Agro-Industrial Waste Biochar Abated Nitrogen Leaching from Tropical Sandy Soils and Boosted Dry Matter Accumulation in Maize
Abstract
:1. Introduction
2. Materials and Methods
2.1. Descriptions of the Soils and Biochar Used in the Experient
2.2. Biochar and Soil Analysis
2.3. Assessment of the NH4+ and NO3− Retention Capacities of the Biochars
2.4. Greenhouse Experiment
2.5. Statistical Analysis
3. Results and Discussion
3.1. Nitrogen Retentions by Biochar and Leaching from the Soil
3.2. Dry Matter Accumulation and Nitrogen Uptake by Maize
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Rütting, T.; Aronsson, H.; Delin, S. Efficient use of nitrogen in agriculture. Nutr. Cycl. Agroecosystems 2018, 110, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Luyima, D.; Egyir, M.; Lee, J.H.; Yoo, J.H.; Oh, T.K. A review of the potentiality of biochar technology to abate emissions of particulate matter originating from agriculture. Int. J. Environ. Sci. Technol. 2021, 19, 3411–3428. [Google Scholar] [CrossRef]
- Sutton, M.A.; Howard, C.M.; Erisman, J.W.; Bleeker, A.; Billen, G.; Grennfelt, P.; Van Grinsven, H.; Grizzetti, B. (Eds.) The European Nitrogen Assessment Sources, Effects and Policy Perspectives; Cambridge University Press: Cambridge, UK, 2011. [Google Scholar]
- McAllister, C.H.; Beatty, P.H.; Good, A.G. Engineering nitrogen use efficient crop plants; the current status. J. Plant Biotechnol. 2012, 10, 1467–7652. [Google Scholar] [CrossRef]
- Buol, S.W. Mineralogy Classes in Soil Families with Low Activity Clays. In Mineral Classification of Soils; Kittrick, J.A., Ed.; SSSA Special Publication: Madison, WI, USA, 1985; Volume 16, pp. 169–178. [Google Scholar]
- Zotarelli, L.; Scholberg, J.M.; Dukes, M.D.; Carpena, R.M. Monitoring of nitrate leaching in sandy soils: Comparison of three methods. J. Environ. Qual. 2007, 36, 953–962. [Google Scholar] [CrossRef] [Green Version]
- Sitthaphanit, S.; Limpinuntana, V.; Toomsan, B.; Panchaban, S.; Bell, R.W. Fertiliser strategies for improved nutrient use efficiency on sandy soils in high rainfall regimes. Nutr. Cycl. Agroecosystems 2009, 85, 123–139. [Google Scholar] [CrossRef]
- Yao, Y.; Gao, B.; Zhang, M.; Inyang, M.; Zimmerman, A.R. Effect of biochar amendment on sorption and leaching of nitrate, ammonium, and phosphate in a sandy soil. Chemosphere 2012, 89, 1467–1471. [Google Scholar] [CrossRef]
- Major, J.; Rondon, M.; Molina, D.; Riha, S.J.; Lehmann, J. Nutrient Leaching in a Colombian Savanna Oxisol Amended with Biochar. J. Environ. Qual. 2012, 41, 1076. [Google Scholar] [CrossRef]
- Sika, M.P.; Hardie, A.G. Effect of pine wood biochar on ammonium nitrate leaching and availability in a South African sandy soil. Eur. J. Soil Sci. 2013, 65, 113–119. [Google Scholar] [CrossRef]
- Xu, N.; Tan, G.; Wang, H.; Gai, X. Effect of biochar additions to soil on nitrogen leaching, microbial biomass and bacterial community structure. Eur. J. Soil Biol. 2016, 74, 1–8. [Google Scholar] [CrossRef]
- Sun, H.; Lu, H.; Chu, L.; Shao, H.; Shi, W. Biochar applied with appropriate rates can reduce N leaching, keep N retention and not increase NH3 volatilization in a coastal saline soil. Sci. Total Environ. 2017, 575, 820–825. [Google Scholar] [CrossRef]
- Haider, G.; Steffens, D.; Moser, G.; Müller, C.; Kammann, C.I. Biochar reduced nitrate leaching and improved soil moisture content without yield improvements in a four-year field study. Agric. Ecosyst. Environ. 2016, 237, 80–94. [Google Scholar] [CrossRef]
- Liu, Z.; He, T.; Cao, T.; Yang, T.; Meng, J.; Chen, W. Effects of biochar application on nitrogen leaching, ammonia volatilization and nitrogen use efficiency in two distinct soils. J. Soil Sci. Plant Nutr. 2017, 17, 515–528. [Google Scholar] [CrossRef] [Green Version]
- Lehmann, J.; Pereira da Silva, J., Jr.; Steiner, C.; Nehls, T.; Zech, W.; Glaser, B. Nutrient availability and leaching in an archaeological Anthrosol and a Ferralsol of the Central Amazon basin: Fertilizer, manure and charcoal amendments. Plant Soil 2003, 249, 343–357. [Google Scholar] [CrossRef]
- Murphy, J.; Riley, J.P. A modified single solution method for the determination of phosphate in natural waters. Anal. Chim. Acta 1962, 27, 31–36. [Google Scholar] [CrossRef]
- Gee, G.W.; Bauder, J.W. Particle-size Analysis. In Methods of Soil Analysis: Part 1—Physical and Mineralogical Methods, 2nd ed.; Klute, A., Ed.; SSSA Book Series: Madison, WI, USA, 1986; pp. 383–411. [Google Scholar]
- Blake, G.R.; Hartge, K.H. Bulk Density. In Methods of Soil Analysis: Part 1—Physical and Mineralogical Methods, 2nd ed.; Klute, A., Ed.; SSSA Book Series: Madison, WI, USA, 1986; pp. 363–375. [Google Scholar]
- Walkley, A.; Black, I.A. An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci. 1934, 37, 29–38. [Google Scholar] [CrossRef]
- Jones, J.B., Jr. Laboratory Guide for Conducting Soil Tests and Plant Analysis; CRC Press: Boca Raton, FL, USA, 2001. [Google Scholar]
- Hood-Nowotny, R.; Umana NH, N.; Inselbacher, E.; Oswald-Lachouani, P.; Wanek, W. Alternative Methods for Measuring Inorganic, Organic, and Total Dissolved Nitrogen in Soil. Soil Sci. Soc. Am. J. 2010, 74, 1018. [Google Scholar] [CrossRef]
- West, P.W.; Ramachandran, T.P. Spectrophotometric determination of nitrate using chromotropic acid. Anal. Chim. Acta 1966, 35, 317–324. [Google Scholar] [CrossRef]
- Fidel, R.B.; Laird, D.A.; Spokas, K.A. Sorption of ammonium and nitrate to biochars is electrostatic and pH-dependent. Sci. Rep. 2018, 8, 17627. [Google Scholar] [CrossRef] [Green Version]
- Zhou, L.; Xu, D.; Li, Y.; Pan, Q.; Wang, J.; Xue, L.; Howard, H. Phosphorus and Nitrogen Adsorption Capacities of Biochars Derived from Feedstocks at Different Pyrolysis Temperatures. Water 2019, 11, 1559. [Google Scholar] [CrossRef] [Green Version]
- Jin, Z.; Chen, X.; Chen, C.; Tao, P.; Han, Z.; Zhang, X. Biochar impact on nitrate leaching in upland red soil, China. Environ. Earth Sci. 2016, 75, 1–10. [Google Scholar] [CrossRef]
- Chintala, R.; Gelderman, R.H.; Schumacher, T.E.; Malo, D.D. Vegetative Corn Growth and Nutrient Uptake in Biochar Amended Soils from an Eroded Landscape. In Proceedings of the Joint Annual Meeting of the Association for the Advancement of lndusfrial Crops and the USDA National Institute of Food and Agriculture, Washington, DC, USA, 12–16 October 2013; pp. 200–216. [Google Scholar]
- Taghizadeh-Toosi, A.; Clough, T.J.; Sherlock, R.R.; Condron, L.M. Biochar adsorbed ammonia is bioavailable. Plant Soil 2011, 350, 57–69. [Google Scholar] [CrossRef]
- Ma, Y.L.; Matsunaka, T. Biochar derived from dairy cattle carcasses as an alternative source of phosphorus and amendment for soil acidity. Soil Sci. Plant Nutr. 2013, 59, 628–641. [Google Scholar] [CrossRef] [Green Version]
- Dietrich, C.C.; Rahaman, M.A.; Robles-Aguilar, A.A.; Latif, S.; Intani, K.; Müller, J.; Jablonowski, N.D. Nutrient Loaded Biochar Doubled Biomass Production in Juvenile Maize Plants (Zea mays L.). Agronomy 2020, 10, 567. [Google Scholar] [CrossRef] [Green Version]
- Luyima, D.; Sung, J.; Lee, J.H.; Woo, S.A.; Park, S.J.; Oh, T.K. Sorption of urea hydrogen peroxide by co-pyrolysed bone meal and cow dung slowed-down phosphorus and nitrogen releases but boosted agronomic efficiency. Appl. Biol. Chem. 2020, 63, 52. [Google Scholar] [CrossRef]
- Rashid, M.; Hussain, Q.; Khan, K.S.; Alwabel, M.I.; Hayat, R.; Akmal, M.; Ijaz, S.S.; Alvi, S.; Obaid-ur-Rehma. Carbon-Based Slow-Release Fertilizers for Efficient Nutrient Management: Synthesis, Applications, and Future Research Needs. J. Soil Sci. Plant Nutr. 2021, 21, 1144–1169. [Google Scholar] [CrossRef]
- Luyima, D.; Lee, J.H.; Sung, J.K.; Oh, T.K. Co-pyrolysed animal manure and bone meal-based urea hydrogen per-615 oxide (UHP) fertilisers are an effective technique of combating ammonia emissions. J. Mater. Cycles Waste Manag. 2020, 22, 1887–1898. [Google Scholar] [CrossRef]
- Luyima, D.; Egyir, M.; Yun, Y.U.; Park, S.J.; Oh, T.K. Nutrient Dynamics in a Sandy Soil and Leaf Lettuce following the Application of Urea and Urea-Hydrogen Peroxide Impregnated Co-Pyrolysed Animal Manure and Bone Meal. Agronomy 2021, 11, 1664. [Google Scholar] [CrossRef]
Parameters Assessed | Soil Type | ||
---|---|---|---|
K | Ny | ||
Particle size (%) | Sand | 90.04 ± 0.44 | 68.01 ± 0.65 |
Silt | 7.01 ± 0.07 | 24.01 ± 0.19 | |
Clay | 2.95 ± 0.05 | 7.98 ± 0.09 | |
Bulk density (Kg/m3) | 1.63 ± 0.04 | 1.58 ± 0.06 | |
pH | H2O (1:5) | 6.60 ± 0.22 | 5.35 ± 0.34 |
CaCl2 (1:2.5) | 6.31 ± 0.16 | 5.10 ± 0.25 | |
TOC (g kg−1) | 3.77 ± 0.30 | 9.95 ± 0.69 | |
TN (g kg−1) | 0.20 ± 0.01 | 0.71 ± 0.05 | |
Avail. P (mg kg−1) | 1.71 ± 0.13 | 2.23 ± 0.28 | |
CEC (cmolc kg−1) | 3.03 ± 0.11 | 8.14 ± 0.59 | |
Exchangeable bases (cmolc kg−1) | Ca | 1.02 ± 0.07 | 1.10 ± 0.15 |
Mg | 0.50 ± 0.00 | 0.54 ± 0.03 | |
K | 0.30 ± 0.05 | 0.40 ± 0.01 | |
Na | 0.50 ± 0.09 | 0.23 ± 0.06 |
Season | Soil Type | Biochar Amendment | Nitrogen Fertilizers | |||||||
---|---|---|---|---|---|---|---|---|---|---|
ASP | ASS | CD | CDASS | |||||||
L1 | L2 | L1 | L2 | L1 | L2 | L1 | L2 | |||
1st Season | K | Control | 23.58 ± 2.12a | 16.20 ± 1.08a | 25.99 ± 1.85a | 15.27 ± 2.39a | 17.93 ± 1.05b | 16.44 ± 0.90a | 20.60 ± 1.85a | 10.97 ± 3.10b |
RH20 | 7.15 ± 1.24d | 4.03 ± 2.10d | 4.89 ± 1.33e | 3.87 ± 0.89d | 6.45 ± 1.52d | 3.48 ± 1.66d | 5.94 ± 2.00de | 5.85 ± 1.72c | ||
RH40 | 4.51 ± 0.79e | 3.91 ± 1.05d | 6.05 ± 0.68d | 3.60 ± 1.09d | 8.10 ± 1.11d | 5.93 ± 0.95c | 7.35 ± 0.88d | 4.10 ± 1.05d | ||
SD20 | 6.56 ± 1.88d | 3.68 ± 0.93d | 5.67 ± 1.27de | 5.86 ± 0.78c | 6.76 ± 2.16d | 4.24 ± 1.92d | 5.51 ± 2.21de | 3.69 ± 0.69d | ||
SD40 | 6.17 ± 2.22d | 4.39 ± 1.76d | 5.08 ± 0.85e | 3.75 ± 0.73d | 8.01 ± 1.66d | 5.64 ± 1.99c | 4.03 ± 0.78e | 3.41 ± 1.62d | ||
Ny | Control | 10.44 ± 3.10c | 9.70 ± 2.07b | 11.72 ± 0.97c | 8.08 ± 1.54b | 10.59 ± 1.39c | 10.91 ± 1.07b | 9.34 ± 1.59c | 9.98 ± 0.85b | |
RH20 | 2.10 ± 0.67f | 3.98 ± 0.92d | 1.74 ± 1.05f | 4.12 ± 0.82d | 3.96 ± 0.63e | 4.14 ± 0.93d | 2.75 ± 0.69f | 1.95 ± 0.55e | ||
RH40 | 1.66 ± 0.23f | 3.68 ± 0.87d | 2.14 ± 0.64f | 4.09 ± 0.73d | 1.83 ± 0.87f | 5.01 ± 0.91cd | 1.78 ± 0.56f | 3.33 ± 0.39d | ||
SD20 | 2.17 ± 0.86f | 2.63 ± 0.75d | 3.68 ± 0.58def | 1.86 ± 0.63e | 2.90 ± 0.97f | 3.53 ± 0.81d | 1.89 ± 0.55f | 2.77 ± 0.36d | ||
SD40 | 1.98 ± 0.85f | 1.85 ± 0.36e | 2.24 ± 0.94f | 2.79 ± 0.81d | 1.76 ± 0.46f | 2.56 ± 0.65d | 1.66 ± 0.59f | 2.04 ± 0.88de | ||
2nd Season | K | Control | 8.78 ± 0.69ab | 3.99 ± 0.56b | 9.24 ± 0.39a | 4.65 ± 0.25a | 10.50 ± 0.48a | 3.81 ± 0.67b | 6.05 ± 2.10b | 4.51 ± 0.92ab |
RH20 | 1.75 ± 0.96d | 0.56 ± 0.44d | 2.00 ± 0.72d | 0.37 ± 0.13d | 3.03 ± 0.45d | 0.55 ± 0.33d | 4.67 ± 0.96c | 0.64 ± 0.17d | ||
RH40 | 2.25 ± 0.13d | 0.46 ± 0.18d | 3.13 ± 0.43d | 0.51 ± 0.11d | 1.96 ± 0.52d | 0.63 ± 0.30d | 2.40 ± 0.33d | 0.50 ± 0.46d | ||
SD20 | 3.00 ± 0.91d | 0.72 ± 0.12d | 4.05 ± 1.22c | 0.65 ± 0.26d | 2.21 ± 0.54d | 0.51 ± 0.42d | 2.47 ± 0.81d | 0.48 ± 0.21d | ||
SD40 | 2.53 ± 0.54d | 0.67 ± 0.31d | 2.14 ± 0.72d | 0.54 ± 0.39d | 2.44 ± 0.42d | 0.66 ± 0.11d | 1.07 ± 0.65d | 0.42 ± 0.36d | ||
Ny | Control | 5.70 ± 1.06b | 1.98 ± 0.73c | 6.01 ± 0.98b | 2.09 ± 0.56c | 7.09 ± 2.10b | 3.07 ± 0.91bc | 10.02 ± 2.17a | 1.52 ± 0.82c | |
RH20 | 1.91 ± 0.33d | 0.53 ± 0.23d | 2.11 ± 0.68d | 0.68 ± 0.16d | 1.84 ± 0.18d | 0.49 ± 0.29d | 3.06 ± 0.76d | 0.52 ± 0.13d | ||
RH40 | 2.31 ± 0.22d | 0.48 ± 0.16d | 1.87 ± 0.30d | 0.53 ± 0.17d | 2.11 ± 0.73d | 0.62 ± 0.35d | 2.01 ± 0.52d | 0.40 ± 0.29d | ||
SD20 | 2.07 ± 0.28d | 0.54 ± 0.16d | 1.91 ± 0.26d | 0.60 ± 0.24d | 1.59 ± 0.22d | 0.50 ± 0.18d | 2.78 ± 0.36d | 0.38 ± 0.34d | ||
SD40 | 1.85 ± 0.42d | 0.66 ± 0.41d | 1.64 ± 0.18d | 0.46 ± 0.13d | 2.88 ± 0.53d | 0.39 ± 0.10d | 1.77 ± 0.17d | 0.47 ± 0.20d |
Season | Soil Type | Biochar Amendment | Nitrogen Fertilizers | |||||||
---|---|---|---|---|---|---|---|---|---|---|
ASP | ASS | CD | CDASS | |||||||
L1 | L2 | L1 | L2 | L1 | L2 | L1 | L2 | |||
1st Season | K | Control | 8.86 ± 0.75a | 6.88 ± 1.09a | 10.05 ± 1.73a | 7.53 ± 0.66a | 9.13 ± 0.87a | 7.01 ± 1.39a | 7.49 ± 0.84b | 8.03 ± 0.55a |
RH20 | 2.01 ± 0.68d | 0.79 ± 0.07c | 2.35 ± 0.39d | 0.83 ± 0.07c | 3.02 ± 0.51d | 0.71 ± 0.09c | 2.64 ± 0.75d | 0.66 ± 0.08c | ||
RH40 | 3.09 ± 0.79d | 0.89 ± 0.09c | 2.70 ± 0.51d | 0.65 ± 0.03c | 1.69 ± 0.91d | 0.72 ± 0.06c | 2.51 ± 0.94d | 0.79 ± 0.07c | ||
SD20 | 2.17 ± 0.87d | 0.67 ± 0.09c | 2.69 ± 0.73d | 0.75 ± 0.05c | 2.87 ± 0.51d | 0.69 ± 0.08c | 1.97 ± 0.91d | 0.80 ± 0.07c | ||
SD40 | 1.99 ± 0.90d | 0.82 ± 0.06c | 2.26 ± 0.33d | 0.69 ± 0.08c | 2.66 ± 0.72d | 0.59 ± 0.08c | 2.99 ± 0.51d | 0.77 ± 0.03c | ||
Ny | Control | 6.67 ± 0.62bc | 3.13 ± 0.57b | 5.10 ± 0.81c | 4.57 ± 0.76b | 5.02 ± 1.00c | 3.33 ± 0.32b | 7.46 ± 2.54b | 2.98 ± 0.54b | |
RH20 | 1.88 ± 0.74d | 0.30 ± 0.08c | 0.77 ± 0.19e | 0.29 ± 0.06c | 0.93 ± 0.04e | 0.41 ± 0.09c | 0.57 ± 0.08e | 0.31 ± 0.09c | ||
RH40 | 1.05 ± 0.71d | 0.27 ± 0.09c | 3.23 ± 0.80d | 0.32 ± 0.06c | 1.56 ± 0.79d | 0.35 ± 0.05c | 2.23 ± 1.03d | 0.49 ± 0.06c | ||
SD20 | 2.22 ± 0.43d | 0.51 ± 0.04c | 1.55 ± 0.61d | 0.27 ± 0.05c | 1.89 ± 0.18d | 0.29 ± 0.08c | 1.58 ± 0.35d | 0.33 ± 0.07c | ||
SD40 | 1.54 ± 0.69d | 0.39 ± 0.07c | 1.91 ± 0.22d | 0.39 ± 0.07c | 3.89 ± 0.07d | 0.27 ± 0.03c | 2.22 ± 1.09d | 0.32 ± 0.06c | ||
2nd Season | K | Control | 4.29 ± 0.81a | 1.97 ± 0.90b | 3.93 ± 1.07a | 5.46 ± 1.13a | 4.09 ± 1.67a | 3.16 ± 1.89b | 1.99 ± 0.98b | 2.39 ± 1.07b |
RH20 | 1.04 ± 0.82c | 0.50 ± 0.06c | 0.87 ± 0.08cd | 0.63 ± 0.07c | 0.60 ± 0.09d | 1.77 ± 0.06b | 0.28 ± 0.04d | 0.79 ± 0.07c | ||
RH40 | 0.73 ± 0.08d | 0.80 ± 0.05c | 0.97 ± 0.06cd | 1.81 ± 0.06b | 0.87 ± 0.10cd | 0.63 ± 0.04c | 1.19 ± 0.30c | 0.75 ± 0.09c | ||
SD20 | 0.69 ± 0.11d | 0.45 ± 0.03c | 0.75 ± 0.08d | 0.63 ± 0.07c | 0.57 ± 0.05d | 0.61 ± 0.04c | 0.86 ± 0.04cd | 0.50 ± 0.06c | ||
SD40 | 0.47 ± 0.17d | 0.66 ± 0.05c | 0.55 ± 0.05d | 0.60 ± 0.04c | 0.85 ± 0.03d | 0.48 ± 0.07c | 0.93 ± 0.05d | 0.57 ± 0.05c | ||
Ny | Control | 2.16 ± 0.90b | 1.89 ± 0.69c | 3.78 ± 1.07a | 0.90 ± 0.07c | 1.95 ± 0.66b | 2.03 ± 0.11b | 4.10 ± 2.10a | 1.86 ± 0.71b | |
RH20 | 0.66 ± 0.09d | 0.57 ± 0.05c | 0.52 ± 0.06d | 0.47 ± 0.06c | 0.53 ± 0.09d | 0.71 ± 0.08c | 0.65 ± 0.07d | 0.48 ± 0.03c | ||
RH40 | 0.70 ± 0.05d | 0.69 ± 0.09c | 0.75 ± 0.09d | 0.82 ± 0.04c | 0.47 ± 0.07d | 0.66 ± 0.09c | 0.71 ± 0.08d | 0.52 ± 0.06c | ||
SD20 | 0.54 ± 0.08d | 0.46 ± 0.06c | 0.69 ± 0.07d | 0.40 ± 0.07c | 0.73 ± 0.08d | 0.54 ± 0.07c | 0.55 ± 0.05d | 1.03 ± 0.08c | ||
SD40 | 0.99 ± 0.16cd | 0.55 ± 0.04c | 0.44 ± 0.05d | 0.56 ± 0.09c | 0.60 ± 0.07d | 0.39 ± 0.05c | 0.73 ± 0.03d | 0.77 ± 0.09c |
Soil Type | Biochar Amendment | Nitrogen Fertilizers | |||||||
---|---|---|---|---|---|---|---|---|---|
ASP | ASS | CD | CDASS | ||||||
N1 | N2 | N1 | N2 | N1 | N2 | N1 | N2 | ||
K | Control | 8.97 ± 0.69a | 9.64 ± 0.95a | 9.54 ± 0.52a | 7.94 ± 0.72a | 8.89 ± 0.44a | 6.56 ± 0.67a | 9.02 ± 0.29a | 7.46 ± 0.18a |
RH20 | 51.47 ± 4.17b | 43.80 ± 3.10b | 59.37 ± 4.98b | 51.38 ± 2.10b | 52.01 ± 3.21b | 40.64 ± 5.01b | 60.10 ± 3.97b | 48.05 ± 2.87b | |
RH40 | 51.60 ± 3.96b | 50.49 ± 3.89b | 47.87 ± 2.67b | 52.71 ± 4.17b | 56.37 ± 3.88b | 43.36 ± 2.98b | 54.12 ± 5.11b | 50.66 ± 3.07b | |
SD20 | 51.29 ± 2.86b | 47.37 ± 2.77b | 54.53 ± 2.85b | 54.64 ± 3.62b | 50.52 ± 2.99b | 45.02 ± 5.40b | 47.85 ± 2.84b | 50.31 ± 3.52b | |
SD40 | 52.36 ± 3.18b | 44.19 ± 1.98b | 55.77 ± 3.17b | 51.71 ± 2.73b | 53.62 ± 3.77b | 42.87 ± 1.98b | 52.70 ± 5.06b | 50.42 ± 4.37b | |
Ny | Control | 9.47 ± 0.71a | 8.04 ± 0.45a | 8.29 ± 0.32a | 6.69 ± 0.51a | 11.60 ± 0.62a | 6.68 ± 0.39a | 13.58 ± 0.83a | 8.38 ± 0.28a |
RH20 | 84.13 ± 5.78c | 77.09 ± 4.89c | 78.70 ± 5.67c | 66.36 ± 6.19c | 81.77 ± 5.89c | 69.89 ± 4.90c | 73.34 ± 5.19c | 74.11 ± 3.49c | |
RH40 | 78.43 ± 4.13c | 76.21 ± 6.67c | 86.91 ± 5.81c | 67.55 ± 4.96c | 87.88 ± 5.33c | 72.57 ± 6.13c | 86.37 ± 5.76c | 68.93 ± 4.88c | |
SD20 | 81.09 ± 6.89c | 65.46 ± 5.93c | 75.99 ± 4.88c | 73.68 ± 5.73c | 84.78 ± 7.24c | 68.93 ± 6.85c | 83.29 ± 5.12c | 71.48 ± 5.33c | |
SD40 | 79.79 ± 5.88c | 74.31 ± 4.89c | 64.66 ± 6.02c | 67.26 ± 3.94c | 81.41 ± 6.88c | 66.50 ± 3.99c | 71.65 ± 6.03c | 73.09 ± 6.42c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Egyir, M.; Lawson, I.Y.D.; Dodor, D.E.; Luyima, D. Agro-Industrial Waste Biochar Abated Nitrogen Leaching from Tropical Sandy Soils and Boosted Dry Matter Accumulation in Maize. C 2023, 9, 34. https://doi.org/10.3390/c9010034
Egyir M, Lawson IYD, Dodor DE, Luyima D. Agro-Industrial Waste Biochar Abated Nitrogen Leaching from Tropical Sandy Soils and Boosted Dry Matter Accumulation in Maize. C. 2023; 9(1):34. https://doi.org/10.3390/c9010034
Chicago/Turabian StyleEgyir, Michael, Innocent Yao Dotse Lawson, Daniel Etsey Dodor, and Deogratius Luyima. 2023. "Agro-Industrial Waste Biochar Abated Nitrogen Leaching from Tropical Sandy Soils and Boosted Dry Matter Accumulation in Maize" C 9, no. 1: 34. https://doi.org/10.3390/c9010034
APA StyleEgyir, M., Lawson, I. Y. D., Dodor, D. E., & Luyima, D. (2023). Agro-Industrial Waste Biochar Abated Nitrogen Leaching from Tropical Sandy Soils and Boosted Dry Matter Accumulation in Maize. C, 9(1), 34. https://doi.org/10.3390/c9010034