Mechanism of Catalytic CNTs Growth in 400–650 °C Range: Explaining Volcano Shape Arrhenius Plot and Catalytic Synergism Using both Pt (or Pd) and Ni, Co or Fe
Abstract
:1. Introduction
2. Explaining Negative Temperature Dependencies in Carbon Growth from Steady-State Kinetic Studies: Linearity of the Weight vs. Time Register Observed
3. H Spillover Effect: An Illusion?
4. Conclusions
Acknowledgments
Conflicts of Interest
References
- Lobo, L.S. Catalytic carbon formation: Clarifying the alternative kinetic routes and defining a kinetic linearity for sustained growth concept. Reac. Kinet. Mech. Catal. 2016, 118, 393–414. [Google Scholar] [CrossRef]
- Lobo, L.S. Nucleation and growth of carbon nanotubes and nanofibers: Mechanism and catalytic geometry control. Carbon 2017, 114, 411–417. [Google Scholar] [CrossRef]
- Lobo, L.S.; Trimm, D.L. Complex temperature dependencies of rate of carbon deposition on nickel. Nat. Phys. Sci. 1971, 234, 15–16. [Google Scholar] [CrossRef]
- Puretzky, A.A.; Merkulov, I.A.; Rouleau, C.M.; Eres, G.; Geohegan, D.B. Revealing the surface and bulk regimes of isothermal graphene nucleation and growth on Ni with in situ kinetic measurements and modeling. Carbon 2014, 79, 256–264. [Google Scholar] [CrossRef] [Green Version]
- Bernardo, C.A.; Lobo, L.S. Kinetics of Carbon Formation from acetylene and 1-Butene on Cobalt. In Studies in Surface Science and Catalysis; Delmon, B., Froment, G., Eds.; Elsevier: Amsterdam, The Netherlands, 1980; pp. 409–420. [Google Scholar]
- Figueiredo, J.L. Carbon Formation in Steam Reforming Catalysts. Ph.D. Thesis, Imperial College, London, UK, 1975. [Google Scholar]
- Lobo, L.S.; Franco, M.D. Kinetics of catalytic carbon formation on steel surfaces from light hydrocarbons. Catal. Today 1990, 7, 247–256. [Google Scholar] [CrossRef]
- Koziol, K.K.; Ducati, C.; Windle, A.H. Carbon nanotubes with catalyst controlled chiral angle. Chem. Mater. 2010, 22, 4904–4911. [Google Scholar] [CrossRef]
- Lobo, L.S. Carbon Formation from Hydrocarbons on Metals. Ph.D. Thesis, Imperial College, London, UK, 1971. Available online: http://hdl.handle.net/10044/1/16515 (accessed on 18 April 2019).
- Boudart, M.; Djéga-Mariadassou, G. Kinetics of Heterogeneous Catalytic Reactions; Princeton University Press: Princeton, NJ, USA, 1984. [Google Scholar]
- Bernardo, C.A. Carbon Deposition and gasification in the context of nickel catalysts. Ph.D. Thesis, Imperial College, London, UK, 1977. [Google Scholar]
- Bernardo, C.A.; Lobo, L.S. Kinetics of carbon formation from acetylene on nickel. J. Catal. 1975, 37, 267–278. [Google Scholar] [CrossRef]
- Engel, T.; Ertl, G. A molecular beam investigation of the catalytic oxidation of CO on Pd (111). J. Chem. Phys. 1978, 69, 1267. [Google Scholar] [CrossRef]
- Harris, P. Carbon Nanotube Science; Cambridge University Press: Cambridge, UK, 2011. [Google Scholar]
- Zaikovski, V.I.; Chesnokov, V.V.; Buyanov, R.A. The relationship between the state of active species in a ni/al2o3 catalyst and the mechanism of growth of filamentous carbon. Kinet. Catal. 2001, 42, 803–820. [Google Scholar] [CrossRef]
- Latorre, N.; Romeo, E.; Villacampa, J.I.; Cazaña, F.; Royo, C.; Monzón, A. Kinetics of carbon nanotubes growth on a Ni-Mg-Al catalyst by CCVD of methane: Influence of catalyst deactivation. Catal. Today 2010, 154, 217–223. [Google Scholar] [CrossRef]
- Puretzky, A.A.; Geohegan, D.B.; Jesse, S.; Ivanov, I.N.; Eres, G. In situ measurements and modeling of carbon nanotubes array growth kinetics during CVD. Appl. Phys. A 2005, 81, 223–240. [Google Scholar] [CrossRef]
- Kharlamova, M.V. Investigation of growth dynamic of carbon nanotubes. Bielstein J. Nanotechnol. 2017, 8, 826–856. [Google Scholar] [CrossRef] [PubMed]
- Rahman, G.; Najaf, Z.; Mehmood, A.; Bilal, S.; Shah, A.; Mian, S.; Ali, G. An Overview of the recent progress in the synthesis and applications of carbon nanotubes. C J. Carbon Res. 2019, 5, 3. [Google Scholar] [CrossRef]
- Eres, G.; Kinkhabwala, A.A.; Cui, H.; Geohegan, D.B.; Puretzky, A.A.; Lowndes, D.H. Molecular beam-controlled nucleation and growth of vertically aligned single-wall carbon nanotube arrays. J. Phys. Chem. B 2005, 109, 16684–16694. [Google Scholar] [CrossRef] [PubMed]
- Jing, P.; Gan, T.; Zheng, B.; Chu, X.; Yu, G.; Yan, W.; Zou, Y.; Zhang, W.; Liu, G. Synergism of Pt nanoparticles and iron oxide support for chemoselective hydrogenation of nitroarenes under mild conditions. Chin. J. Catal. 2019, 40, 214–222. [Google Scholar] [CrossRef]
- Atwater, M.A.; Phillips, J.; Leseman, Z.C. Accelerated growth of carbon nanofibers using physical mixtures and alloys of Pd and Co in an ethelyne-hydrogen environment. Carbon 2011, 49, 1058–1066. [Google Scholar] [CrossRef]
- Teng, I.J.; Huang, C.S.; Hsu, H.L.; Chung, I.C.; Jian, S.R.; Kherani, N.P.; Kuo, C.Z.; Juang, J.Y. On the use of new oxidized Co-Cr-Pt-O catalysts for vertically aligned few-walled carbon nanotube forest synthesis in electron cyclotron resonance CVD. Carbon 2014, 80, 808–822. [Google Scholar] [CrossRef]
- Weigle, J.C.; Phillips, J. Modelling hydrogen spillover in dual bed catalytic reactors. AIChE J. 2004, 50, 821–828. [Google Scholar] [CrossRef]
- Guerrero-Ruiz, A.; Rodriguez-Ramos, I. (Eds.) Spillover and Mobility of Species on Solid Surfaces. In Studies in Surface Science and Catalysis; Elsevier: Amsterdam, The Netherlands, 2001. [Google Scholar]
- Barrer, R.M. Diffusion in and Through Solids; Cambridge University Press: Cambridge, UK, 1941. [Google Scholar]
- Khoobiar, S. Particle to particle migration of hydrogen atoms on platinum-alumina catalysts from particle to neighboring particles. J. Phys. Chem. 1964, 68, 411. [Google Scholar] [CrossRef]
- Verhoeven, W.; Delmon, B. Actions des Metaux Etrangers Divisés sur la Reduction de l’Oxyde de Nickel par l’Hydrogène. C.R. Acad. Sci. 1966, 262, 33. [Google Scholar]
- Delmon, G.F. Froment. Remote control of catalytic sites by spillover species: a chemical reaction engineering approach. Catal. Rev: Sci. Eng. 1996, 38, 1. [Google Scholar] [CrossRef]
- Inui, T. (Ed.) Studies in Surface Science and Catalysis. In New Aspects of Spillover Effect in Catalysis; Elsevier: Amsterdam, The Netherlands, 1993. [Google Scholar]
- Prinz, R. Hydrogen spillover. facts and fiction. Chem. Rev. 2012, 112, 2714–2738. [Google Scholar] [CrossRef]
- Beaumont, S.K.; Alayoglu, S.; Specht, C.; Kruse, N.; Somorjai, G.A. A Nanoscale demonstration of hydrogen atom spillover and surface diffusion across silica using the kinetics of co2 methanation catalyzed on spatially separate pt and co nanoparticles. Nano Lett. 2014, 14, 4792. [Google Scholar] [CrossRef]
- Budnikov, P.P.; Ginstling, A.M. Principles of Solid State Chemistry, Reactions in Solids; Gordon & Breach Science Publishers Inc.: Philadelphia, PA, USA, 1968. [Google Scholar]
- Erunal, E.; Ulusl, F.; Aslan, M.Y.; Guzel, B.; Uner, D. Enhancement of hydrogen storage capacity of MWCNTs with Pd doping prepared through supercritical CO2 deposition method. Int. J. Hydrog. Energy 2018, 43, 10755–10764. [Google Scholar] [CrossRef]
- Carraro, P.M.; Garcia Blanco, A.A.; Lener, G.; Barrera, D. Nanostructured carbons modified with nickel potential novel reversible hydrogen storage materials: Effects on nickel particle size. Microporous Mesoporous Mater. 2019, 273, 50–59. [Google Scholar] [CrossRef]
- Lobo, L.S. Intrinsic kinetics in carbon gasification. Understanding linearity, “nanoworms” and alloy catalysts. Appl. Catal. B: Environ. 2014, 148, 136–143. [Google Scholar] [CrossRef]
- Lobo, L.S.; Carabineiro, S.A.C. Kinetics and mechanism of catalytic carbon gasification. Fuel 2016, 183, 157–469. [Google Scholar] [CrossRef]
- Lobo, L.S. Bamboo-like carbon fibers growth mechanism. Relevance of catalyst’s Tammann temperature. Submitted to C. 2019. [Google Scholar]
Catalytic Routes | T Range | Gas Phase Reactions | Surf Catalysis | Carbon Diffusion | Nucleation, Initial Growth |
---|---|---|---|---|---|
I Catalytic | Low T 300–550 °C | None or negligible | Yes | Through catalyst nanoparticle | On catalyst surface Ex: Ni (111) |
II Hybrid | Medium T 550–700 °C | Pyrolysis: C black. No gas changes | No | Through catalyst nanoparticle | On catalyst surface Ex: Mo |
III Pirolytic | High T >700 (*) °C | Pyrolysis: C black. Gas changes | No | Moving over previous layer of graphene | Over previous graphene layer |
Reactant Gas | P, Gas (torr) | P, H2 (torr) | Ea (Kcal/mole) |
---|---|---|---|
C3H6 | 100 | 25 | −79 |
C3H6 | 25 | 25 | −33 |
C2H2 | 82 | 345 | −53 |
C2H4 | 82 | 68 | −75 |
1-C4H8 | 30 | 250 | −64 |
Temp | Gas Pressure, Torr | PH2 (torr) | Orders | |||
---|---|---|---|---|---|---|
/°C | C2H2 | C2H4 | C4H8 | H2 | Hydr. | |
600 | 3–12 | - | - | 50 | - | 1 |
600 | 12.0 | - | - | 44–52 | ~0 | - |
625 | - | 8–13 | - | 9.5 | - | 1 |
625 | - | 13.0 | - | 9–14 | 1 | - |
625 | - | 13.0 | - | 50–66 | ~0 | - |
625 | - | - | 31–62 | 8 | 0 | - |
625 | - | - | 32.5 | 4–25 | - | 1 |
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lobo, L.S. Mechanism of Catalytic CNTs Growth in 400–650 °C Range: Explaining Volcano Shape Arrhenius Plot and Catalytic Synergism Using both Pt (or Pd) and Ni, Co or Fe. C 2019, 5, 42. https://doi.org/10.3390/c5030042
Lobo LS. Mechanism of Catalytic CNTs Growth in 400–650 °C Range: Explaining Volcano Shape Arrhenius Plot and Catalytic Synergism Using both Pt (or Pd) and Ni, Co or Fe. C. 2019; 5(3):42. https://doi.org/10.3390/c5030042
Chicago/Turabian StyleLobo, Luis Sousa. 2019. "Mechanism of Catalytic CNTs Growth in 400–650 °C Range: Explaining Volcano Shape Arrhenius Plot and Catalytic Synergism Using both Pt (or Pd) and Ni, Co or Fe" C 5, no. 3: 42. https://doi.org/10.3390/c5030042
APA StyleLobo, L. S. (2019). Mechanism of Catalytic CNTs Growth in 400–650 °C Range: Explaining Volcano Shape Arrhenius Plot and Catalytic Synergism Using both Pt (or Pd) and Ni, Co or Fe. C, 5(3), 42. https://doi.org/10.3390/c5030042