Effects of Fresh Corn Stover to Corn Flour Ratio on Fermentation Quality and Bacterial Community of Mixed Silage
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Materials and Silage Preparation
2.2. Experimental Design and Sampling
2.3. Fermentation Parameters
2.4. Nutritional Composition
2.5. Bacterial Community Analysis
2.6. Data Statistical Analysis
3. Results
3.1. The Nutritional Composition of Each Group of Silage Materials and Corn Flour
3.2. Sensory Evaluation of Silage
3.3. Fermentation Parameters
3.4. Nutritional Composition
3.5. Bacterial Community and Correlation Analysis
4. Discussion
4.1. The Chemical Composition of Each Group of Silage Materials and Corn Flour
4.2. Fermentation Parameters
4.3. Nutritional Composition
4.4. Bacterial Community and Correlation Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jeon, S.; Jeong, S.; Lee, M.; Seo, J.; Kam, D.K.; Kim, J.H.; Park, J.; Seo, S. Effects of reducing inclusion rate of roughages by changing roughage sources and concentrate types on intake, growth, rumen fermentation characteristics, and blood parameters of Hanwoo growing cattle (Bos taurus coreanae). Asian Australas. J. Anim. Sci. 2019, 32, 1705–1714. [Google Scholar] [CrossRef] [PubMed]
- Almassri, N.; Trujillo, F.J.; Terefe, N.S. Microencapsulation technology for delivery of enzymes in ruminant feed. Front. Vet. Sci. 2024, 11, 1352375. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Ouyang, Z.; Zhang, X.; Wei, Y.; Tang, S.; Ma, Z.; Tan, Z.; Zhu, N.; Teklebrhan, T.; Han, X. Sweet Corn Stalk Treated with Saccharomyces cerevisiae Alone or in Combination with Lactobacillus plantarum: Nutritional Composition, Fermentation Traits and Aerobic Stability. Animals 2019, 9, 598. [Google Scholar] [CrossRef]
- Chen, J.; Cao, J.; Bian, Y.; Zhang, H.; Li, X.; Wu, Z.; Guo, G.; Lv, G. Identification of Genetic Variations and Candidate Genes Responsible for Stalk Sugar Content and Agronomic Traits in Fresh Corn via GWAS across Multiple Environments. Int. J. Mol. Sci. 2022, 23, 13490. [Google Scholar] [CrossRef] [PubMed]
- Borreani, G.; Tabacco, E.; Schmidt, R.J.; Holmes, B.J.; Muck, R.E. Silage review: Factors affecting dry matter and quality losses in silages. J. Dairy Sci. 2018, 101, 3952–3979. [Google Scholar] [CrossRef]
- Muck, R.E.; Nadeau, E.M.G.; Mcallister, T.A.; Contreras-Govea, F.E.; Santos, M.C.; Kung, L. Silage review: Recent advances and future uses of silage additives. J. Dairy Sci. 2018, 101, 3980–4000. [Google Scholar] [CrossRef] [PubMed]
- Ma, Z.; Ungerfeld, E.; Ouyang, Z.; Zhou, X.; Han, X.; Zeng, Y.; Tan, Z. Effect of Lactobacillus plantarum Inoculation on Chemical Composition, Fermentation, and Bacterial Community Composition of Ensiled Sweet Corn Whole Plant or Stover. Fermentation 2022, 8, 24. [Google Scholar] [CrossRef]
- Jiang, H.; Wang, H.; Bao, B.; Qu, H.; Wang, J.; Sun, L.; Liu, B.; Gao, F. Effect of Compound Additives on Nutritional Composition, Fermentation Quality, and Bacterial Community of High-Moisture Alfalfa Silage. Fermentation 2023, 9, 453. [Google Scholar] [CrossRef]
- Zhang, H.; Cheng, X.; Elsabagh, M.; Lin, B.; Wang, H. Effects of formic acid and corn flour supplementation of banana pseudostem silages on nutritional quality of silage, growth, digestion, rumen fermentation and cellulolytic bacterial community of Nubian black goats. J. Integr. Agric. 2021, 20, 2214–2226. [Google Scholar] [CrossRef]
- Yin, Q.; Liu, L.Y.; Wang, K.L.; Hai-Xia, W.U.; Zhao, Y.H.; Sun, L. Influence of drying target moisture on yields and nutritional value of alfalfa hay. Chin. J. Grassl. 2016, 38, 26–31. [Google Scholar]
- Chi, Z.; Deng, M.; Tian, H.; Liu, D.; Li, Y.; Liu, G.; Sun, B.; Guo, Y. Effects of Mulberry Leaves and Pennisetum Hybrid Mix-Silage on Fermentation Parameters and Bacterial Community. Fermentation 2022, 8, 197. [Google Scholar] [CrossRef]
- Broderick, G.A.; Kang, J.H.; United, S.A.R.S. Automated simultaneous determination of ammonia and total amino acids in ruminal fluid and in vitro media. J. Dairy Sci. 1980, 63, 64–75. [Google Scholar] [CrossRef] [PubMed]
- Madrid, J.; Martínez-Teruel, A.; Hernández, F.; Megías, M.D. A comparative study on the determination of lactic acid in silage juice by colorimetric, high-performance liquid chromatography and enzymatic methods. J. Sci. Food Agric. 1999, 79, 1722–1726. [Google Scholar] [CrossRef]
- Erwin, E.S.; Marco, G.J.; Emery, E.M. Volatile Fatty Acid Analyses of Blood and Rumen Fluid by Gas Chromatography. J. Dairy Sci. 1961, 44, 1768–1771. [Google Scholar] [CrossRef]
- Xian, Z.; Wu, J.; Deng, M.; Wang, M.; Tian, H.; Liu, D.; Li, Y.; Liu, G.; Sun, B.; Guo, Y. Effects of Cellulase and Lactiplantibacillus plantarum on the Fermentation Parameters, Nutrients, and Bacterial Community in Cassia alata Silage. Front. Microbiol. 2022, 13, 926065. [Google Scholar] [CrossRef]
- Williams, S. Official Methods of Analysis of the Association of Official Analytical Chemists; Association of Official Analytical Chemists: Arlington, VA, USA, 1984; ISBN 0935584242. [Google Scholar]
- Licitra, G.; Hernandez, T.M.; Van Soest, P.J. Standardization of procedures for nitrogen fractionation of ruminant feeds. Anim. Feed Sci. Technol. 1996, 57, 347–358. [Google Scholar] [CrossRef]
- Owens, V.N.; Albrecht, K.A.; Muck, R.E.; Duke, S.H. Protein degradation and fermentation characteristics of red clover and alfalfa silage harvested with varying levels of total nonstructural carbohydrates. Crop Sci. 1999, 39, 1873–1880. [Google Scholar] [CrossRef]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef] [PubMed]
- Huson, D.H.; Mitra, S.; Ruscheweyh, H.J.; Weber, N.; Schuster, S.C. Integrative analysis of environmental sequences using MEGAN4. Genome Res. 2011, 21, 1552–1560. [Google Scholar] [CrossRef]
- He, L.; Wang, C.; Xing, Y.; Zhou, W.; Pian, R.; Chen, X.; Zhang, Q. Ensiling characteristics, proteolysis and bacterial community of high-moisture corn stalk and stylo silage prepared with Bauhinia variegate flower. Bioresour. Technol. 2020, 296, 122336. [Google Scholar] [CrossRef]
- Zhang, Y.C.; Li, D.X.; Wang, X.K.; Lin, Y.L.; Zhang, Q.; Chen, X.Y.; Yang, F.Y. Fermentation dynamics and diversity of bacterial community in four typical woody forages. Ann. Microbiol. 2019, 69, 233–240. [Google Scholar] [CrossRef]
- Dai, T.; Wang, J.; Dong, D.; Yin, X.; Zong, C.; Jia, Y.; Shao, T. Effects of brewers’ spent grains on fermentation quality, chemical composition and in vitro digestibility of mixed silage prepared with corn stalk, dried apple pomace and sweet potato vine. Ital. J. Anim. Sci. 2022, 21, 198–207. [Google Scholar] [CrossRef]
- Mcdonald, P.; Henderson, A.R.; Heron, S.J.E. The Biochemistry of Silage, 2nd ed.; Chalcombe Publications: Marlow, UK, 1991. [Google Scholar]
- Zhang, Y.; Yang, H.; Huang, R.; Wang, X.; Ma, C.; Zhang, F. Effects of Lactiplantibacillus plantarum and Lactiplantibacillus brevis on fermentation, aerobic stability, and the bacterial community of paper mulberry silage. Front. Microbiol. 2022, 13, 1063914. [Google Scholar] [CrossRef]
- Yi, Z.; Shang, Z.; Chen, X.; Lu, Z.; Yang, S.; Tan, Z.; Liu, S. E Effects of corn meal on fermentation quality and microbial diversity of Xizang giant fungus silage. Feed. Res. 2023, 46, 85–89. [Google Scholar] [CrossRef]
- He, L.; Zhou, W.; Wang, Y.; Wang, C.; Chen, X.; Zhang, Q. Effect of applying lactic acid bacteria and cellulase on the fermentation quality, nutritive value, tannins profile and in vitro digestibility of Neolamarckia cadamba leaves silage. J. Anim. Physiol. Anim. Nutr. 2018, 102, 1429–1436. [Google Scholar] [CrossRef]
- Wang, Y.; He, L.; Xing, Y.; Zhou, W.; Pian, R.; Yang, F.; Chen, X.; Zhang, Q. Bacterial diversity and fermentation quality of Moringa oleifera leaves silage prepared with lactic acid bacteria inoculants and stored at different temperatures. Bioresour. Technol. 2019, 284, 349–358. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Tian, J.; Zhang, Q.; Jiang, Y.; Wu, Z.; Yu, Z. Effects of mixing red clover with alfalfa at different ratios on dynamics of proteolysis and protease activities during ensiling. J. Dairy Sci. 2018, 101, 8954–8964. [Google Scholar] [CrossRef] [PubMed]
- Niu, D.Z.; Zheng, M.L.; Zuo, S.S.; Jiang, D.; Xu, C.C. Effects of maize meal and limestone on the fermentation profile and aerobic stability of smooth bromegrass (Bromus inermis Leyss) silage. Grass Forage Sci. 2018, 73, 622–629. [Google Scholar] [CrossRef]
- Chen, L.; Yuan, X.; Li, J.; Wang, S.; Dong, Z.; Shao, T. Effect of lactic acid bacteria and propionic acid on conservation characteristics, aerobic stability and in vitro gas production kinetics and digestibility of whole-crop corn based total mixed ration silage. J. Integr. Agric. 2017, 16, 1592–1600. [Google Scholar] [CrossRef]
- Danner, H.; Holzer, M.; Mayrhuber, E.; Braun, R. Acetic acid increases stability of silage under aerobic conditions. Appl. Environ. Microbiol. 2003, 69, 562–567. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; Sun, W.; Huang, Y.; Dai, S.; Peng, C.; Zheng, Y.; Chen, C.; Hao, J. Effects of different additives on the bacterial community and fermentation mode of whole-plant paper mulberry silage. Front. Microbiol. 2022, 13, 904193. [Google Scholar] [CrossRef]
- Okoye, C.O.; Wang, Y.; Gao, L.; Wu, Y.; Li, X.; Sun, J.; Jiang, J. The performance of lactic acid bacteria in silage production: A review of modern biotechnology for silage improvement. Microbiol. Res. 2023, 266, 127212. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.S.; Undersander, D.J.; Combs, D.K. Effect of Lactobacillus inoculants and forage dry matter on the fermentation and aerobic stability of ensiled mixed-crop tall fescue and meadow fescue. J. Dairy Sci. 2013, 96, 1735–1744. [Google Scholar] [CrossRef] [PubMed]
- Rigó, E.; Zsédely, E.; Tóth, T.; Schmidt, J. Ensiling alfalfa with hydrolyzed corn meal additive and bacterial inoculant. Acta Agron. Váriensis 2011, 53, 15–23. [Google Scholar]
- Zhang, X.Q.; Jin, Y.M.; Zhang, Y.J.; Yu, Z.; Yan, W.H. Silage quality and preservation of Urtica cannabina ensiled alone and with additive treatment. Grass Forage Sci. 2014, 69, 405–414. [Google Scholar] [CrossRef]
- Bolsen, K.K.; Ashbell, G.; Weinberg, Z.G. Silage fermentation and silage additives—Review. Asian Australas. J. Anim. Sci. 1996, 9, 483–494. [Google Scholar] [CrossRef]
- Dong, Z.; Shao, T.; Li, J.; Yang, L.; Yuan, X. Effect of alfalfa microbiota on fermentation quality and bacterial community succession in fresh or sterile Napier grass silages. J. Dairy Sci. 2020, 103, 4288–4301. [Google Scholar] [CrossRef] [PubMed]
- Keshri, J.; Chen, Y.; Pinto, R.; Kroupitski, Y.; Weinberg, Z.G.; Sela Saldinger, S. Bacterial Dynamics of Wheat Silage. Front. Microbiol. 2019, 10, 1532. [Google Scholar] [CrossRef] [PubMed]
- Zeng, T.; Li, X.; Guan, H.; Yang, W.; Liu, W.; Liu, J.; Du, Z.; Li, X.; Xiao, Q.; Wang, X.; et al. Dynamic microbial diversity and fermentation quality of the mixed silage of corn and soybean grown in strip intercropping system. Bioresour. Technol. 2020, 313, 123655. [Google Scholar] [CrossRef]
- Zhang, G.; Fang, X.; Feng, G.; Li, Y.; Zhang, Y. Silage Fermentation, Bacterial Community, and Aerobic Stability of Total Mixed Ration Containing Wet Corn Gluten Feed and Corn Stover Prepared with Different Additives. Animals 2020, 10, 1775. [Google Scholar] [CrossRef] [PubMed]
- Gavande, P.V.; Basak, A.; Sen, S.; Lepcha, K.; Murmu, N.; Rai, V.; Mazumdar, D.; Saha, S.P.; Das, V.; Ghosh, S. Functional characterization of thermotolerant microbial consortium for lignocellulolytic enzymes with central role of Firmicutes in rice straw depolymerization. Sci. Rep. 2021, 11, 3013–3032. [Google Scholar] [CrossRef]
- Ogunade, I.M.; Jiang, Y.; Pech Cervantes, A.A.; Kim, D.H.; Oliveira, A.S.; Vyas, D.; Weinberg, Z.G.; Jeong, K.C.; Adesogan, A.T. Bacterial diversity and composition of alfalfa silage as analyzed by Illumina MiSeq sequencing: Effects of Escherichia coli O157:H7 and silage additives. J. Dairy Sci. 2018, 101, 2048–2059. [Google Scholar] [CrossRef]
- Li, D.; Ni, K.; Zhang, Y.; Lin, Y.; Yang, F. Fermentation characteristics, chemical composition and microbial community of tropical forage silage under different temperatures. Asian Australas. J. Anim. Sci. 2019, 32, 665–674. [Google Scholar] [CrossRef] [PubMed]
- Pot, B.; Felis, G.E.; Bruyne, K.D.; Tsakalidou, E.; Papadimitriou, K.; Leisner, J.; Vandamme, P. The genus Lactobacillus. In Lactic Acid Bacteria: Biodiversity and Taxonomy; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2014. [Google Scholar]
- Holzer, M.; Mayrhuber, E.; Danner, H.; Braun, R. The role of Lactobacillus buchneri in forage preservation. Trends Biotechnol. 2003, 21, 282–287. [Google Scholar] [CrossRef]
- Hu, Z.; Niu, h.; Yu, J.; Li, S.; Chang, J. Effects of Lactobacillus plantarum supplementation on growth and intestinal microbial flora diversity of Brachymystax lenok. J. Anim. Nutr. 2020, 32, 346–356. [Google Scholar] [CrossRef]
- Lian, T.; Zhang, W.; Cao, Q.; Wang, S.; Dong, H.; Yin, F. Improving production of lactic acid and volatile fatty acids from dairy cattle manure and corn straw silage: Effects of mixing ratios and temperature. Bioresour. Technol. 2022, 359, 127449. [Google Scholar] [CrossRef]
- Guan, H.; Yan, Y.; Li, X.; Li, X.; Shuai, Y.; Feng, G.; Ran, Q.; Cai, Y.; Li, Y.; Zhang, X. Microbial communities and natural fermentation of corn silages prepared with farm bunker-silo in Southwest China. Bioresour. Technol. 2018, 265, 282–290. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; He, L.; Xing, Y.; Zhou, W.; Yang, F.; Chen, X.; Zhang, Q. Fermentation quality and microbial community of alfalfa and stylo silage mixed with Moringa oleifera leaves. Bioresour. Technol. 2019, 284, 240–247. [Google Scholar] [CrossRef] [PubMed]
Items | Treatment | Corn Flour | ||||
---|---|---|---|---|---|---|
F0 | F5 | F10 | F15 | F20 | ||
DM (%) | 19.24 | 21.82 | 25.95 | 29.70 | 33.90 | 92.64 |
CP (% DM) | 11.14 | 8.76 | 10.29 | 8.78 | 9.54 | 9.90 |
WSC (% DM) | 11.31 | 13.19 | 14.42 | 14.61 | 15.08 | 15.85 |
NDF (% DM) | 56.95 | 47.22 | 38.53 | 31.51 | 24.71 | 2.70 |
ADF (% DM) | 34.22 | 27.60 | 23.77 | 17.79 | 12.76 | 0.94 |
Ash (% DM) | 9.86 | 6.68 | 5.53 | 4.67 | 4.00 | 5.51 |
Items | Treatment | ||||
---|---|---|---|---|---|
F0 | F5 | F10 | F15 | F20 | |
Odor | 11 | 12 | 12 | 12 | 11 |
Structural | 4 | 4 | 4 | 4 | 4 |
Color | 2 | 2 | 2 | 2 | 2 |
Scores | 17 | 18 | 18 | 18 | 17 |
Grade | Excellent | Excellent | Excellent | Excellent | Excellent |
Items | Treatment | SEM | p-Value | ||||||
---|---|---|---|---|---|---|---|---|---|
F0 | F5 | F10 | F15 | F20 | Treatment | Linear | Quad | ||
pH | 4.40 a | 3.86 bc | 3.83 bc | 3.76 c | 3.88 b | 0.06 | <0.001 | <0.001 | <0.001 |
Ammonia nitrogen (g/kg TN) | 0.055 | 0.047 | 0.033 | 0.053 | 0.069 | 0.00 | 0.072 | 0.841 | 0.046 |
Lactic acid (g/kg DM) | 10.48 b | 21.38 ab | 20.13 ab | 30.37 a | 15.82 b | 0.22 | 0.017 | 0.002 | 0.943 |
Acetic acid (g/kg DM) | 29.76 a | 27.23 b | 25.68 bc | 24.79 c | 22.01 d | 0.73 | <0.001 | <0.001 | 0.076 |
Items | Treatment | SEM | p-Value | ||||||
---|---|---|---|---|---|---|---|---|---|
F0 | F5 | F10 | F15 | F20 | Treatment | Linear | Quad | ||
DM (%) | 16.39 e | 20.44 d | 25.57 c | 30.83 b | 36.24 a | 1.91 | <0.001 | <0.001 | <0.001 |
CP (%DM) | 11.55 a | 10.73 b | 10.51 c | 9.76 d | 9.66 d | 0.23 | <0.001 | <0.001 | 0.002 |
TP (%DM) | 6.68 a | 5.97 b | 5.84 b | 4.97 c | 4.28 d | 0.28 | <0.001 | <0.001 | 0.878 |
WSC (%DM) | 1.70 d | 4.33 cd | 7.49 bc | 8.97 b | 12.60 a | 1.08 | <0.001 | <0.001 | 0.133 |
NDF (%DM) | 61.87 a | 43.94 b | 30.90 c | 21.66 d | 20.10 d | 4.19 | <0.001 | <0.001 | <0.001 |
ADF (%DM) | 39.14 a | 27.14 b | 19.16 c | 11.92 d | 12.93 d | 2.73 | <0.001 | <0.001 | <0.001 |
Ash (%DM) | 8.99 a | 6.77 b | 5.51 c | 4.64 d | 4.29 e | 0.32 | <0.001 | <0.001 | <0.001 |
Items | Treatment | SEM | p-Value | ||||||
---|---|---|---|---|---|---|---|---|---|
F0 | F5 | F10 | F15 | F20 | Treatment | Linear | Quad | ||
Chao1 | 214.01 c | 184.68 d | 133.69 d | 570.18 a | 337.46 b | 52.42 | <0.001 | 0.106 | 0.994 |
Goods | 0.9998 a | 0.9998 a | 0.9999 a | 0.9994 b | 0.9996 ab | 0.00 | 0.680 | 0.707 | 1.000 |
Shannon | 4.17 a | 2.60 b | 1.77 b | 4.25 a | 1.82 b | 0.37 | 0.002 | 0.004 | 0.702 |
Simpson | 0.88 a | 0.71 b | 0.56 c | 0.91 a | 0.44 d | 0.06 | <0.001 | 0.014 | 0.350 |
Items | Treatment | SEM | p-Value | ||||||
---|---|---|---|---|---|---|---|---|---|
F0 | F5 | F10 | F15 | F20 | All | Linear | Quad | ||
Firmicutes | 99.15 a | 98.90 a | 99.51 a | 82.98 b | 96.26 a | 1.85 | 0.001 | 0.900 | 0.865 |
Proteobacteria | 0.51 b | 0.97 b | 0.39 b | 16.13 a | 2.90 b | 1.76 | 0.001 | 0.965 | 0.823 |
Actinobacteriota | 0.15 | 0.07 | 0.05 | 0.24 | 0.24 | 0.04 | 0.227 | 0.360 | 0.724 |
Bacteroidota | 0.08 | 0.02 | 0.01 | 0.26 | 0.25 | 0.04 | 0.145 | 0.578 | 0.796 |
Cyanobacteria | 0.04 b | 0.02 b | 0.02 b | 0.27 a | 0.15 ab | 0.04 | 0.051 | 0.817 | 0.858 |
Verrucomicrobiota | 0.02 | 0.01 | <0.01 | 0.02 | 0.05 | 0.01 | 0.329 | 0.466 | 0.671 |
Bdellovibrionota | <0.01 b | <0.01 b | <0.01 b | 0.01 b | 0.04 a | 0.01 | 0.126 | 1.000 | 1.000 |
Patescibacteria | <0.01 | <0.01 | <0.01 | 0.02 | 0.01 | 0.00 | 0.202 | 1.000 | 1.000 |
Acidobacteriota | 0.01 b | <0.01 b | <0.01 b | 0.02 a | 0.01 b | 0.00 | 0.037 | 0.588 | 0.754 |
Myxococcota | 0.01 | <0.01 | <0.01 | 0.01 | 0.01 | 0.00 | 0.274 | 0.145 | 0.383 |
Items | Treatment | SEM | p-Value | ||||||
---|---|---|---|---|---|---|---|---|---|
F0 | F5 | F10 | F15 | F20 | All | Linear | Quad | ||
Lactobacillus | 21.30 d | 70.38 b | 60.42 c | 54.26 c | 88.44 a | 7.39 | 0.001 | 0.071 | 0.052 |
Limosilactobacillus | 72.97 a | 22.84 c | 37.92 b | 4.72 d | 3.27 d | 8.60 | <0.001 | 0.042 | 0.005 |
Lacticaseibacillus | 2.34 b | 1.28 bc | 0.58 c | 11.63 a | 2.02 bc | 1.37 | <0.001 | 0.302 | 0.943 |
Klebsiella | 0.20 b | 0.54 b | 0.19 b | 12.28 a | 0.25 b | 1.60 | <0.001 | 0.981 | 0.905 |
Lactiplantibacillus | 0.08 b | 0.12 b | 0.10 b | 9.40 a | 0.31 b | 1.25 | <0.001 | 1.000 | 0.976 |
Weissella | 0.06 b | 0.25 b | 0.04 b | 3.05 a | 0.18 b | 0.41 | 0.012 | 0.950 | 0.899 |
Companilactobacillus | 0.48 | 0.40 | 0.03 | 1.03 | 0.02 | 0.18 | 0.422 | 0.215 | 0.761 |
Levilactobacillus | 1.40 a | 0.43 b | 0.03 b | 1.33 a | 0.05 b | 0.20 | 0.001 | 0.481 | 0.825 |
Secundilactobacillus | 0.49 a | 0.03 b | 0.04 b | 0.01 b | 0.03 b | 0.06 | 0.004 | 0.102 | 0.322 |
Bacillus | 0.09 c | 0.10 c | 0.05 c | 1.85 a | 0.72 b | 0.23 | <0.001 | 1.000 | 0.849 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Wu, K.; Wu, J.; Yang, C.; Sun, B.; Deng, M.; Liu, D.; Li, Y.; Liu, G.; Guo, Y. Effects of Fresh Corn Stover to Corn Flour Ratio on Fermentation Quality and Bacterial Community of Mixed Silage. Fermentation 2024, 10, 654. https://doi.org/10.3390/fermentation10120654
Li J, Wu K, Wu J, Yang C, Sun B, Deng M, Liu D, Li Y, Liu G, Guo Y. Effects of Fresh Corn Stover to Corn Flour Ratio on Fermentation Quality and Bacterial Community of Mixed Silage. Fermentation. 2024; 10(12):654. https://doi.org/10.3390/fermentation10120654
Chicago/Turabian StyleLi, Jintong, Ke Wu, Jiaxuan Wu, Chuang Yang, Baoli Sun, Ming Deng, Dewu Liu, Yaokun Li, Guangbin Liu, and Yongqing Guo. 2024. "Effects of Fresh Corn Stover to Corn Flour Ratio on Fermentation Quality and Bacterial Community of Mixed Silage" Fermentation 10, no. 12: 654. https://doi.org/10.3390/fermentation10120654
APA StyleLi, J., Wu, K., Wu, J., Yang, C., Sun, B., Deng, M., Liu, D., Li, Y., Liu, G., & Guo, Y. (2024). Effects of Fresh Corn Stover to Corn Flour Ratio on Fermentation Quality and Bacterial Community of Mixed Silage. Fermentation, 10(12), 654. https://doi.org/10.3390/fermentation10120654