Numerical Assessment of Effective Elastic Properties of Needled Carbon/Carbon Composites Based on a Multiscale Method
Abstract
:1. Introduction
2. Experimental Procedure and Microstructural Analysis
3. Multiscale Modeling Scheme
3.1. Ply Models Considering the Interphase and Pyrolytic Carbon Morphology
3.1.1. Weftless Ply
3.1.2. Short-Cut Fiber Ply
3.1.3. Needled Fiber Region
3.2. Macroscale Model
4. Material Property, Ply Parameters, and Boundary Conditions
4.1. Material Property
4.2. Ply Parameters
4.3. Boundary Conditions
5. Results and Discussion
5.1. Model Validation
- (i)
- Microscale models;
- (ii)
- Macroscale model
5.2. Effects of Porosity
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kim, H.-G.; Ji, W.; Kwon, H.J.; Yoon, S.; Kim, J.-I.; Bae, S.; Cho, N.C. Full-scale multi-physics numerical analysis of an isothermal chemical vapor infiltration process for manufacturing C/C composites. Carbon 2021, 172, 174–188. [Google Scholar] [CrossRef]
- Chowdhury, P.; Sehitoglu, H.; Rateick, R. Damage tolerance of carbon-carbon composites in aerospace application. Carbon 2018, 126, 382–393. [Google Scholar] [CrossRef]
- Rao, M.V.; Mahajan, P.; Mittal, R.K. Effect of architecture on mechanical properties of carbon/carbon composites. Compos. Struct. 2008, 83, 131–142. [Google Scholar] [CrossRef]
- Li, H.; Hou, X.; Chen, Y. Densification of unidirectional carbon–carbon composites by isothermal chemical vapor infiltration. Carbon 2000, 38, 423–427. [Google Scholar] [CrossRef]
- Li, A.; Deutschmann, O. Transient modeling of chemical vapor infiltration of methane using multi-step reaction and deposition models. Chem. Eng. Sci. 2007, 62, 4976–4982. [Google Scholar] [CrossRef]
- Xu, Y.; Zhang, P.; Lu, H.; Zhang, W. Hierarchically modeling the elastic properties of 2D needled carbon/carbon composites. Compos. Struct. 2015, 133, 148–156. [Google Scholar] [CrossRef]
- Chen, X.; Chen, L.; Zhang, C.; Song, L.; Zhang, D. Three-dimensional needle-punching for composites–A review. Compos. Part A Appl. Sci. Manuf. 2016, 85, 12–30. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, B.; Jiang, X.; Wang, X.; Sun, W.; Fang, G.; Meng, S. Effects of non-uniform needled microstructure on failure mechanisms of 3D needled composites thick-walled cylinder under axial compression and internal pressure. J. Mater. Sci. 2023, 58, 9006–9024. [Google Scholar] [CrossRef]
- Han, M.; Silberschmidt, V.V. Theoretical Analysis on Needle-Punched Carbon/Carbon Composites. Appl. Compos. Mater. 2019, 26, 805–816. [Google Scholar] [CrossRef]
- Meng, S.; Song, L.; Xu, C.; Wang, W.; Xie, W.; Jin, H. Predicting the effective properties of 3D needled carbon/carbon composites by a hierarchical scheme with a fiber-based representative unit cell. Compos. Struct. 2017, 172, 198–209. [Google Scholar] [CrossRef]
- Fitzer, E. The future of carbon-carbon composites. Carbon 1987, 25, 163–190. [Google Scholar] [CrossRef]
- Wang, W.; Wang, H.; Fei, S.; Wang, H.; Dong, H.; Ke, Y. Generation of random fiber distributions in fiber reinforced composites based on Delaunay triangulation. Mater. Des. 2021, 206, 109812. [Google Scholar] [CrossRef]
- Wang, M.Z.; Xu, B.X. The Arithmetic Mean Theorem of Eshelby Tensor for a Rotational Symmetrical Inclusion. J. Elast. 2004, 77, 13–23. [Google Scholar] [CrossRef]
- Zou, W.; He, Q.; Huang, M.; Zheng, Q. Eshelby’s problem of non-elliptical inclusions. J. Mech. Phys. Solids 2010, 58, 346–372. [Google Scholar] [CrossRef]
- Trotta, S.; Zuccaro, G.; Sessa, S.; Marmo, F.; Rosati, L. On the evaluation of the Eshelby tensor for polyhedral inclusions of arbitrary shape. Compos. Part B Eng. 2018, 144, 267–281. [Google Scholar] [CrossRef]
- Voigt, W. Ueber die Beziehung zwischen alen beiden Elasticitaitsconstanten isotroper Korper. Ann. Der Phys. 1889, 12, 573–587. [Google Scholar] [CrossRef]
- Hashin, Z.A.; Shtrikman, S. On some variational principles in anisotropic and nonhomogeneous elasticity. J. Mech. Phys. Solids 1962, 10, 335–342. [Google Scholar] [CrossRef]
- Affdl, J.C.H.; Kardos, J.L. The Halpin-Tsai equations: A review. Polym. Eng. Sci. 1976, 16, 344–352. [Google Scholar] [CrossRef]
- Tan, Y.; Yan, Y.; Li, X.; Guo, F. Numerical Analysis of the Elastic Properties of 3D Needled Carbon/Carbon Composites. Mech. Compos. Mater. 2017, 53, 551–562. [Google Scholar] [CrossRef]
- Xie, J.; Liang, J.; Fang, G.; Chen, Z. Effect of needling parameters on the effective properties of 3D needled C/C-SiC composites. Compos. Sci. Technol. 2015, 117, 69–77. [Google Scholar] [CrossRef]
- Jia, Y.; Li, K.; Zhang, S.; Li, L.; Ren, J. Microstructure and Mechanical Properties of Multilayer-textured 2D Carbon/Carbon Composites. J. Mater. Sci. Technol. 2014, 30, 1202–1207. [Google Scholar] [CrossRef]
- Li, W.; Li, H.; Wang, J.; Zhang, S.; Yang, X.; Wei, J. Preparation and mechanical properties of carbon/carbon composites with high textured pyrolytic carbon matrix. Trans. Nonferrous Met. Soc. China 2013, 23, 2129–2134. [Google Scholar] [CrossRef]
- Li, A.; Norinaga, K.; Zhang, W.; Deutschmann, O. Modeling and simulation of materials synthesis: Chemical vapor deposition and infiltration of pyrolytic carbon. Compos. Sci. Technol. 2008, 68, 1097–1104. [Google Scholar] [CrossRef]
- Manocha, L.M.; Warrier, A.; Manocha, S.; Sathiyamoorthy, D.; Banerjee, S. Thermophysical properties of densified pitch based carbon/carbon materials—I. Unidirectional composites. Carbon 2005, 44, 480–487. [Google Scholar] [CrossRef]
- Wang, P.; Zhang, H.; Yin, J.; Xiong, X.; Deng, C.; Wu, X. Effect of pyrolytic carbon interface thickness on conductivity and mechanical and wear properties of copper mesh modified carbon/carbon composite. Mater. Des. 2018, 154, 302–311. [Google Scholar] [CrossRef]
- Qi, L.; Chao, X.; Tian, W.; Ma, W.; Li, H. Numerical study of the effects of irregular pores on transverse mechanical properties of unidirectional composites. Compos. Sci. Technol. 2018, 159, 142–151. [Google Scholar] [CrossRef]
- Drach, B.; Tsukrov, I.; Trofimov, A. Comparison of full field and single pore approaches to homogenization of linearly elastic materials with pores of regular and irregular shapes. Int. J. Solids Struct. 2016, 96, 48–63. [Google Scholar] [CrossRef]
- Ge, L.; Li, H.; Zheng, H.; Zhang, C.; Fang, D. Two-scale damage failure analysis of 3D braided composites considering pore defects. Compos. Struct. 2021, 260, 113556. [Google Scholar] [CrossRef]
- Chatzigeorgiou, G.; Meraghni, F. Elastic and inelastic local strain fields in composites with coated fibers or particles: Theory and validation. Math. Mech. Solids 2018, 24, 2858–2894. [Google Scholar] [CrossRef]
- Ge, J.; Qi, L.; Chao, X.; Xue, Y.; Hou, X.; Li, H. The effects of interphase parameters on transverse elastic properties of Carbon–Carbon composites based on FE model. Compos. Struct. 2021, 268, 113961. [Google Scholar] [CrossRef]
- Ge, J.; Qi, L.; Tian, W.; Chao, X.; Li, W.; Li, H. Numerical evaluation of effective elastic properties of CVI-C/C composites considering anisotropic matrix. Compos. Struct. 2023, 306, 116561. [Google Scholar] [CrossRef]
- Ramsden, J.J. Review of New Experimental Techniques for Investigating Random Sequential Adsorption. J. Statal Phys. 1993, 73, 853–877. [Google Scholar] [CrossRef]
- Vyas, G.M.; Pinho, S.T.; Robinson, P. Constitutive modelling of fibre-reinforced composites with unidirectional plies using a plasticity-based approach. Compos. Sci. Technol. 2011, 71, 1068–1074. [Google Scholar] [CrossRef]
- Gusev, A.A. Representative volume element size for elastic composites: A numerical study. J. Mech. Phys. Solids 1997, 45, 1449–1459. [Google Scholar] [CrossRef]
- Gusev, A.A.; Hine, P.J.; Ward, I.M. Fiber packing and elastic properties of a transversely random unidirectional glass/epoxy composite. Compos. Sci. Technol. 2000, 60, 535–541. [Google Scholar] [CrossRef]
- Vaughan, T.J.; McCarthy, C.T. A combined experimental–numerical approach for generating statistically equivalent fibre distributions for high strength laminated composite materials. Compos. Sci. Technol. 2010, 70, 291–297. [Google Scholar] [CrossRef]
- Múgica, J.I.; Lopes, C.S.; Naya, F.; Herráez, M.; Martínez, V.; González, C. Multiscale modelling of thermoplastic woven fabric composites: From micromechanics to mesomechanics. Compos. Struct. 2019, 228, 111340. [Google Scholar] [CrossRef]
- Qi, L.; Tian, W.; Zhou, J. Numerical evaluation of effective elastic properties of composites reinforced by spatially randomly distributed short fibers with certain aspect ratio. Compos. Struct. 2015, 131, 843–851. [Google Scholar] [CrossRef]
- Bhuiyan, F.H.; Sanei, S.H.R.; Fertig, R.S. Predicting variability in transverse effective elastic moduli and failure initiation strengths in UD composite microstructures due to randomness in fiber location and morphology. Compos. Struct. 2020, 237, 111887. [Google Scholar] [CrossRef]
- Sun, C.T.; Vaidya, R.S. Prediction of composite properties from a representative volume element. Compos. Sci. Technol. 1996, 56, 171–179. [Google Scholar] [CrossRef]
- Tsukrov, I.; Novak, J. Effective elastic properties of solids with defects of irregular shapes. Int. J. Solids Struct. 2002, 39, 1539–1555. [Google Scholar] [CrossRef]
- Yu, J.; Zhou, C.; Zhang, H. A micro-image based reconstructed finite element model of needle-punched C/C composite. Compos. Sci. Technol. 2017, 153, 48–61. [Google Scholar] [CrossRef]
- Gebert, J.-M.; Reznik, B.; Piat, R.; Viering, B.; Weidenmann, K.; Wanner, A.; Deutschmann, O. Elastic constants of high-texture pyrolytic carbon measured by ultrasound phase spectroscopy. Carbon 2010, 48, 3647–3650. [Google Scholar] [CrossRef]
- Farbos, B.; Da Costa, J.P.; Vignoles, G.L.; Leyssale, J.M. Nanoscale elasticity of highly anisotropic pyrocarbons. Carbon 2015, 94, 285–294. [Google Scholar] [CrossRef]
- Li, M.; Qi, L.; Li, H.; Xu, G. Measurement of the extinction angle about laminar pyrocarbons by image analysis in reflection polarized light. Mater. Sci. Eng. A 2007, 448, 80–87. [Google Scholar] [CrossRef]
- Xia, Z.; Zhang, Y.; Ellyin, F. A unified periodical boundary conditions for representative volume elements of composites and applications. Int. J. Solids Struct. 2003, 40, 1907–1921. [Google Scholar] [CrossRef]
- Gao, L.; Wang, C.; Liu, Z.; Zhuang, Z. Theoretical aspects of selecting repeated unit cell model in micromechanical analysis using displacement-based finite element method. Chin. J. Aeronaut. 2017, 30, 1417–1426. [Google Scholar] [CrossRef]
- Tian, W.; Qi, L.; Su, C.; Liu, J.; Zhou, J. Effect of fiber transverse isotropy on effective thermal conductivity of metal matrix composites reinforced by randomly distributed fibers. Compos. Struct. 2016, 152, 637–644. [Google Scholar] [CrossRef]
- Hine, P.J.; Lusti, H.R.; Gusev, A.A. Numerical simulation of the effects of volume fraction, aspect ratio and fibre length distribution on the elastic and thermoelastic properties of short fibre composites. Compos. Sci. Technol. 2002, 62, 1445–1453. [Google Scholar] [CrossRef]
- Babu, K.P.; Mohite, P.M.; Upadhyay, C.S. Development of an RVE and its stiffness predictions based on mathematical homogenization theory for short fibre composites. Int. J. Solids Struct. 2018, 130–131, 80–104. [Google Scholar] [CrossRef]
Elastic Modulus | Shear Modulus | Poisson’s Ratio | ||||
---|---|---|---|---|---|---|
EL (GPa) | ET (GPa) | GLT (GPa) | GTT (GPa) | νLT | νTT | |
T700 | 237 | 15.8 | 23 | 15 | 0.01 | 0.37 |
Pyrolytic carbon | 27 | 13 | 9.18 | 4.81 | 0.47 | 0.35 |
Pore | 2.5 × 10−5 | 2.5 × 10−5 | 1.0 × 10−5 | 1.0 × 10−5 | 0.25 | 0.25 |
Interphase | 5.84 | 5.84 | 2.16 | 2.16 | 0.35 | 0.35 |
Weftless Ply | Short-Cut Fiber Ply | Needled Fiber Region | |
---|---|---|---|
Fiber volume fraction | 41.4% | 11.2% | 75% |
Porosity | 4.1% | 10.3% | 3.1% |
Thickness or diameter | 0.28 mm | 0.34 mm | ϕ0.6 mm |
Properties | Model (GPa) | Halpin–Tsai (GPa) | Err |
---|---|---|---|
E11 | 162.32 | 174.96 | 7.22% |
E22/E33 | 11.46 | 11.43 | 0.26% |
G12/G13 | 6.79 | 7.19 | 5.56% |
G23 | 5.38 | 4.15 | 29.64% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ge, J.; Chao, X.; Hu, H.; Tian, W.; Li, W.; Qi, L. Numerical Assessment of Effective Elastic Properties of Needled Carbon/Carbon Composites Based on a Multiscale Method. C 2024, 10, 85. https://doi.org/10.3390/c10030085
Ge J, Chao X, Hu H, Tian W, Li W, Qi L. Numerical Assessment of Effective Elastic Properties of Needled Carbon/Carbon Composites Based on a Multiscale Method. C. 2024; 10(3):85. https://doi.org/10.3390/c10030085
Chicago/Turabian StyleGe, Jian, Xujiang Chao, Haoteng Hu, Wenlong Tian, Weiqi Li, and Lehua Qi. 2024. "Numerical Assessment of Effective Elastic Properties of Needled Carbon/Carbon Composites Based on a Multiscale Method" C 10, no. 3: 85. https://doi.org/10.3390/c10030085
APA StyleGe, J., Chao, X., Hu, H., Tian, W., Li, W., & Qi, L. (2024). Numerical Assessment of Effective Elastic Properties of Needled Carbon/Carbon Composites Based on a Multiscale Method. C, 10(3), 85. https://doi.org/10.3390/c10030085