Next Issue
Volume 10, June
Previous Issue
Volume 10, February
 
 

Non-Coding RNA, Volume 10, Issue 2 (April 2024) – 13 articles

Cover Story (view full-size image): We investigated the impact of osmotic stress on paraspeckle dynamics in HEK293T cells. Under osmotic stress induced by sorbitol, we observed significant decreases in total NEAT1_2 expression and nuclear NEAT1_2 foci. Additionally, osmotic stress altered the subcellular distribution of NEAT1_2 and the main paraspeckle proteins (PSPs), including PSPC1, NONO, and SFPQ, and it led to the translocation of NEAT1_2 and PSPs from the nucleus to the cytoplasm, where they formed cytoplasmic condensates. These findings provide insights into paraspeckle dynamics under osmotic stress, highlighting their potential role in cellular stress response mechanisms and their relevance in various diseases. View this paper
  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
18 pages, 4384 KiB  
Article
Identification and Functional Characterization of Alternative Transcripts of LncRNA HNF1A-AS1 and Their Impacts on Cell Growth, Differentiation, Liver Diseases, and in Response to Drug Induction
by Jing Jin, Le Tra Giang Nguyen, Andrew Wassef, Ragui Sadek, Timothy M. Schmitt, Grace L. Guo, Theodore P. Rasmussen and Xiao-bo Zhong
Non-Coding RNA 2024, 10(2), 28; https://doi.org/10.3390/ncrna10020028 - 21 Apr 2024
Viewed by 1648
Abstract
The long non-coding RNA (lncRNA) hepatocyte nuclear factor-1 alpha (HNF1A) antisense RNA 1 (HNF1A-AS1) is an important lncRNA for liver growth, development, cell differentiation, and drug metabolism. Like many lncRNAs, HNF1A-AS1 has multiple annotated alternative transcripts in the human genome. Several fundamental biological [...] Read more.
The long non-coding RNA (lncRNA) hepatocyte nuclear factor-1 alpha (HNF1A) antisense RNA 1 (HNF1A-AS1) is an important lncRNA for liver growth, development, cell differentiation, and drug metabolism. Like many lncRNAs, HNF1A-AS1 has multiple annotated alternative transcripts in the human genome. Several fundamental biological questions are still not solved: (1) How many transcripts really exist in biological samples, such as liver samples and liver cell lines? (2) What are the expression patterns of different alternative HNF1A-AS1 transcripts at different conditions, including during cell growth and development, after exposure to xenobiotics (such as drugs), and in disease conditions, such as metabolic dysfunction-associated steatotic liver disease (MASLD), alcohol-associated liver disease (ALD) cirrhosis, and obesity? (3) Does the siRNA used in previous studies knock down one or multiple transcripts? (4) Do different transcripts have the same or different functions for gene regulation? The presented data confirm the existence of several annotated HNF1A-AS1 transcripts in liver samples and cell lines, but also identify some new transcripts, which are not annotated in the Ensembl genome database. Expression patterns of the identified HNF1A-AS1 transcripts are highly correlated with the cell differentiation of matured hepatocyte-like cells from human embryonic stem cells (hESC), growth and differentiation of HepaRG cells, in response to rifampicin induction, and in various liver disease conditions. The expression levels of the HNF1A-AS1 transcripts are also highly correlated to the expression of cytochrome P450 enzymes, such as CYP3A4, during HepaRG growth, differentiation, and in response to rifampicin induction. Full article
(This article belongs to the Special Issue Roles of Non-coding RNAs in Drug Metabolism and Disposition)
Show Figures

Figure 1

23 pages, 6306 KiB  
Article
Long Non-Coding RNA Levels Are Modulated in Schistosoma mansoni following In Vivo Praziquantel Exposure
by Pedro Jardim Poli, Agatha Fischer-Carvalho, Ana Carolina Tahira, John D. Chan, Sergio Verjovski-Almeida and Murilo Sena Amaral
Non-Coding RNA 2024, 10(2), 27; https://doi.org/10.3390/ncrna10020027 - 19 Apr 2024
Cited by 1 | Viewed by 1824
Abstract
Schistosomiasis is a disease caused by trematodes of the genus Schistosoma that affects over 200 million people worldwide. For decades, praziquantel (PZQ) has been the only available drug to treat the disease. Despite recent discoveries that identified a transient receptor ion channel as [...] Read more.
Schistosomiasis is a disease caused by trematodes of the genus Schistosoma that affects over 200 million people worldwide. For decades, praziquantel (PZQ) has been the only available drug to treat the disease. Despite recent discoveries that identified a transient receptor ion channel as the target of PZQ, schistosome response to this drug remains incompletely understood, since effectiveness relies on other factors that may trigger a complex regulation of parasite gene expression. Long non-coding RNAs (lncRNAs) are transcripts longer than 200 nucleotides with low or no protein-coding potential that play important roles in S. mansoni homeostasis, reproduction, and fertility. Here, we show that in vivo PZQ treatment modulates lncRNA levels in S. mansoni. We re-analyzed public RNA-Seq data from mature and immature S. mansoni worms treated in vivo with PZQ and detected hundreds of lncRNAs differentially expressed following drug exposure, many of which are shared among mature and immature worms. Through RT-qPCR, seven out of ten selected lncRNAs were validated as differentially expressed; interestingly, we show that these lncRNAs are not adult worm stage-specific and are co-expressed with PZQ-modulated protein-coding genes. By demonstrating that parasite lncRNA expression levels alter in response to PZQ, this study unravels an important step toward elucidating the complex mechanisms of S. mansoni response to PZQ. Full article
(This article belongs to the Section Long Non-Coding RNA)
Show Figures

Figure 1

23 pages, 17983 KiB  
Article
lncRNA-mRNA Co-Expression and Regulation Analysis in Lung Fibroblasts from Idiopathic Pulmonary Fibrosis
by Armando López-Martínez, Jovito Cesar Santos-Álvarez, Juan Manuel Velázquez-Enríquez, Alma Aurora Ramírez-Hernández, Verónica Rocío Vásquez-Garzón and Rafael Baltierrez-Hoyos
Non-Coding RNA 2024, 10(2), 26; https://doi.org/10.3390/ncrna10020026 - 17 Apr 2024
Cited by 1 | Viewed by 2658
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive lung disease marked by abnormal accumulation of extracellular matrix (ECM) due to dysregulated expression of various RNAs in pulmonary fibroblasts. This study utilized RNA-seq data meta-analysis to explore the regulatory network of hub long non-coding RNAs [...] Read more.
Idiopathic pulmonary fibrosis (IPF) is a progressive lung disease marked by abnormal accumulation of extracellular matrix (ECM) due to dysregulated expression of various RNAs in pulmonary fibroblasts. This study utilized RNA-seq data meta-analysis to explore the regulatory network of hub long non-coding RNAs (lncRNAs) and messenger RNAs (mRNAs) in IPF fibroblasts. The meta-analysis unveiled 584 differentially expressed mRNAs (DEmRNA) and 75 differentially expressed lncRNAs (DElncRNA) in lung fibroblasts from IPF. Among these, BCL6, EFNB1, EPHB2, FOXO1, FOXO3, GNAI1, IRF4, PIK3R1, and RXRA were identified as hub mRNAs, while AC008708.1, AC091806.1, AL442071.1, FAM111A-DT, and LINC01989 were designated as hub lncRNAs. Functional characterization revealed involvement in TGF-β, PI3K, FOXO, and MAPK signaling pathways. Additionally, this study identified regulatory interactions between sequences of hub mRNAs and lncRNAs. In summary, the findings suggest that AC008708.1, AC091806.1, FAM111A-DT, LINC01989, and AL442071.1 lncRNAs can regulate BCL6, EFNB1, EPHB2, FOXO1, FOXO3, GNAI1, IRF4, PIK3R1, and RXRA mRNAs in fibroblasts bearing IPF and contribute to fibrosis by modulating crucial signaling pathways such as FoxO signaling, chemical carcinogenesis, longevity regulatory pathways, non-small cell lung cancer, and AMPK signaling pathways. Full article
Show Figures

Figure 1

20 pages, 4106 KiB  
Article
Possible Involvement of Long Non-Coding RNAs GNAS-AS1 and MIR205HG in the Modulation of 5-Fluorouracil Chemosensitivity in Colon Cancer Cells through Increased Extracellular Release of Exosomes
by Shamin Azwar, Chin Tat Ng, Siti Yazmin Zahari Sham, Heng Fong Seow, Minhian Chai, Mohd Faizal Ghazali and Mohd Faisal Jabar
Non-Coding RNA 2024, 10(2), 25; https://doi.org/10.3390/ncrna10020025 - 15 Apr 2024
Cited by 1 | Viewed by 1939
Abstract
A growing number of studies have suggested the involvement of long non-coding RNAs as the key players in not just the initiation and progression of the tumor microenvironment, but also in chemotherapy tolerance. In the present study, generated 5-FU-resistant SW480/DR cells were analyzed [...] Read more.
A growing number of studies have suggested the involvement of long non-coding RNAs as the key players in not just the initiation and progression of the tumor microenvironment, but also in chemotherapy tolerance. In the present study, generated 5-FU-resistant SW480/DR cells were analyzed via cDNA microarray for its aberrant lncRNAs and mRNAs expression in comparison with the 5-FU-susceptible SW480/DS cells. Among the 126 lncRNAs described, lncRNAs GNAS-AS1, MIR205HG, and LOC102723721 have been identified to be significantly upregulated, while lncRNs lnc-RP11-597K23.2.1-2, LOC100507639, and CCDC144NL-AS1 have been found to be significantly downregulated. In the meantime, bioinformatic analysis through gene ontology studies of aberrantly expressed mRNAs revealed “regulated exocytosis”, among others, as the biological process most impacted in SW480/DR cells. To investigate, exosome purification was then carried out and its characterization were validated via transmission electron microscopy and nanoparticle tracking analysis. Interestingly, it was determined that the 5-FU-resistant SW480/DR cells secretes significantly higher concentration of extracellular vesicles, particularly, exosomes when compared to the 5-FU-susceptible SW480/DS cells. Based on the lncRNA-mRNA interaction network analysis generated, lncRNA GNAS-AS1 and MIR205HG have been identified to be potentially involved in the incidence of 5-FU resistance in SW480 colon cancer cells through promoting increased release of exosomes into the intercellular matrix. Our study hopes not only to provide insights on the list of involved candidate lncRNAs, but also to elucidate the role exosomes play in the initiation and development of 5-FU chemotherapy resistance in colon cancer cells. Full article
Show Figures

Figure 1

21 pages, 2460 KiB  
Review
miRNAs as Interconnectors between Obesity and Cancer
by Grecia Denisse González-Sánchez, Angelica Judith Granados-López, Yamilé López-Hernández, Mayra Judith García Robles and Jesús Adrián López
Non-Coding RNA 2024, 10(2), 24; https://doi.org/10.3390/ncrna10020024 - 15 Apr 2024
Cited by 4 | Viewed by 2180
Abstract
Obesity and cancer are a concern of global interest. It is proven that obesity may trigger the development or progression of some types of cancer; however, the connection by non-coding RNAs has not been totally explored. In the present review, we discuss miRNAs [...] Read more.
Obesity and cancer are a concern of global interest. It is proven that obesity may trigger the development or progression of some types of cancer; however, the connection by non-coding RNAs has not been totally explored. In the present review, we discuss miRNAs and lncRNAs dysregulation involved in obesity and some cancers, shedding light on how these conditions may exacerbate one another through the dysregulation of ncRNAs. lncRNAs have been reported as regulating microRNAs. An in silico investigation of lncRNA and miRNA interplay is presented. Our investigation revealed 44 upregulated and 49 downregulated lncRNAs in obesity and cancer, respectively. miR-375, miR-494-3p, miR-1908, and miR-196 were found interacting with 1, 4, 4 and 4 lncRNAs, respectively, which are involved in PPARγ cell signaling regulation. Additionally, miR-130 was found to be downregulated in obesity and reported as modulating 5 lncRNAs controlling PPARγ cell signaling. Similarly, miR-128-3p and miR-143 were found to be downregulated in obesity and cancer, interacting with 5 and 4 lncRNAs, respectively, associated with MAPK cell signaling modulation. The delicate balance between miRNA and lncRNA expression emerges as a critical determinant in the development of obesity-associated cancers, presenting these molecules as promising biomarkers. However, additional and deeper studies are needed to reach solid conclusions about obesity and cancer connection by ncRNAs. Full article
(This article belongs to the Section Small Non-Coding RNA)
Show Figures

Figure 1

14 pages, 4325 KiB  
Article
Dynamic Localization of Paraspeckle Components under Osmotic Stress
by Aysegul Yucel-Polat, Danae Campos-Melo, Asieh Alikhah and Michael J. Strong
Non-Coding RNA 2024, 10(2), 23; https://doi.org/10.3390/ncrna10020023 - 12 Apr 2024
Cited by 1 | Viewed by 1701
Abstract
Paraspeckles are nuclear condensates formed by NEAT1_2 lncRNA and different RNA-binding proteins. In general, these membraneless organelles function in the regulation of gene expression and translation and in miRNA processing, and in doing this, they regulate cellular homeostasis and mediate pro-survival in the [...] Read more.
Paraspeckles are nuclear condensates formed by NEAT1_2 lncRNA and different RNA-binding proteins. In general, these membraneless organelles function in the regulation of gene expression and translation and in miRNA processing, and in doing this, they regulate cellular homeostasis and mediate pro-survival in the cell. Despite evidence showing the importance of paraspeckles in the stress response, the dynamics of paraspeckles and their components under conditions of osmotic stress remain unknown. We exposed HEK293T cells to sorbitol and examined NEAT1_2 expression using real-time PCR. Localization and quantification of the main paraspeckle components, NEAT1_2, PSPC1, NONO, and SFPQ, in different cellular compartments was performed using smFISH and immunofluorescence. Our findings showed a significant decrease in total NEAT1_2 expression in cells after osmotic stress. Sorbitol shifted the subcellular localization of NEAT1_2, PSPC1, NONO, and SFPQ from the nucleus to the cytoplasm and decreased the number and size of NEAT1_2 foci in the nucleus. PSPC1 formed immunoreactive cytoplasmic fibrils under conditions of osmotic stress, which slowly disassembled under recovery. Our study deepens the paraspeckle dynamics in response to stress, suggesting a novel role for NEAT1_2 in the cytoplasm in osmotic stress and physiological conditions. Full article
(This article belongs to the Section Long Non-Coding RNA)
Show Figures

Figure 1

16 pages, 9262 KiB  
Article
Functional Significance of miR-4693-5p in Targeting HIF1α and Its Link to Rheumatoid Arthritis Pathogenesis
by Mohd Saquib, Prachi Agnihotri, Ashish Sarkar, Swati Malik, Sonia Mann, Debolina Chakraborty, Lovely Joshi, Rajesh Malhotra and Sagarika Biswas
Non-Coding RNA 2024, 10(2), 22; https://doi.org/10.3390/ncrna10020022 - 10 Apr 2024
Cited by 1 | Viewed by 1898
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease that causes joint inflammation and destruction with an unknown origin. Our study aims to elucidate the molecular mechanism behind HIF1α overexpression in RA. Dysregulated miRNA expressions are known to influence gene behavior, thereby enhancing [...] Read more.
Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease that causes joint inflammation and destruction with an unknown origin. Our study aims to elucidate the molecular mechanism behind HIF1α overexpression in RA. Dysregulated miRNA expressions are known to influence gene behavior, thereby enhancing cell proliferation, inflammation, and resistance to apoptosis, contributing to RA development. Our earlier finding indicated that exogenous miRNA similar to miR-4693-5p may modulate RA-related targets. However, the specific role of miR-4693-5p and its targets in RA remain unexplored. In this study, we found that miR-4693-5p was significantly reduced in PBMCs of RA patients, with evidence suggesting it targets the 3′ UTR of HIF1α, thereby potentially contributing to its overexpression in RA. In vitro overexpression of miR-4693-5p leads to the knockdown of HIF1α, resulting in inhibited expression of Survivin to disrupt apoptosis resistance, inflammation suppression, and a reduction in the total cellular ROS response in SW982 and RAFLS cells. The results were validated using the CIA Rat model. In conclusion, this study provides a crucial foundation for understanding the functional role of miR-4693-5p. These findings improve our understanding and provide novel insights into the molecular mechanisms underlying RA pathogenesis. Full article
Show Figures

Figure 1

17 pages, 1115 KiB  
Review
More than the SRY: The Non-Coding Landscape of the Y Chromosome and Its Importance in Human Disease
by Emily S. Westemeier-Rice, Michael T. Winters, Travis W. Rawson and Ivan Martinez
Non-Coding RNA 2024, 10(2), 21; https://doi.org/10.3390/ncrna10020021 - 10 Apr 2024
Viewed by 2565
Abstract
Historically, the Y chromosome has presented challenges to classical methodology and philosophy of understanding the differences between males and females. A genetic unsolved puzzle, the Y chromosome was the last chromosome to be fully sequenced. With the advent of the Human Genome Project [...] Read more.
Historically, the Y chromosome has presented challenges to classical methodology and philosophy of understanding the differences between males and females. A genetic unsolved puzzle, the Y chromosome was the last chromosome to be fully sequenced. With the advent of the Human Genome Project came a realization that the human genome is more than just genes encoding proteins, and an entire universe of RNA was discovered. This dark matter of biology and the black box surrounding the Y chromosome have collided over the last few years, as increasing numbers of non-coding RNAs have been identified across the length of the Y chromosome, many of which have played significant roles in disease. In this review, we will uncover what is known about the connections between the Y chromosome and the non-coding RNA universe that originates from it, particularly as it relates to long non-coding RNAs, microRNAs and circular RNAs. Full article
Show Figures

Figure 1

10 pages, 2418 KiB  
Article
FuncPEP v2.0: An Updated Database of Functional Short Peptides Translated from Non-Coding RNAs
by Swati Mohapatra, Anik Banerjee, Paola Rausseo, Mihnea P. Dragomir, Ganiraju C. Manyam, Bradley M. Broom and George A. Calin
Non-Coding RNA 2024, 10(2), 20; https://doi.org/10.3390/ncrna10020020 - 9 Apr 2024
Cited by 1 | Viewed by 2126
Abstract
Over the past decade, there have been reports of short novel functional peptides (less than 100 aa in length) translated from so-called non-coding RNAs (ncRNAs) that have been characterized using mass spectrometry (MS) and large-scale proteomics studies. Therefore, understanding the bivalent functions of [...] Read more.
Over the past decade, there have been reports of short novel functional peptides (less than 100 aa in length) translated from so-called non-coding RNAs (ncRNAs) that have been characterized using mass spectrometry (MS) and large-scale proteomics studies. Therefore, understanding the bivalent functions of some ncRNAs as transcripts that encode both functional RNAs and short peptides, which we named ncPEPs, will deepen our understanding of biology and disease. In 2020, we published the first database of functional peptides translated from non-coding RNAs—FuncPEP. Herein, we have performed an update including the newly published ncPEPs from the last 3 years along with the categorization of host ncRNAs. FuncPEP v2.0 contains 152 functional ncPEPs, out of which 40 are novel entries. A PubMed search from August 2020 to July 2023 incorporating specific keywords was performed and screened for publications reporting validated functional peptides derived from ncRNAs. We did not observe a significant increase in newly discovered functional ncPEPs, but a steady increase. The novel identified ncPEPs included in the database were characterized by a wide array of molecular and physiological parameters (i.e., types of host ncRNA, species distribution, chromosomal density, distribution of ncRNA length, identification methods, molecular weight, and functional distribution across humans and other species). We consider that, despite the fact that MS can now easily identify ncPEPs, there still are important limitations in proving their functionality. Full article
(This article belongs to the Section Computational Biology)
Show Figures

Figure 1

17 pages, 2749 KiB  
Review
Functions of RNAi Pathways in Ribosomal RNA Regulation
by Aleksei S. Shatskikh, Elena A. Fefelova and Mikhail S. Klenov
Non-Coding RNA 2024, 10(2), 19; https://doi.org/10.3390/ncrna10020019 - 29 Mar 2024
Viewed by 2005
Abstract
Argonaute proteins, guided by small RNAs, play crucial roles in gene regulation and genome protection through RNA interference (RNAi)-related mechanisms. Ribosomal RNAs (rRNAs), encoded by repeated rDNA units, constitute the core of the ribosome being the most abundant cellular transcripts. rDNA clusters also [...] Read more.
Argonaute proteins, guided by small RNAs, play crucial roles in gene regulation and genome protection through RNA interference (RNAi)-related mechanisms. Ribosomal RNAs (rRNAs), encoded by repeated rDNA units, constitute the core of the ribosome being the most abundant cellular transcripts. rDNA clusters also serve as sources of small RNAs, which are loaded into Argonaute proteins and are able to regulate rDNA itself or affect other gene targets. In this review, we consider the impact of small RNA pathways, specifically siRNAs and piRNAs, on rRNA gene regulation. Data from diverse eukaryotic organisms suggest the potential involvement of small RNAs in various molecular processes related to the rDNA transcription and rRNA fate. Endogenous siRNAs are integral to the chromatin-based silencing of rDNA loci in plants and have been shown to repress rDNA transcription in animals. Small RNAs also play a role in maintaining the integrity of rDNA clusters and may function in the cellular response to rDNA damage. Studies on the impact of RNAi and small RNAs on rRNA provide vast opportunities for future exploration. Full article
Show Figures

Figure 1

22 pages, 343 KiB  
Review
Circulating miRNAs as Novel Clinical Biomarkers in Temporal Lobe Epilepsy
by Lorenza Guarnieri, Nicola Amodio, Francesca Bosco, Sara Carpi, Martina Tallarico, Luca Gallelli, Vincenzo Rania, Rita Citraro, Antonio Leo and Giovambattista De Sarro
Non-Coding RNA 2024, 10(2), 18; https://doi.org/10.3390/ncrna10020018 - 17 Mar 2024
Viewed by 2111
Abstract
Temporal lobe epilepsy (TLE) represents the most common form of refractory focal epilepsy. The identification of innovative clinical biomarkers capable of categorizing patients with TLE, allowing for improved treatment and outcomes, still represents an unmet need. Circulating microRNAs (c-miRNAs) are short non-coding RNAs [...] Read more.
Temporal lobe epilepsy (TLE) represents the most common form of refractory focal epilepsy. The identification of innovative clinical biomarkers capable of categorizing patients with TLE, allowing for improved treatment and outcomes, still represents an unmet need. Circulating microRNAs (c-miRNAs) are short non-coding RNAs detectable in body fluids, which play crucial roles in the regulation of gene expression. Their characteristics, including extracellular stability, detectability through non-invasive methods, and responsiveness to pathological changes and/or therapeutic interventions, make them promising candidate biomarkers in various disease settings. Recent research has investigated c-miRNAs in various bodily fluids, including serum, plasma, and cerebrospinal fluid, of TLE patients. Despite some discrepancies in methodologies, cohort composition, and normalization strategies, a common dysregulated signature of c-miRNAs has emerged across different studies, providing the basis for using c-miRNAs as novel biomarkers for TLE patient management. Full article
(This article belongs to the Collection Feature Papers in Non-Coding RNA)
25 pages, 22344 KiB  
Review
Targeting MicroRNAs with Small Molecules
by Kisanet Tadesse and Raphael I. Benhamou
Non-Coding RNA 2024, 10(2), 17; https://doi.org/10.3390/ncrna10020017 - 14 Mar 2024
Cited by 2 | Viewed by 3812
Abstract
MicroRNAs (miRs) have been implicated in numerous diseases, presenting an attractive target for the development of novel therapeutics. The various regulatory roles of miRs in cellular processes underscore the need for precise strategies. Recent advances in RNA research offer hope by enabling the [...] Read more.
MicroRNAs (miRs) have been implicated in numerous diseases, presenting an attractive target for the development of novel therapeutics. The various regulatory roles of miRs in cellular processes underscore the need for precise strategies. Recent advances in RNA research offer hope by enabling the identification of small molecules capable of selectively targeting specific disease-associated miRs. This understanding paves the way for developing small molecules that can modulate the activity of disease-associated miRs. Herein, we discuss the progress made in the field of drug discovery processes, transforming the landscape of miR-targeted therapeutics by small molecules. By leveraging various approaches, researchers can systematically identify compounds to modulate miR function, providing a more potent intervention either by inhibiting or degrading miRs. The implementation of these multidisciplinary approaches bears the potential to revolutionize treatments for diverse diseases, signifying a significant stride towards the targeting of miRs by precision medicine. Full article
(This article belongs to the Special Issue Recent Advances in Chemical Biology to Study and Target ncRNAs)
Show Figures

Figure 1

27 pages, 1517 KiB  
Review
miR-125 in Breast Cancer Etiopathogenesis: An Emerging Role as a Biomarker in Differential Diagnosis, Regenerative Medicine, and the Challenges of Personalized Medicine
by Roberto Piergentili, Enrico Marinelli, Gaspare Cucinella, Alessandra Lopez, Gabriele Napoletano, Giuseppe Gullo and Simona Zaami
Non-Coding RNA 2024, 10(2), 16; https://doi.org/10.3390/ncrna10020016 - 21 Feb 2024
Cited by 2 | Viewed by 3226
Abstract
Breast Cancer (BC) is one of the most common cancer types worldwide, and it is characterized by a complex etiopathogenesis, resulting in an equally complex classification of subtypes. MicroRNA (miRNA or miR) are small non-coding RNA molecules that have an essential role in [...] Read more.
Breast Cancer (BC) is one of the most common cancer types worldwide, and it is characterized by a complex etiopathogenesis, resulting in an equally complex classification of subtypes. MicroRNA (miRNA or miR) are small non-coding RNA molecules that have an essential role in gene expression and are significantly linked to tumor development and angiogenesis in different types of cancer. Recently, complex interactions among coding and non-coding RNA have been elucidated, further shedding light on the complexity of the roles these molecules fulfill in cancer formation. In this context, knowledge about the role of miR in BC has significantly improved, highlighting the deregulation of these molecules as additional factors influencing BC occurrence, development and classification. A considerable number of papers has been published over the past few years regarding the role of miR-125 in human pathology in general and in several types of cancer formation in particular. Interestingly, miR-125 family members have been recently linked to BC formation as well, and complex interactions (competing endogenous RNA networks, or ceRNET) between this molecule and target mRNA have been described. In this review, we summarize the state-of-the-art about research on this topic. Full article
Show Figures

Figure 1

Previous Issue
Next Issue
Back to TopTop