Valorization of Exhausted Olive Pomace for the Production of a Fuel for Direct Carbon Fuel Cell
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Material
2.2. Carbonization Pilot Plant Description
2.3. Physico-Chemical Characterization of the EOP Biochar
2.4. Electrochemical Test of the EOP Biochar in Direct Carbon Fuel Cell
3. Results and Discussions
3.1. Feedstock Characterization
3.2. EOP Biochar Characterization
3.3. Feasibility Testing of the EOP Biochar as Fuel in DCFC
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Saviozzi, A.; Levi-Minzi, R.; Cardelli, R.; Biasci, A.; Riffaldi, R. Suitability of moist olive pomace as soil amendment. Water Air Soil Pollut. 2001, 128, 13–22. [Google Scholar] [CrossRef]
- Alburquerque, J.A.; Gonzálvez, J.; García, D.; Cegarra, J. Agrochemical characterization of “alperujo”, a solid by-product of the two-phase centrifugation method for olive oil extraction. Bioresour. Technol. 2004, 91, 195–200. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Muñoz, B.; Hatch, D.J.; Bol, R.; García-Ruiz, R. The Compost of Olive Mill Pomace: From a Waste to a Resource—Environmental Benefits of Its Application in Olive Oil Groves. In Sustainable Development—Authoritative and Leading Edge Content for Environmental Management; Curkovic, S., Ed.; In Tech: Rijeka, Croatia, 2012; pp. 449–484. ISBN 9789535106821. [Google Scholar]
- Zabaniotou, A.A.; Kalogiannis, G.; Kappas, E.; Karabelas, A.J. Olive residues (cuttings and kernels) rapid pyrolysis product yields and kinetics. Biomass Bioenergy 2000, 18, 411–420. [Google Scholar] [CrossRef]
- Jauhiainen, J.; Conesa, J.A.; Font, R.; Martín-Gullón, I. Kinetics of the pyrolysis and combustion of olive oil solid waste. J. Anal. Appl. Pyrolysis 2004, 72, 9–15. [Google Scholar] [CrossRef]
- Naik, S.N.; Goud, V.V.; Rout, P.K.; Dalai, A.K. Production of first and second generation biofuels: A comprehensive review. Renew. Sustain. Energy Rev. 2010, 14, 578–597. [Google Scholar] [CrossRef]
- Volpe, M.; D’Anna, C.; Messineo, S.; Volpe, R.; Messineo, A. Sustainable production of bio-combustibles from pyrolysis of agro-industrial wastes. Sustainability 2014, 6, 7866–7882. [Google Scholar] [CrossRef]
- Miranda, T.; Nogales, S.; Román, S.; Montero, I.; Arranz, J.I.; Sepúlveda, F.J. Control of several emissions during olive pomace thermal degradation. Int. J. Mol. Sci. 2014, 15, 18349–18361. [Google Scholar] [CrossRef] [PubMed]
- Miranda, I.; Simões, R.; Medeiros, B.; Nampoothiri, K.M.; Sukumaran, R.K.; Rajan, D.; Pereira, H.; Ferreira-Dias, S. Valorization of lignocellulosic residues from the olive oil industry by production of lignin, glucose and functional sugars. Bioresour. Technol. 2019, 292, 121936. [Google Scholar] [CrossRef] [PubMed]
- Cuevas, M.; García, J.F.; Hodaifa, G.; Sánchez, S. Oligosaccharides and sugars production from olive stones by autohydrolysis and enzymatic hydrolysis. Ind. Crops Prod. 2015, 70, 100–106. [Google Scholar] [CrossRef]
- Pütün, A.E.; Uzun, B.B.; Apaydin, E.; Pütün, E. Bio-oil from olive oil industry wastes: Pyrolysis of olive residue under different conditions. Fuel Process. Technol. 2005, 87, 25–32. [Google Scholar] [CrossRef]
- Chouchene, A.; Jeguirim, M.; Khiari, B.; Zagrouba, F.; Trouvé, G. Thermal degradation of olive solid waste: Influence of particle size and oxygen concentration. Resour. Conserv. Recycl. 2010, 54, 271–277. [Google Scholar] [CrossRef]
- Özveren, U.; Özdoǧan, Z.S. Investigation of the slow pyrolysis kinetics of olive oil pomace using thermo-gravimetric analysis coupled with mass spectrometry. Biomass Bioenergy 2013, 58, 168–179. [Google Scholar] [CrossRef]
- Parascanu, M.M.; Sánchez, P.; Soreanu, G.; Valverde, J.L.; Sanchez-Silva, L. Environmental assessment of olive pomace valorization through two different thermochemical processes for energy production. J. Clean. Prod. 2018, 186, 771–781. [Google Scholar] [CrossRef]
- Dinc, G.; Yel, E. Self-catalyzing pyrolysis of olive pomace. J. Anal. Appl. Pyrolysis 2018, 134, 641–646. [Google Scholar] [CrossRef]
- Cao, D.; Sun, Y.; Wang, G. Direct carbon fuel cell: Fundamentals and recent developments. J. Power Source 2007, 167, 250–257. [Google Scholar] [CrossRef]
- Ahn, S.Y.; Eom, S.Y.; Rhie, Y.H.; Sung, Y.M.; Moon, C.E.; Choi, G.M.; Kim, D.J. Utilization of wood biomass char in a directcarbon fuel cell (DCFC) system. Appl. Energy 2013, 105, 207–216. [Google Scholar] [CrossRef]
- Cherepy, N.J.; Krueger, R.; Fiet, K.J.; Jankowski, A.F.; Cooper, J.F. Direct Conversion of Carbon Fuels in a Molten CarbonateFuel Cell. J. Electrochem. Soc. 2005, 152, A80–A87. [Google Scholar] [CrossRef]
- Elleuch, A.; Boussetta, A.; Yu, J.; Halouani, K.; Li, Y. Experimental investigation of direct carbon fuel cell fueled by almond shell biochar: Part I. Physico-chemical characterization of the biochar fuel and cell performance examination. Int. J. Hydrogen Energy 2013, 38, 16590–16604. [Google Scholar] [CrossRef]
- Heneka, M.J.; Ivers-Tiffée, E. Degradation of SOFC single cells under severe current cycles. Proc. Electrochem. Soc. 2005, 2005, 534–543. [Google Scholar] [CrossRef]
- Yamaji, K.; Ishiyama, T.; Bagarinao, K.D.; Kishimoto, H.; Horita, T.; Yokokawa, H. Evaluation of Impurity Levels in Cathods of Seven Different SOFCS tacks and Modules before and after Long-Term Operation. ECS Meet. Abstr. 2017, MA2017-03, 177. [Google Scholar] [CrossRef]
- Jiang, C.; Ma, J.; Arenillas, A.; Bonaccorso, A.D.; Irvine, J.T.S. Comparative study of durability of hybrid direct carbon fuelcells with anthracite coal and bituminous coal. Int. J. Hydrogen Energy 2016, 41, 18797–18806. [Google Scholar] [CrossRef]
- Alenazey, F.; Alyousef, Y.; Alotaibi, B.; Almutairi, G.; Minakshi, M.; Cheng, C.K.; Vo, D.V.N. Degradation Behaviors of Solid Oxide Fuel Cell Stacks in Steady-State and Cycling Conditions. Energy Fuels 2020, 34, 14864–14873. [Google Scholar] [CrossRef]
- Xia, C.; Li, Y.; Tian, Y.; Liu, Q.; Wang, Z.; Jia, L.; Zhao, Y.; Li, Y. Intermediate temperature fuel cell with adoped ceria-carbonate composite electrolyte. J. Power Source 2010, 195, 3149–3154. [Google Scholar] [CrossRef]
- Zhao, Y.; Xia, C.; Wang, Y.; Xu, Z.; Li, Y. Quantifying multi-ionic conduction through doped ceria-carbonate composite electrolyte by a current-interruption technique and product analysis. Int. J. Hydrogen Energy 2012, 37, 8556–8561. [Google Scholar] [CrossRef]
- Jia, L.; Tian, Y.; Liu, Q.; Xia, C.; Yu, J.; Wang, Z.; Zhao, Y.; Li, Y. A direct carbon fuel cell with (molten carbonate)/(doped ceria) composite electrolyte. J. Power Source 2010, 195, 5581–5586. [Google Scholar] [CrossRef]
- Cui, C.; Li, S.; Gong, J.; Wei, K.; Hou, X.; Jiang, C.; Yao, Y.; Ma, J. Review of molten carbonate-based direct carbon fuel cells. Mater. Renew. Sustain. Energy 2021, 10, 1–24. [Google Scholar] [CrossRef]
- Mejdoub, F.; Elleuch, A.; Halouani, K. Assessment of the intricate nickel-based anodic reactions mechanism within a methanol fed solid oxide fuel cell based on a co-ionic conducting composite electrolyte. J. Power Source 2019, 414, 115–128. [Google Scholar] [CrossRef]
- Elleuch, A.; Halouani, K.; Li, Y. Investigation of chemical and electrochemical reactions mechanisms in a direct carbon fuel cell using olive wood char coal as sustainable fuel. J. Power Source 2015, 281, 350–361. [Google Scholar] [CrossRef]
- Kaklidis, N.; Kyriakou, V.; Garagounis, I.; Arenillas, A.; Menéndez, J.A.; Marnellos, G.E.; Konsolakis, M. Effect of carbon type on the performance of a direct or hybrid carbon solid oxide fuel cell. RSC Adv. 2014, 4, 18792–18800. [Google Scholar] [CrossRef]
- Konsolakis, M.; Kaklidis, N.; Marnellos, G.E.; Zaharaki, D.; Komnitsas, K. Assessment of biochar as feedstock in a direct carbon solid oxide fuel cell. RSC Adv. 2015, 5, 73399–73409. [Google Scholar] [CrossRef]
- Chen, C.C.; Selman, J.R. Anode modeling of a molten-carbonate based direct carbon fuel cell. J. Power Source 2017, 353, 312–322. [Google Scholar] [CrossRef]
- Jafri, N.; Wong, W.Y.; Doshi, V.; Yoon, L.W.; Cheah, K.H. A review on production and characterization of biochars for application in direct carbon fuel cells. Process Saf. Environ. Prot. 2018, 118, 152–166. [Google Scholar] [CrossRef]
- Wang, J.; Fan, L.; Yao, T.; Gan, J.; Zhi, X.; Hou, N.; Gan, T.; Zhao, Y.; Li, Y. A High-Performance Direct Carbon Fuel Cell with Reed Rod Biocharas Fuel. J. Electrochem. Soc. 2019, 166, F175–F179. [Google Scholar] [CrossRef]
- Shama, P.; Singh, D.; Minakshi, M.; Quadsia, S.; Ahuja, R. Activation-Induced Surface Modulation of Biowaste-Derived Hierarchical Porous Carbon for Supercapacitors. ChemPlus Chem. 2022, 87, e202200126. [Google Scholar]
- Wickramaarachchi, K.; Minakshi, M.; Aravindh, S.A.; Dabare, R.; Gao, X.; Jiang, Z.T.; Wong, K.W. Repurposing N-Doped Grape Marcfor the Fabrication of Supercapacitors with Theoretical and Machine Learning Models. Nanomaterials 2022, 12, 1847. [Google Scholar] [CrossRef]
- Gómez, I.C.; Cruz, O.F.; Silvestre-Albero, J.; Rambo, C.R.; Escandell, M.M. Role of KCl in activation mechanisms o KOH-chemically activated high surface area carbons. J. CO2 Util. 2022, 66, 102258. [Google Scholar] [CrossRef]
- Jayakumar, A.; Küngas, R.; Roy, S.; Javadekar, A.; Buttrey, D.J.; Vohs, J.M.; Gorte, R.J. A direct carbon fuel cell with a molten antimony anode. J. Energy Environ. Sci. 2011, 4, 4133–4137. [Google Scholar]
- Cai, W.; Zhou, Q.; Xie, Y.; Liu, J. A facile method of preparing Fe-loaded activated carbon fuel for direct carbon solid oxide fuel cells. Fuel 2015, 159, 887–893. [Google Scholar] [CrossRef]
- Hao, W.; Mi, Y. Evaluation of waste paper as a source of carbon fuel for hybrid direct carbon fuel cells. Energy 2016, 107, 122–130. [Google Scholar] [CrossRef]
- Chien, A.C.; Chuang, S.S.C. Effect of gas flow rates and Boudouard reactions on the performance of Ni/YSZ anode supported solid oxide fuel cells with solid carbon fuels. J. Power Source 2011, 196, 4719–4723. [Google Scholar] [CrossRef]
- Hao, W.; He, X.; Mi, Y. Achieving high performance in intermediate temperature direct carbon fuel cells with renewable carbon as a fuel source. J. Appl. Energy 2014, 135, 174–181. [Google Scholar] [CrossRef]
- Li, X.; Zhu, Z.; De Marco, R.; Bradley, J.; Dicks, A. Evaluation of raw coals as fuels for direct carbon fuel cells. J. Power Source 2010, 195, 4051–4058. [Google Scholar] [CrossRef]
- Kacprzak, A.; Kobyłecki, R.; Włodarczyk, R.; Bis, Z. Efficiency of non-optimized direct carbon fuel cell with molten alkaline electrolyte fueled by carbonized biomass. J. Power Source 2016, 321, 233–240. [Google Scholar] [CrossRef]
- Wang, C.Q.; Liu, J.; Zeng, J.; Yin, J.L.; Wang, G.L.; Cao, D.X. Significant improvement of electro oxidation performance of carbon in molten carbonates by the introduction of transition metal oxides. J. Power Source 2013, 233, 244–251. [Google Scholar] [CrossRef]
- Sequeira, C.A.C. Carbon Anode in Carbon History. Molecules 2020, 25, 4996. [Google Scholar] [CrossRef]
- Tang, Y.; Liu, J. Effect of anode and Boudouard reaction catalysts on the performance of direct carbon solid oxide fuel cells. Int. J. Hydrogen Energy 2010, 35, 11188–11193. [Google Scholar] [CrossRef]
- Han, T.; Wu, Y.; Xie, Z.; Wang, Y.; Xie, Y.; Zhang, J.; Xiao, J.; Yu, F.; Yang, N. A novel Boudouard reaction catalyst derived from strontium slag for enhanced performance of direct carbon solid oxide fuel cells. J. Alloys Compd. 2022, 895, 162643. [Google Scholar] [CrossRef]
- Yu, J.; Zhao, Y.; Li, Y. Utilization of corn cob biochar in a direct carbon fuel cell. J. Power Source 2014, 270, 312–317. [Google Scholar] [CrossRef]
- Technical Association of the Pulp and Paper Industry. TAPPI Test Methods; TAPPI: Atlanta, GA, USA, 2012. [Google Scholar]
- Browning, B. Methods of Wood Chemistry; Interscience Publishers: New York, NY, USA, 1967. [Google Scholar]
- Perry, R.H.; Chilton, C.H. Chemical Engineers’ Handbook, 5th ed.; Cecil, H., Perry, J.H., Eds.; McGraw-Hill: New York, NY, USA, 1973. [Google Scholar]
- Grioui, N.; Halouani, K.; Zoulalian, A.; Halouani, F. Experimental Study of Thermal Effect on Olive Wood Porous Structure During Carbonization. Maderas. Cienc. Tecnol. 2007, 9, 15–28. [Google Scholar] [CrossRef]
- Liang, Y.; Cheng, B.; Si, Y.; Cao, D.; Jiang, H.; Han, G.; Liu, X. Thermal decomposition kinetics and characteristics of Spartina alterniflora via thermogravimetric analysis. Renew. Energy 2014, 68, 111–117. [Google Scholar] [CrossRef]
- Ma, Z.; Chen, D.; Gu, J.; Bao, B.; Zhang, Q. Determination of pyrolysis characteristics and kinetics of palm kernel shell using TGA-FTIR and model-free integral methods. Energy Convers. Manag. 2015, 89, 251–259. [Google Scholar] [CrossRef]
- García, G.B.; Calero De Hoces, M.; Martínez García, C.; Cotes Palomino, M.T.; Gálvez, A.R.; Martín-Lara, M.Á. Characterization and modeling of pyrolysis of the two-phase olive mill solid waste. Fuel Process. Technol. 2014, 126, 104–111. [Google Scholar] [CrossRef]
- Cooper, J.F. Direct Conversion of Coal and Coal-Derived Carbon in Fuel Cells. In Proceedings of the 2nd International Conference on Fuel Cell Science, Engineering and Technology, Rochester, NY, USA, 14–16 June 2004; ASME: New York, NY, USA, 2004; pp. 375–385. [Google Scholar]
- De Filippis, P.; Di Palma, L.; Petrucci, E.; Scarsella, M.; Verdone, N. Production and Characterization of Adsorbent Materials from Sewage Sludge by Pyrolysis. Chem. Eng. Trans. 2013, 32, 205–210. [Google Scholar]
- Choudhury, N.D.; Chutia, R.S.; Bhaskar, T.; Kataki, R. Pyrolysis of jute dust: Effect of reaction parameters and analysis of products. J. Mater. Cycles Waste Manag. 2014, 16, 449–459. [Google Scholar] [CrossRef]
- Di Blasi, C. Heat, Momentum and mass transport through a shrinking biomass particle exposed to thermal radiation. Chem. Eng. Sci. 1996, 51, 1121–1132. [Google Scholar] [CrossRef]
- Rady, A.C.; Giddey, S.; Badwal, S.P.S.; Ladewig, B.P.; Bhattacharya, S. Review of fuels for direct carbon fuel cells. Energy Fuels 2012, 26, 1471–1488. [Google Scholar] [CrossRef]
- Vutetakis, D.G.; Skidmore, D.R.; Byker, H.J. Electrochemical Oxidation of Molten Carbonate-Coal Slurries. J. Electrochem. Soc. 1987, 134, 3027–3035. [Google Scholar] [CrossRef]
- Joyce, J.; Dixon, T.; Diniz Da Costa, J.C. Characterization of sugarcane waste biomass derived chars from pressurized gasification. Process Saf. Environ. Prot. 2006, 84, 429–439. [Google Scholar] [CrossRef]
- Nzihou, A.; Stanmore, B.; Sharrock, P. A review of catalysts for the gasification of biomass char, with some reference to coal. Energy 2013, 58, 305–317. [Google Scholar] [CrossRef]
- Mahadevan, R.; Adhikari, S.; Shakya, R.; Wang, K.; Dayton, D.; Lehrich, M.; Taylor, S.E. Effect of Alkali and Alkaline EarthMetals on in-Situ Catalytic Fast Pyrolysis of Lignocellulosic Biomass: A Micro-reactor Study. Energy Fuels 2016, 30, 3045–3056. [Google Scholar] [CrossRef]
- Bourke, J.; Manley-Harris, M.; Fushimi, C.; Dowaki, K.; Nunoura, T.; Antal, M.J. Do all carbonized charcoals have the same chemical structure? Ind. Eng. Chem. Res. 2007, 46, 5954–5967. [Google Scholar] [CrossRef]
- Keiluweit, M.; Nico, P.S.; Johnson, M.G.; Kleber, M. Dynamic Molecular Structure of Plant Biomass-derived Black Carbon (Biochar)-Supporting Information. Environ. Sci. Technol. 2010, 44, 1247–1253. [Google Scholar] [CrossRef] [PubMed]
- Yuan, J.H.; Xu, R.K.; Zhang, H. The forms of alkalis in the biochar produced from crop residues at different temperatures. Bioresour. Technol. 2011, 102, 3488–3497. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, M.; Ahmad, M.; Usman, A.R.A.; Al-Faraj, A.S.; Abduljabbar, A.; Ok, Y.S.; Al-Wabel, M.I. Date palm waste-derived biochar composites with silica and zeolite: Synthesis, characterization and implication for carbon stability and recalcitrant potential. Environ. Geochem. Health 2017, 41, 1687–1704. [Google Scholar] [CrossRef]
- Rafiq, M.K.; Bachmann, R.T.; Rafiq, M.T.; Shang, Z.; Joseph, S.; Long, R.L. Influence of pyrolysis temperature on physico-chemical properties of corn stover (zeamays L.) biochar and feasibility for carbon capture and energy balance. PLoS ONE 2016, 11, e0156894. [Google Scholar] [CrossRef] [PubMed]
- Sigmund, G.; Hüffer, T.; Hofmann, T.; Kah, M. Biochar total surface area and total pore volume determined by N2 and CO2 physisorption are strongly influenced by degassing temperature. Sci. Total Environ. 2017, 580, 770–775. [Google Scholar] [CrossRef]
- Li, X.; Zhu, Z.; DeMarco, R.; Bradley, J.; Dicks, A. Modification of coal as a fuel for the direct carbon fuel cell. J. Phys. Chem. A 2010, 114, 3855–3862. [Google Scholar] [CrossRef]
- Li, J.; Wei, B.; Wang, C.; Zhou, Z.; Lu, Z. High performance and stable La0.8 Sr0.2 Fe0.9 Nb0.1 O3-δ anode for direct carbon solid oxide fuel cells fueled by activated carbon and corn straw derived carbon. Int. J. Hydrogen Energy 2018, 43, 12358–12367. [Google Scholar] [CrossRef]
- Wu, H.; Xiao, J.; Hao, S.; Yang, R.; Dong, P.; Han, L.; Li, M.; Yu, F.; Xie, Y.; Ding, J.; et al. In-situ catalytic gasification ofkelp-derived biochar as a fuel for direct carbon solid oxide fuel cells. J. Alloys Compd. 2021, 865, 158922. [Google Scholar] [CrossRef]
- Chien, A.C.; Arenillas, A.; Jiang, C.; Irvine, J.T.S. Performance of Direct Carbon Fuel Cells Operated on Coal and Effect of Operation Mode. J. Electrochem. Soc. 2014, 161, F588–F593. [Google Scholar] [CrossRef]
- Mohan, D.; Pittman, C.U.; Steele, P.H. Pyrolysis of wood/biomass for bio-oil: A critical review. Energy Fuels 2006, 20, 848–889. [Google Scholar] [CrossRef]
- Hoffmann, V.; Jung, D.; Zimmermann, J.; Correa, C.R.; Elleuch, A.; Halouani, K.; Kruse, A. Conductive carbon materials from the hydrothermal carbonization of vineyard residues for the application in electrochemical double-layer capacitors(EDLCs) and direct carbon fuel cells(DCFCs). Materials 2019, 12, 1703. [Google Scholar] [CrossRef] [PubMed]
- Eom, S.; Ahn, S.; Rhie, Y.; Choi, G.; Kim, D. Effect of Coal Gases on Electrochemical Reactions in the Direct Carbon Fuel CellSystem. J. Clean Energy Technol. 2015, 3, 72–77. [Google Scholar] [CrossRef] [Green Version]
- Adinaveen, T.; Vijaya, J.J.; Kennedy, L.J. Comparative Study of Electrical Conductivity on Activated Carbons Prepared from Various Cellulose Materials. Arab. J. Sci. Eng. 2016, 41, 55–65. [Google Scholar] [CrossRef]
Analysis | Sample | EOP Raw Material | EOP Biochar |
---|---|---|---|
Proximate analysis (%) | Moisture | 7.31 | 1.38 |
Ash | 10.91 | 21.55 | |
Fixed carbon ** | 25.28 | 36.45 | |
Volatile matter | 56.5 | 40.62 | |
Ultimate analysis * (%) | C | 39.45 | 65.7 |
H | 5.58 | 3.4 | |
N | 2.68 | 0.88 | |
S | <0.8 | 0.08 | |
O ** | 41.2 | 29.93 | |
Molar formula | CH1.69 O0.78N0.058 | CH0.62O0.34N0.01 | |
Lignocellulosic material composition | Hemicellulose (%) | 13 | |
Cellulose (%) | 27 | ||
Lignin (%) | 49 | ||
High heating value (HHV. MJ kg−1) | 14.43 | 22.21 | |
Low heating value (LHV. MJ kg−1) | 13.21 | 21.47 |
Non-Organicelemental Composition (%) | EOP Biochar |
---|---|
MgO | 0.96 |
Al2O3 | 1.79 |
SiO2 | 55.21 |
P2O5 | 3.33 |
SO3 | 2.06 |
K2O | 13.72 |
CaO | 16.31 |
Fe2O3 | 3.93 |
SrO | 0.40 |
Cl | 1.98 |
TiO2 | 0.30 |
EOP Biochar | |
---|---|
Crystalline parameters | |
d002 (nm) | 0.3622 |
Lc (nm) | 24.02 |
Hg porosimetry analysis | |
Specific surface area (m2·g−1) | 52.495 |
Total pore volume (cm3·g−1) | 0.4866 |
Porosity (%) | 36 |
Average pore diameter (nm) | 37.1 |
Bulk density (g·cm−3) | 0.75521 |
Apparent density (g·cm−3) | 1.1879 |
Energy density (GJ·m−3) | 27.97 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grioui, N.; Elleuch, A.; Halouani, K.; Li, Y. Valorization of Exhausted Olive Pomace for the Production of a Fuel for Direct Carbon Fuel Cell. C 2023, 9, 22. https://doi.org/10.3390/c9010022
Grioui N, Elleuch A, Halouani K, Li Y. Valorization of Exhausted Olive Pomace for the Production of a Fuel for Direct Carbon Fuel Cell. C. 2023; 9(1):22. https://doi.org/10.3390/c9010022
Chicago/Turabian StyleGrioui, Najla, Amal Elleuch, Kamel Halouani, and Yongdan Li. 2023. "Valorization of Exhausted Olive Pomace for the Production of a Fuel for Direct Carbon Fuel Cell" C 9, no. 1: 22. https://doi.org/10.3390/c9010022
APA StyleGrioui, N., Elleuch, A., Halouani, K., & Li, Y. (2023). Valorization of Exhausted Olive Pomace for the Production of a Fuel for Direct Carbon Fuel Cell. C, 9(1), 22. https://doi.org/10.3390/c9010022