Effects of Reducing Agent on the Activity of PtRu/Carbon Black Anode Catalyst of Direct Methanol Fuel Cell
Abstract
:1. Introduction
2. Experimental
2.1. Chemicals
2.2. Preparation of Anode Catalyst
2.3. Characterization of Catalysts
2.4. Methanol Oxidation Activity
3. Results and Discussion
3.1. Characteristics of Carbon Black
3.1.1. TPD of Functional Groups on the Surface of Carbon Black
3.1.2. BET Surface Area and Pore Size Distribution of Carbon Black
3.2. Characterization of PtRu/Carbon Black Anode Catalyst
3.2.1. XRD
3.2.2. TEM
3.2.3. Effect of Phosphorus Content in Reduction on the Activity of the Catalyst
3.2.4. TGA and XRF
3.2.5. XPS
3.2.6. EXAFS
3.3. Catalytic Activity of the PtRu Catalysts
3.4. Effects of Phosphorus Content on the Activity
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Alias, M.S.; Kamarudin, S.K.; Zainoodin, A.M.; Masdar, M.S. Active direct methanol fuel cell: An overview. Int. J. Hydrogen Energy 2020, 45, 19620–19641. [Google Scholar] [CrossRef]
- Parthiban, V.; Sahu, A.K. Performance enhancement of direct methanol fuel cells using a methanol barrier boron nitride–Nafion hybrid membrane. New J. Chem. 2020, 44, 7338–7349. [Google Scholar] [CrossRef]
- Dyer, C.K. Fuel cells for portable applications. J. Power Sources 2002, 106, 31–34. [Google Scholar] [CrossRef]
- Chen, Y.W.; Chen, H.G.; Lo, M.Y.; Chen, Y.C. Modification of carbon black with hydrogen peroxide for high performance anode catalyst of direct methanol fuel cell. Materials 2021, 14, 3902. [Google Scholar] [CrossRef]
- Arico, A.S.; Srinivasan, S.; Antonucci, V. DMFCs: From fundamental aspects to technology development. Fuel Cells 2001, 1, 133–161. [Google Scholar] [CrossRef]
- Dinesh, J.; Easwaramoorthi, M.; Muthukumar, M. State of research developments in direct methanol fuel cell. Int. J. Eng. Trends Technol. 2017, 43, 284–296. [Google Scholar] [CrossRef]
- Verde, Y.; Alonso, G.; Ramos, H.; Zhang, H.; Jacobson, A.J.; Keer, A. Pt/C obtained from carbon with different treatments and (NH4)(2)PtCl6 as a Pt precursor. Appl. Catal. A Gen. 2004, 277, 201–207. [Google Scholar] [CrossRef]
- Ralph, T.R.; Hogarth, M.P. Catalysis for low temperature fuel cells, part II: The anode challenges. Platin. Metal Rev. 2002, 46, 3–32. [Google Scholar]
- Steele, B.C.H.; Heinzel, A. Materials for fuel-cell technologies. Nature 2001, 414, 345–354. [Google Scholar] [CrossRef] [PubMed]
- Gómez de la Fuente, J.L.; Martínez-Huerta, M.V.; Rojas, S.; Terreros, P.; Fierro, J.L.G.; Peña, M.A. Methanol electrooxidation on PtRu nanoparticles supported on functionalised carbon black. Catal. Today 2006, 116, 422–432. [Google Scholar] [CrossRef]
- Lian, Y.; Zhang, H.; Yi, B.; Zhang, Z.; Tan, Z. Preparation and characterization of multi-walled carbon nanotubes supported PtRu catalysts for proton exchange membrane fuel cells. Carbon 2005, 43, 3144–3152. [Google Scholar] [CrossRef]
- Wang, Z.B.; Yin, G.P.; Shi, P.F. Effects of ozone treatment of carbon support on Pt–Ru/C catalysts performance for direct methanol fuel cell. Carbon 2006, 44, 133–140. [Google Scholar] [CrossRef]
- Yao, W.; Jiang, X.; Li, M.; Li, Y.; Liu, Y.; Zhan, X.; Fu, G.; Tang, Y. Engineering hollsow porous platinum-silver double-shelled nanocages for efficient electro-oxidation of methanol. Appl. Catal. B Environ. 2021, 282, 11959–11972. [Google Scholar] [CrossRef]
- Li, Z.; Jiang, X.; Wang, X.; Hu, J.; Liu, Y.; Fu, G.; Tang, Y. Concave PtCo nanocrosses for methanol oxidation reaction. Appl. Catal. B Environ. 2020, 277, 119135–119147. [Google Scholar] [CrossRef]
- Li, M.; Li, Z.; Fu, G.; Tang, Y. Recent advances in amino-based molecules assisted control of noble-metal electrocatalysts. Small 2021, 17, 2007179–2007198. [Google Scholar] [CrossRef] [PubMed]
- Qiao, H.; Kunimatsu, M.; Fujiwara, N.; Okada, T. Novel heat-treatment process for performance enhancement of a microtubular DMFC anode prepared by impregnation-reduction method, Electrochem. Solid-State Lett. 2005, 8, A175–A183. [Google Scholar] [CrossRef]
- Liu, H.S.; Song, C.J.; Zhang, L.; Zhang, J.J.; Wang, H.J.; Wilkinson, D.P. A review of anode catalysis in the direct methanol fuel cell. J. Power. Sources 2006, 155, 95–110. [Google Scholar] [CrossRef]
- Kawaguchi, T.; Sugimoto, W.; Murakami, Y.; Takasu, Y. Particle growth behavior of carbon-supported Pt, Ru, PtRu catalysts prepared by an impregnation reductive-pyrolysis method for direct methanol fuel cell anodes. J. Catal. 2005, 229, 176–184. [Google Scholar] [CrossRef] [Green Version]
- Xue, X.; Ge, J.; Liu, C.P.; Xing, W.; Lu, T. Novel chemical synthesis of Pt–Ru–P electrocatalysts by hypophosphite deposition for enhanced methanol oxidation and CO tolerance in direct methanol fuel cell. Electrochem. Commun. 2006, 8, 1280–1286. [Google Scholar] [CrossRef]
- Burguete, C.P.; Solano, A.L.; Reinoso, F.R.; Lecea, C.S. The effect of oxygen surface groups of the support on platinum dispersion in Pt/carbon catalysts. J. Catal. 1989, 115, 98–106. [Google Scholar]
- Kawaguchi, T.; Sugimoto, W.; Murakami, Y.; Takasu, Y. Temperature dependence of the oxidation of carbon monoxide on carbon supported Pt, Ru, and PtRu. Electrochem. Commun. 2004, 6, 480–483. [Google Scholar] [CrossRef]
- Aksoylu, E.; Madalena, M.; Freitas, A.; Figueiredo, J.L. Bimetallic Pt–Sn catalysts supported on activated carbon. Appl. Catal. A Gen. 2000, 192, 29–42. [Google Scholar] [CrossRef]
- Watanabe, M.; Uchida, M.; Motoo, S. Preparation of highly dispersed Pt + Ru alloy clusters and the activity for the electrooxidation of methanol. J. Electroanal. Chem. 1987, 229, 395–406. [Google Scholar] [CrossRef]
- Liu, Z.; Lee, J.Y.; Han, M.; Chen, W.; Gan, L.M. Synthesis and characterization of PtRu/C catalysts from microemulsions and emulsions. J. Mater. Chem. 2002, 12, 2453–2458. [Google Scholar] [CrossRef]
- Liu, D.G.; Lee, J.F.; Tang, M.T. Characterization of Pt-Ru/C catalysts by X-ray absorption spectroscopy and temperature-programmed surface reaction. J. Mol. Catal. A Chem. 2005, 240, 197–206. [Google Scholar] [CrossRef]
- Nitani, H.; Nakagawa, T.; Daimon, H.; Kurobe, Y.; Ono, T.; Honda, Y.; Koizumi, A.; Seino, S.; Yamamoto, T.A. Methanol oxidation catalysis and substructure of PtRu bimetallic nanoparticles. Appl. Catal. A Gen. 2007, 326, 194–201. [Google Scholar] [CrossRef]
Sample | [O] (mmol/g) | Conductivity (S/cm) | ||
---|---|---|---|---|
CO | CO2 | Total | ||
Carbon black | 0.4915 | 0.0905 | 0.5820 | 12.11 |
Sample | Reduction | Particle Size (nm) | Metal Dispersion | |||
---|---|---|---|---|---|---|
Agent | T (°C) | Time (h) | TEM | XRD | ||
PtRu/carbon-NaBH4 | NaBH4 | RT | 2 | 3.5 | 2.57 | low |
PtRu/carbon-HCHO | HCHO | 85 °C | 3 | 2.7 | N.D. | not good |
PtRu/carbon-NaH2PO2 | NaH2PO2 | 90 °C | 10 | 2.59 | 2.03 | good |
Sample | P/Pt (Atomic Ratio) | Metal Particle Size (nm) |
---|---|---|
PtRu/carbon (0.6) | 0.6 | 3.37 |
PtRu/carbon (0.8) | 0.8 | 2.26 |
PtRu/carbon (1.2) | 1.2 | 2.78 |
PtRu/carbon (2) | 2 | 3.06 |
Sample | P/Pt (Atomic Ratio) | Metal Oxide Content (wt.%) | XRF (mol. %) | Loading (wt.%) | ||
---|---|---|---|---|---|---|
Pt | Ru | Nominal | Real | |||
PtRuP/carbon (0.6) | 0.6 | 64.01 | 54 | 46 | 60.08 | 57.92 |
PtRuP/carbon (0.8) | 0.8 | 67.75 | 58 | 42 | 60.01 | 59.08 |
PtRuP/carbon (1) | 1 | 62.05 | 47 | 53 | 60.01 | 55.91 |
PtRuP/carbon (1.2) | 1.2 | 62.15 | 52 | 48 | 60.03 | 56.15 |
PtRuP/carbon (2) | 2 | 65.9 | 52 | 48 | 59.59 | 59.55 |
Sample | Pt 4f7/2 | Ru 3d5/2 | |||
---|---|---|---|---|---|
71.2 eV | 72.5 eV | 73.8 eV | 280 eV | 281 eV | |
PtRuP/carbon (0.6) | 54.79% | 45.21 | 0 | 0 | 100% |
PtRuP/carbon (1.2) | 60.04 | 22 | 0 | 100 | |
PtRuP/carbon (2) | 53.50 | 26.66 | 19.85 | 24.55 7 | 75.45 |
Sample | Shell | N | Å | D (nm) | ΔE0 (eV) | Δσj2 (A2) | r-Factor |
---|---|---|---|---|---|---|---|
PtRuP/carbon (2) | Pt-Pt | 7.89 | 2.74 | 3.06 | 3.16 | 0.007 | 0.30% |
Pt-Ru | 1.66 | 2.69 | 0.55 | 0.004 | |||
PtRuP/carbon (1.2) | Pt-Pt | 5.31 | 2.75 | 2.26 | 4.79 | 0.005 | 0.18% |
Pt-Ru | 2.03 | 2.71 | 2.77 | 0.004 | |||
PtRuP/carbon (0.8) | Pt-Pt | 6.61 | 2.74 | 2.78 | 3.54 | 0.006 | 0.05% |
Pt-Ru | 1.54 | 2.7 | 1.81 | 0.003 | |||
PtRuP/carbon (0.6) | Pt-Pt | 8.74 | 2.72 | 3.37 | 0.73 | 0.006 | 0.10% |
Pt-Ru | 0.62 | 2.70 | 19 | 0.0006 |
Sample | Reduction Condition | Particle Size (nm) | XRF (Atomic %) | Loading (wt.%) | Activity (A/g) | |||||
---|---|---|---|---|---|---|---|---|---|---|
Reducing Agent | Temp. | pH | Time (h) | TEM | Pt | Ru | Nominal | TGA | ||
Result | ||||||||||
PtRu/carbon | NaBH4 | RT | 12.1 | 2 | 3.5 | 63 | 37 | 59.9 | 57.72 | 84.95 |
PtRu/carbon | HCHO | 85 °C | 12.2 | 3 | 2.7 | 61 | 39 | 60.1 | 46.17 | 147.71 |
PtRu/carbon | NaH2PO2 | 90 °C | 11.3 | 10 | 2.5 | 57 | 43 | 59.8 | 55.02 | 238.2 |
Sample | P/Pt | Metal Particle Size (nm) | XRF | Loading (%) | Activity (A/g) | |||
---|---|---|---|---|---|---|---|---|
TEM | XRD | Pt (%) | Ru (%) | Nominal | TGA | |||
PtRuP/carbon (2) | 2 | 3.06 | 3.55 | 52 | 48 | 59.59 | 59.47 | 224.23 |
PtRuP/carbon (1.2) | 1.2 | 2.26 | N.D. | 52 | 48 | 60.03 | 56.11 | 263.12 |
PtRuP/carbon (0.8) | 0.8 | 2.78 | N.D. | 58 | 42 | 60.01 | 58.3 | 228.06 |
PtRuP/carbon (0.6) | 0.6 | 3.37 | 3.48 | 54 | 46 | 60.08 | 57.77 | 89.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.-W.; Chen, H.-G. Effects of Reducing Agent on the Activity of PtRu/Carbon Black Anode Catalyst of Direct Methanol Fuel Cell. C 2021, 7, 72. https://doi.org/10.3390/c7040072
Chen Y-W, Chen H-G. Effects of Reducing Agent on the Activity of PtRu/Carbon Black Anode Catalyst of Direct Methanol Fuel Cell. C. 2021; 7(4):72. https://doi.org/10.3390/c7040072
Chicago/Turabian StyleChen, Yu-Wen, and Han-Gen Chen. 2021. "Effects of Reducing Agent on the Activity of PtRu/Carbon Black Anode Catalyst of Direct Methanol Fuel Cell" C 7, no. 4: 72. https://doi.org/10.3390/c7040072
APA StyleChen, Y. -W., & Chen, H. -G. (2021). Effects of Reducing Agent on the Activity of PtRu/Carbon Black Anode Catalyst of Direct Methanol Fuel Cell. C, 7(4), 72. https://doi.org/10.3390/c7040072