations, II. J. Comput. Phys. 1997, 138, 734–765. [Google Scholar] [CrossRef]
- Ku, H.C.; Hirsh, R.S.; Taylor, T.D. A pseudospectral method for solution of the three-dimensional incompressible Navier-Stokes equations. J. Comput. Phys. 1987, 70, 439–462. [Google Scholar] [CrossRef]
- Shu, C.; Wang, L.; Chew, Y. Numerical computation of three-dimensional incompressible Navier–Stokes equations in primitive variable form by DQ method. Int. J. Numer. Methods Fluids 2003, 43, 345–368. [Google Scholar] [CrossRef]
- Adam, S.; Premnath, K.N. Numerical investigation of the cascaded central moment lattice Boltzmann method for non-Newtonian fluid flows. J. Non-Newton. Fluid Mech. 2019, 274, 104188. [Google Scholar] [CrossRef]
- Lee, M.; Moser, R.D. Direct numerical simulation of turbulent channel flow up to. J. Fluid Mech. 2015, 774, 395–415. [Google Scholar] [CrossRef]
- Premnath, K.N.; Pattison, M.J.; Banerjee, S. Generalized lattice Boltzmann equation with forcing term for computation of wall-bounded turbulent flows. Phys. Rev. E 2009, 79, 026703. [Google Scholar] [CrossRef]
- Kreplin, H.P.; Eckelmann, H. Behavior of the three fluctuating velocity components in the wall region of a turbulent channel flow. Phys. Fluids 1979, 22, 1233–1239. [Google Scholar] [CrossRef]
- Premnath, K. Chapman-Enskog Analysis of the Central Moment System of the Boltzmann Equation and Its Applications to the Construction of Central Moment Lattice Boltzmann Methods; Technical Report; University of Colorado Denver: Denver, CO, USA, 2019. [Google Scholar]
Vortex | Model | ||||
---|---|---|---|---|---|
PV | FPC-LBM | ||||
PV | Ghia et al. | ||||
BR1 | FPC-LBM | ||||
BR1 | Ghia et al. | ||||
BR2 | FPC-LBM | ||||
BR2 | Ghia et al. | ||||
BL | FPC-LBM | ||||
BL | Ghia et al. | ||||
TL | FPC-LBM | ||||
TL | Ghia et al. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schupbach, W.; Premnath, K. Fokker-Planck Central Moment Lattice Boltzmann Method for Effective Simulations of Fluid Dynamics. Fluids 2024, 9, 255. https://doi.org/10.3390/fluids9110255
Schupbach W, Premnath K. Fokker-Planck Central Moment Lattice Boltzmann Method for Effective Simulations of Fluid Dynamics. Fluids. 2024; 9(11):255. https://doi.org/10.3390/fluids9110255
Chicago/Turabian StyleSchupbach, William, and Kannan Premnath. 2024. "Fokker-Planck Central Moment Lattice Boltzmann Method for Effective Simulations of Fluid Dynamics" Fluids 9, no. 11: 255. https://doi.org/10.3390/fluids9110255
APA StyleSchupbach, W., & Premnath, K. (2024). Fokker-Planck Central Moment Lattice Boltzmann Method for Effective Simulations of Fluid Dynamics. Fluids, 9(11), 255. https://doi.org/10.3390/fluids9110255