Joule Heating of Carbon-Based Materials Obtained by Carbonization of Para-Aramid Fabrics
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. Methodology
- Method 1: Charcoal Method
- Method 2: Ammonium bicarbonate salt Method
- Method 3: N2 Method
2.3. Ohmic Heating Measurement
2.4. Electrical Resistivity
3. Results and Discussions
3.1. Electrical Resistivity
3.2. Joule Heating Characteristics
- Temperature–Voltage (T-V) relation
- Heating/Cooling Kinetics: Temperature–Time (T–I) relation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kim, M.; Sung, D.H.; Kong, K.; Kim, N.; Kim, B.-J.; Park, H.W.; Park, Y.-B.; Jung, M.; Lee, S.H.; Kim, S.G. Characterization of resistive heating and thermoelectric behavior of discontinuous carbon fiber-epoxy composites. Compos. Part B Eng. 2016, 90, 37–44. [Google Scholar] [CrossRef]
- Zhang, Q.; Yu, Y.; Yang, K.; Zhang, B.; Zhao, K.; Xiong, G.; Zhang, X. Mechanically robust and electrically conductive graphene-paper/glass-fibers/epoxy composites for stimuli-responsive sensors and Joule heating deicers. Carbon 2017, 124, 296–307. [Google Scholar] [CrossRef]
- Isaji, S.; Bin, Y.; Matsuo, M. Electrical conductivity and self-temperature-control heating properties of carbon nanotubes filled polyethylene films. Polymer 2009, 50, 1046–1053. [Google Scholar] [CrossRef]
- Lopes, H.; Ribeiro, J.E. Structural Health Monitoring in Composite Automotive Elements. In New Advances in Vehicular Technology and Automotive Engineering; Carmo, J., Ed.; InTech: London, UK, 2012. [Google Scholar] [CrossRef] [Green Version]
- Zanjani, J.S.M.; Okan, B.S.; Pappas, P.-N.; Galiotis, C.; Menceloglu, Y.Z.; Yildiz, M. Tailoring viscoelastic response, self-heating and deicing properties of carbon-fiber reinforced epoxy composites by graphene modification. Compos. Part A Appl. Sci. Manuf. 2018, 106, 1–10. [Google Scholar] [CrossRef]
- Athanasopoulos, N.; Kostopoulos, V. Resistive heating of multidirectional and unidirectional dry carbon fibre preforms. Compos. Sci. Technol. 2012, 72, 1273–1282. [Google Scholar] [CrossRef]
- Redondo, O.; Prolongo, S.; Campo, M.; Sbarufatti, C.; Giglio, M. Anti-icing and de-icing coatings based Joule’s heating of graphene nanoplatelets. Compos. Sci. Technol. 2018, 164, 65–73. [Google Scholar] [CrossRef]
- Jiménez, V.; Sánchez, P.; Romero, A. Materials for activated carbon fiber synthesis. In Activated Carbon Fiber and Textiles; Woodhead Publishing: Sawston, UK, 2017; pp. 21–38. [Google Scholar] [CrossRef]
- Ko, K.S.; Park, C.W.; Yoon, S.-H.; Oh, S.M. Preparation of Kevlar-derived carbon fibers and their anodic performances in Li secondary batteries. Carbon 2001, 39, 1619–1625. [Google Scholar] [CrossRef]
- Mosquera, M.E.; Jamond, M.; Martinez-Alonso, A.; Tascon, J.M. Thermal Transformations of Kevlar Aramid Fibers During Pyrolysis: Infrared and Thermal Analysis Studies. Chem. Mater. 2002, 6, 1918–1924. Available online: https://pubs.acs.org/doi/pdf/10.1021/cm00047a006 (accessed on 5 October 2021). [CrossRef]
- Yang, M.; Zhu, X.L.; Liang, G. Pyrolysis Process of Kevlar Fibers with Thermogravimetric Analysis coupled and Fourier Transform Infrared Spectroscopy. Guang Pu 2016, 36, 1374–1377. [Google Scholar] [PubMed]
- Ramgobin, A.; Fontaine, G.; Bourbigot, S. Thermal Degradation and Fire Behavior of High Performance Polymers. Polym. Rev. 2019, 59, 55–123. [Google Scholar] [CrossRef]
- Chen, J.; Harrison, I. Modification of polyacrylonitrile (PAN) carbon fiber precursor via post-spinning plasticization and stretching in dimethyl formamide (DMF). Carbon 2002, 40, 25–45. [Google Scholar] [CrossRef]
- EFitzer, E.; Frohs, W.; Heine, M. Optimization of stabilization and carbonization treatment of PAN fibres and structural characterization of the resulting carbon fibres. Carbon 1986, 24, 387–395. [Google Scholar] [CrossRef]
- Edie, D.D. The effect of processing on the structure and properties of carbon fibers. Carbon 1998, 36, 345–362. [Google Scholar] [CrossRef]
- Huang, X. Fabrication and Properties of Carbon Fibers. Materials 2009, 2, 2369–2403. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.Y. Activated Carbon Fiber and Textiles; Woodhead Publishing: Sawston, UK, 2016; p. 342. [Google Scholar]
- Choma, J.; Osuchowski, L.; Marszewski, M.; Dziura, A.; Jaroniec, M. Developing microporosity in Kevlar®-derived carbon fibers by CO2 activation for CO2 adsorption. J. CO2 Util. 2016, 16, 17–22. [Google Scholar] [CrossRef]
- Brown, J.R.; Power, A.J. Thermal degradation of aramids: Part I—Pyrolysis/gas chromatography/mass spectrometry of poly(1,3-phenylene isophthalamide) and poly(1,4-phenylene terephthalamide). Polym. Degrad. Stab. 1982, 4, 379–392. [Google Scholar] [CrossRef]
- Karthik, D.; Baheti, V.; Militky, J.; Naeem, M.S.; Tunakova, V.; Ali, A. Activated Carbon Derived from Carbonization of Kevlar Waste Materials: A Novel Single Stage Method. Materials 2021, 14, 6433. [Google Scholar] [CrossRef] [PubMed]
- Suárez-García, F.; Martinez-Alonso, A.; Tascón, J.M. Activated carbon fibers from Nomex by chemical activation with phosphoric acid. Carbon 2004, 42, 1419–1426. [Google Scholar] [CrossRef]
- Conte, G.; Stelitano, S.; Policicchio, A.; Minuto, F.D.; Lazzaroli, V.; Galiano, F.; Agostino, R.G. Assessment of activated carbon fibers from commercial Kevlar® as nanostructured material for gas storage: Effect of activation procedure and adsorption of CO2 and CH4. J. Anal. Appl. Pyrolysis 2020, 152, 104974. [Google Scholar] [CrossRef]
- Naeem, S.; Baheti, V.; Tunakova, V.; Militky, J.; Karthik, D.; Tomkova, B. Development of porous and electrically conductive activated carbon web for effective EMI shielding applications. Carbon 2017, 111, 439–447. [Google Scholar] [CrossRef]
- El-Tantawy, F.; Kamada, K.; Ohnabe, H. In situ network structure, electrical and thermal properties of conductive epoxy resin–carbon black composites for electrical heater applications. Mater. Lett. 2002, 56, 112–126. [Google Scholar] [CrossRef]
- Kong, K.; Deka, B.K.; Kim, M.; Oh, A.; Kim, H.; Park, Y.-B.; Park, H.W. Interlaminar resistive heating behavior of woven carbon fiber composite laminates modified with ZnO nanorods. Compos. Sci. Technol. 2014, 100, 83–91. [Google Scholar] [CrossRef]
Sample Code | Atmosphere Type | Carbonization Method | Final Carbonization Temperature (°C) | Fabric Yield (%) | Carbon Yield (%) |
---|---|---|---|---|---|
C8 | CO2 | 1 | 800 | 58.24 ± 1.3 | 69.1 ± 0.9 |
C9 | CO2 | 1 | 900 | 47.26 ± 1.6 | 76.4 ± 1.2 |
C10 | CO2 | 1 | 1000 | 35.69 ± 2.1 | 83.4 ± 0.8 |
C11 | CO2 | 1 | 1100 | 31.44 ± 1.8 | 89.1 ± 0.4 |
A8 | Gas mixture | 2 | 800 | 30.21 ± 1.1 | 83.7 ± 0.6 |
A9 | Gas mixture | 2 | 900 | 26.31 ± 1.7 | 87.1 ± 0.6 |
A10 | Gas mixture | 2 | 1000 | 23.49 ± 2.5 | 88.5 ± 0.8 |
A11 | Gas mixture | 2 | 1100 | 19.89 ± 2.8 | 90.2 ± 0.8 |
N8 | Nitrogen | 3 | 800 | 46.23 ± 1.1 | 67.2 ± 0.9 |
N9 | Nitrogen | 3 | 900 | 41.79 ± 1.2 | 73.4 ± 0.8 |
N10 | Nitrogen | 3 | 1000 | 34.47 ± 1.9 | 84.1 ± 0.6 |
N11 | Nitrogen | 3 | 1100 | 30.60 ± 1.5 | 88.2 ± 0.8 |
Carbonization Method | Carbonization Temperature | τg (S) | hr+c (W/°C) | τd (S) |
---|---|---|---|---|
1 | 800 | 19.60 | 0.09 | 89.83 |
900 | 24.11 | 0.08 | 107.52 | |
1000 | 19.84 | 0.07 | 57.82 | |
1100 | 19.63 | 0.07 | 60.66 | |
2 | 800 | 30.36 | 0.04 | 100.77 |
900 | 41.01 | 0.04 | 126.59 | |
1000 | 25.99 | 0.10 | 92.24 | |
1100 | 28.92 | 0.10 | 89.12 | |
3 | 800 | 44.82 | 0.03 | 126.82 |
900 | 38.86 | 0.03 | 105.76 | |
1000 | 42.17 | 0.09 | 88.94 | |
1100 | 41.68 | 0.10 | 70.21 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karthik, D.; Militky, J.; Wang, Y.; Venkataraman, M. Joule Heating of Carbon-Based Materials Obtained by Carbonization of Para-Aramid Fabrics. C 2023, 9, 23. https://doi.org/10.3390/c9010023
Karthik D, Militky J, Wang Y, Venkataraman M. Joule Heating of Carbon-Based Materials Obtained by Carbonization of Para-Aramid Fabrics. C. 2023; 9(1):23. https://doi.org/10.3390/c9010023
Chicago/Turabian StyleKarthik, Daniel, Jiri Militky, Yuanfeng Wang, and Mohanapriya Venkataraman. 2023. "Joule Heating of Carbon-Based Materials Obtained by Carbonization of Para-Aramid Fabrics" C 9, no. 1: 23. https://doi.org/10.3390/c9010023
APA StyleKarthik, D., Militky, J., Wang, Y., & Venkataraman, M. (2023). Joule Heating of Carbon-Based Materials Obtained by Carbonization of Para-Aramid Fabrics. C, 9(1), 23. https://doi.org/10.3390/c9010023