Two-Stage Bioconversion of Cellulose to Single-Cell Protein and Oil via a Cellulolytic Consortium
Abstract
:1. Introduction
2. Materials and Methods
2.1. Strains, Enrichment and Reagents
2.2. Microbial Solubilization of Crystalline Cellulose
2.3. Microbial Conversion of Soluble End-Products to Single-Cell Protein and Oil (SCPO)
2.4. OD600, Cell Dry Weight and Sample Handling
2.5. Cellulose Utilization
2.6. Bradford Protein, Amino Acid and Total Nitrogen Analysis
2.7. Lipid Analysis
2.8. End-Product Quantification
2.9. Titre, Rate, Yield Calculation and Statistical Analysis
2.10. Molecular Analysis
3. Results and Discussion
3.1. Cellulose Bioconversion in Hungate Bottles
3.2. Metagenomic Sequencing of Cellulolytic Consortium
3.3. Cellulose Bioconversion in Bioreactor Studies
3.4. End-Product Bioconversion to Single-Cell Protein and Oil (SCPO)
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lapeña, D.; Kosa, G.; Hansen, L.D.; Mydland, L.T.; Passoth, V.; Horn, S.J.; Eijsink, V.G.H. Production and Characterization of Yeasts Grown on Media Composed of Spruce-Derived Sugars and Protein Hydrolysates from Chicken by-Products. Microb. Cell Fact. 2020, 19, 19. [Google Scholar] [CrossRef] [PubMed]
- Lapeña, D.; Olsen, P.M.; Arntzen, M.; Kosa, G.; Passoth, V.; Eijsink, V.G.H.; Horn, S.J. Spruce Sugars and Poultry Hydrolysate as Growth Medium in Repeated Fed-Batch Fermentation Processes for Production of Yeast Biomass. Bioprocess Biosyst. Eng. 2020, 43, 723–736. [Google Scholar] [CrossRef] [PubMed]
- Agboola, J.O.; Øverland, M.; Skrede, A.; Hansen, J.Ø. Yeast as Major Protein-Rich Ingredient in Aquafeeds: A Review of the Implications for Aquaculture Production. Rev. Aquac. 2021, 13, 949–970. [Google Scholar] [CrossRef]
- Koukoumaki, D.I.; Tsouko, E.; Papanikolaou, S.; Ioannou, Z.; Diamantopoulou, P.; Sarris, D. Recent Advances in the Production of Single Cell Protein from Renewable Resources and Applications. Carbon Resour. Convers. 2024, 7, 100195. [Google Scholar] [CrossRef]
- Ritala, A.; Häkkinen, S.T.; Toivari, M.; Wiebe, M.G. Single Cell Protein-State-of-the-Art, Industrial Landscape and Patents 2001–2016. Front. Microbiol. 2017, 8, 2009. [Google Scholar] [CrossRef]
- Lynd, L.R.; Van Zyl, W.H.; McBride, J.E.; Laser, M. Consolidated Bioprocessing of Cellulosic Biomass: An Update. Curr. Opin. Biotechnol. 2005, 16, 577–583. [Google Scholar] [CrossRef]
- Yang, R.; Chen, Z.; Hu, P.; Zhang, S.; Luo, G. Two-Stage Fermentation Enhanced Single-Cell Protein Production by Yarrowia lipolytica from Food Waste. Bioresour. Technol. 2022, 361, 127677. [Google Scholar] [CrossRef]
- Mujtaba, M.; Fernandes Fraceto, L.; Fazeli, M.; Mukherjee, S.; Savassa, S.M.; Araujo de Medeiros, G.; do Espírito Santo Pereira, A.; Mancini, S.D.; Lipponen, J.; Vilaplana, F. Lignocellulosic Biomass from Agricultural Waste to the Circular Economy: A Review with Focus on Biofuels, Biocomposites and Bioplastics. J. Clean. Prod. 2023, 402, 136815. [Google Scholar] [CrossRef]
- Akinosho, H.; Yee, K.; Close, D.; Ragauskas, A. The Emergence of Clostridium thermocellum as a High Utility Candidate for Consolidated Bioprocessing Applications. Front. Chem. 2014, 2, 66. [Google Scholar] [CrossRef]
- Bayer, E.A.; Belaich, J.P.; Shoham, Y.; Lamed, R. The Cellulosomes: Multienzyme Machines for Degradation of Plant Cell Wall Polysaccharides. Annu. Rev. Microbiol. 2004, 58, 521–554. [Google Scholar] [CrossRef]
- Schwarz, W.H. The Cellulosome and Cellulose Degradation by Anaerobic Bacteria. Appl. Microbiol. Biotechnol. 2001, 56, 634–649. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Zhang, Y.H.P.; Lynd, L.R. Enzyme-Microbe Synergy during Cellulose Hydrolysis by Clostridium thermocellum. Proc. Natl. Acad. Sci. USA 2006, 103, 16165–16169. [Google Scholar] [CrossRef] [PubMed]
- Dumitrache, A.D.; Wolfaardt, G.; Allen, G.; Liss, S.N.; Lynd, L.R. Form and Function of Clostridium thermocellum Biofilms. Appl. Environ. Microbiol. 2013, 79, 231–239. [Google Scholar] [CrossRef]
- Paye, J.M.D.; Guseva, A.; Hammer, S.K.; Gjersing, E.; Davis, M.F.; Davison, B.H.; Olstad, J.; Donohoe, B.S.; Nguyen, T.Y.; Wyman, C.E.; et al. Biological Lignocellulose Solubilization: Comparative Evaluation of Biocatalysts and Enhancement via Cotreatment. Biotechnol. Biofuels 2016, 9, 8. [Google Scholar] [CrossRef]
- Reed, P.T.; Izquierdo, J.A.; Lynd, L.R. Cellulose Fermentation by Clostridium thermocellum and a Mixed Consortium in an Automated Repetitive Batch Reactor. Bioresour. Technol. 2014, 155, 50–56. [Google Scholar] [CrossRef]
- Ronan, P.; William Yeung, C.; Schellenberg, J.; Sparling, R.; Wolfaardt, G.M.; Hausner, M. A Versatile and Robust Aerotolerant Microbial Community Capable of Cellulosic Ethanol Production. Bioresour. Technol. 2013, 129, 156–163. [Google Scholar] [CrossRef]
- Chen, S.J.; Chen, X.; Hu, B.B.; Wei, M.Y.; Zhu, M.J. Efficient Hydrogen Production from Sugarcane Bagasse and Food Waste by Thermophilic Clostridiales Consortium and Fe–Mn Impregnated Biochars. Renew. Energy 2023, 211, 166–178. [Google Scholar] [CrossRef]
- Xu, J.; Zhao, X.; Wang, W.; Du, W.; Liu, D. Microbial Conversion of Biodiesel Byproduct Glycerol to Triacylglycerols by Oleaginous Yeast Rhodosporidium toruloides and the Individual Effect of Some Impurities on Lipid Production. Biochem. Eng. J. 2012, 65, 30–36. [Google Scholar] [CrossRef]
- Du, Y.; Zou, W.; Zhang, K.; Ye, G.; Yang, J. Advances and Applications of Clostridium Co-Culture Systems in Biotechnology. Front. Microbiol. 2020, 11, 560223. [Google Scholar] [CrossRef]
- Jiang, Y.; Wu, R.; Zhou, J.; He, A.; Xu, J.; Xin, F.; Zhang, W.; Ma, J.; Jiang, M.; Dong, W. Recent Advances of Biofuels and Biochemicals Production from Sustainable Resources Using Co-Cultivation Systems. Biotechnol. Biofuels 2019, 12, 155. [Google Scholar] [CrossRef]
- Sousa-Silva, M.; Vieira, D.; Soares, P.; Casal, M.; Soares-Silva, I. Expanding the Knowledge on the Skillful Yeast Cyberlindnera jadinii. J. Fungi 2021, 7, 36. [Google Scholar] [CrossRef] [PubMed]
- Groenewald, M.; Boekhout, T.; Neuvéglise, C.; Gaillardin, C.; Van Dijck, P.W.M.; Wyss, M. Yarrowia lipolytica: Safety Assessment of an Oleaginous Yeast with a Great Industrial Potential. Crit. Rev. Microbiol. 2014, 40, 187–206. [Google Scholar] [CrossRef]
- Lee, J.Y.; Na, Y.A.; Kim, E.; Lee, H.S.; Kim, P. The Actinobacterium Corynebacterium glutamicum, an Industrial Workhorse. J. Microbiol. Biotechnol. 2016, 26, 807–822. [Google Scholar] [CrossRef]
- Ozkan, M.; Desai, S.G.; Zhang, Y.; Stevenson, D.M.; Beane, J.; White, E.A.; Guerinot, M.L.; Lynd, L.R. Characterization of 13 Newly Isolated Strains of Anaerobic, Cellulolytic, Thermophilic Bacteria. J. Ind. Microbiol. Biotechnol. 2001, 27, 275–280. [Google Scholar] [CrossRef]
- Goering, H.K.; Van Soest, P.J. Forage Fiber Analysis: Apparatus, Reagents, Pocedures and Some Applications; USDA-ARS Agricultural Handbook: Washington DC, USA, 1970. [Google Scholar]
- Teo, M.; Khoo, L.W.; Chew, W. A Simplified Small-Scale Workflow for Determination of Complete Protein-Bound Amino Acids Using Pre-Column Derivatization HPLC Method. J. Food Compos. Anal. 2024, 135, 106571. [Google Scholar] [CrossRef]
- Barkholt, V.; Jensen, A.L. Amino Acid Analysis: Determination of Cysteine plus Half-Cystine in Proteins after Hydrochloric Acid Hydrolysis with a Disulfide Compound as Additive. Anal. Biochem. 1989, 177, 318–322. [Google Scholar] [CrossRef]
- Johns, P.W. Determination of Sulfur Amino Acids in Milk and Plant Proteins. Food Anal. Methods 2021, 14, 108–116. [Google Scholar] [CrossRef]
- Tuan, Y.H.; Phillips, R.D. Optimized Determination of Cystine/Cysteine and Acid-Stable Amino Acids from a Single Hydrolysate of Casein- and Sorghum-Based Diet and Digesta Samples. J. Agric. Food Chem. 1997, 45, 3535–3540. [Google Scholar] [CrossRef]
- Agilent Amino Acid Analysis “How-To” Guide. Available online: https://www.agilent.com/cs/library/brochures/5991-7694EN_AdvanceBio AAA_How-To Guide_LR.pdf (accessed on 15 December 2020).
- Konzock, O.; Nielsen, J. TRYing to Evaluate Production Costs in Microbial Biotechnology. Trends Biotechnol. 2024, 42, 1339–1347. [Google Scholar] [CrossRef]
- Kraus, D. Consolidated Data Analysis and Presentation Using an Open- Source Add-in for the Microsoft Excel ® Spreadsheet Software. Med. Writ. 2014, 23, 25–28. [Google Scholar] [CrossRef]
- Lynd, L.R.; Grethlein, H.E.; Wolkin, R.H. Fermentation of Cellulosic Substrates in Batch and Continuous Culture by Clostridium thermocellum. Appl. Environ. Microbiol. 1989, 55, 3131–3139. [Google Scholar] [CrossRef] [PubMed]
- Ondov, B.D.; Bergman, N.H.; Phillippy, A.M. Interactive Metagenomic Visualization in a Webbrowser. BMC Bioinform. 2011, 12, 385. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Xin, F.; Lu, J.; Dong, W.; Zhang, W.; Zhang, M.; Wu, H.; Ma, J.; Jiang, M. State of the Art Review of Biofuels Production from Lignocellulose by Thermophilic Bacteria. Bioresour. Technol. 2017, 245, 1498–1506. [Google Scholar] [CrossRef]
- Yu, B.; Su, F.; Wang, L.; Xu, K.; Zhao, B.; Xu, P. Draft Genome Sequence of Sporolactobacillus inulinus Strain CASD, an Efficient D-Lactic Acid-Producing Bacterium with High-Concentration Lactate Tolerance Capability. J. Bacteriol. 2011, 193, 5864–5865. [Google Scholar] [CrossRef]
- Wang, L.; Zhao, B.; Li, F.; Xu, K.; Ma, C.; Tao, F.; Li, Q.; Xu, P. Highly Efficient Production of D-Lactate by Sporolactobacillus Sp. CASD with Simultaneous Enzymatic Hydrolysis of Peanut Meal. Appl. Microbiol. Biotechnol. 2011, 89, 1009–1017. [Google Scholar] [CrossRef]
- Li, C.J.; Zhang, Z.; Zhan, P.C.; Lv, A.P.; Li, P.P.; Liu, L.; Li, W.J.; Yang, L.L.; Zhi, X.Y. Comparative Genomic Analysis and Proposal of Clostridium yunnanense Sp. Nov., Clostridium rhizosphaerae Sp. Nov., and Clostridium paridis Sp. Nov., Three Novel Clostridium Sensu Stricto Endophytes with Diverse Capabilities of Acetic Acid and Ethanol Products. Anaerobe 2023, 79, 102686. [Google Scholar] [CrossRef]
- Canganella, F.; Kuk, S.U.; Morgan, H.; Wiegel, J. Clostridium thermobutyricum: Growth Studies and Stimulation of Butyrate Formation by Acetate Supplementation. Microbiol. Res. 2002, 157, 149–156. [Google Scholar] [CrossRef]
- Lawson, P.A.; Rainey, F.A. Proposal to Restrict the Genus Clostridium Prazmowski to Clostridium butyricum and Related Species. Int. J. Syst. Evol. Microbiol. 2016, 66, 1009–1016. [Google Scholar] [CrossRef]
- Ai, B.; Chi, X.; Meng, J.; Sheng, Z.; Zheng, L.; Zheng, X.; Li, J. Consolidated Bioprocessing for Butyric Acid Production from Rice Straw with Undefined Mixed Culture. Front. Microbiol. 2016, 7, 1648. [Google Scholar] [CrossRef]
- Pang, J.; Hao, M.; Li, Y.; Liu, J.; Lan, H.; Zhang, Y.; Zhang, Q.; Liu, Z. Consolidated Bioprocessing Using Clostridium thermocellum and Thermoanaerobacterium thermosaccharolyticum Co-Culture for Enhancing Ethanol Production from Corn Straw. BioResources 2018, 13, 8209–8221. [Google Scholar] [CrossRef]
- Liu, Y.; Yu, P.; Song, X.; Qu, Y. Hydrogen Production from Cellulose by Co-Culture of Clostridium thermocellum JN4 and Thermoanaerobacterium thermosaccharolyticum GD17. Int. J. Hydrogen Energy 2008, 33, 2927–2933. [Google Scholar] [CrossRef]
- Wang, F.; Wang, M.; Zhao, Q.; Niu, K.; Liu, S.; He, D.; Liu, Y.; Xu, S.; Fang, X. Exploring the Relationship Between Clostridium thermocellum JN4 and Thermoanaerobacterium thermosaccharolyticum GD17. Front. Microbiol. 2019, 10, 2035. [Google Scholar] [CrossRef] [PubMed]
- Vancanneyt, M.; De Vos, P.; Vennens, L.; De Ley, J. Lactate and Ethanol Dehydrogenase Activities in Continuous Cultures of Clostridium thermosaccharolyticum LMG 6564. J. Gen. Microbiol. 1990, 136, 1945–1951. [Google Scholar] [CrossRef]
- Holwerda, E.K.; Thorne, P.G.; Olson, D.G.; Amador-Noguez, D.; Engle, N.L.; Tschaplinski, T.J.; Van Dijken, J.P.; Lynd, L.R. The Exometabolome of Clostridium thermocellum Reveals Overflow Metabolism at High Cellulose Loading. Biotechnol. Biofuels 2014, 7, 155. [Google Scholar] [CrossRef]
- Thompson, R.A.; Trinh, C.T. Overflow Metabolism and Growth Cessation in Clostridium thermocellum DSM1313 during High Cellulose Loading Fermentations. Biotechnol. Bioeng. 2017, 114, 2592–2604. [Google Scholar] [CrossRef]
- Tian, L.; Perot, S.J.; Hon, S.; Zhou, J.; Liang, X.; Bouvier, J.T.; Guss, A.M.; Olson, D.G.; Lynd, L.R. Enhanced Ethanol Formation by Clostridium thermocellum via Pyruvate Decarboxylase. Microb. Cell Fact. 2017, 16, 171. [Google Scholar] [CrossRef]
- Zhang, C.; Ottenheim, C.; Weingarten, M.; Ji, L.H. Microbial Utilization of Next-Generation Feedstocks for the Biomanufacturing of Value-Added Chemicals and Food Ingredients. Front. Bioeng. Biotechnol. 2022, 10, 874612. [Google Scholar] [CrossRef]
- Purushothaman, K.; Crawford, A.D.; Rocha, S.D.C.; Göksu, A.B.; Lange, B.M.; Mydland, L.T.; Vij, S.; Qingsong, L.; Øverland, M.; Press, C.M.L. Cyberlindnera jadinii Yeast as a Functional Protein Source: Modulation of Immunoregulatory Pathways in the Intestinal Proteome of Zebrafish (Danio Rerio). Heliyon 2024, 10, e26547. [Google Scholar] [CrossRef]
- Jach, M.E.; Malm, A. Yarrowia lipolytica as an Alternative and Valuable Source of Nutritional and Bioactive Compounds for Humans. Molecules 2022, 27, 2300. [Google Scholar] [CrossRef]
- Watteeuw, C.M.; Armiger, W.B.; Ristroph, D.L.; Humphrey, A.E. Production of Single Cell Protein from Ethanol by Fed-batch Process. Biotechnol. Bioeng. 1979, 21, 1221–1237. [Google Scholar] [CrossRef]
- Xie, D. Integrating Cellular and Bioprocess Engineering in the Non-Conventional Yeast Yarrowia lipolytica for Biodiesel Production: A Review. Front. Bioeng. Biotechnol. 2017, 5, 65. [Google Scholar] [CrossRef] [PubMed]
- Zahoor, A.; Lindner, S.N.; Wendisch, V.F. Metabolic Engineering of Corynebacterium glutamicum Aimed at Alternative Carbon Sources and New Products. Comput. Struct. Biotechnol. J. 2012, 3, e201210004. [Google Scholar] [CrossRef]
- Dias, B.; Fernandes, H.; Lopes, M.; Belo, I. Yarrowia lipolytica Produces Lipid-Rich Biomass in Medium Mimicking Lignocellulosic Biomass Hydrolysate. Appl. Microbiol. Biotechnol. 2023, 107, 3925–3937. [Google Scholar] [CrossRef]
- Park, S.; Kim, T.; Lee, S.; Lee, S.; Kim, P.; Park, S.; Kim, T.; Lee, S.; Lee, S.; Kim, P.; et al. Nutritional Properties of Pilot-Scale Manufactured Single-Cell Proteins from a Corynebacterium glutamicum. CyTA—J. Food 2024, 22, 2410859. [Google Scholar] [CrossRef]
- Yáñez, E.; Ballester, D.; Fernández, N.; Gattás, V.; Monckeberg, F. Chemical Composition of Candida Utilis and the Biological Quality of the Yeast Protein. J. Sci. Food Agric. 1972, 23, 581–586. [Google Scholar] [CrossRef]
- Lee, B.K.; Kyun Kim, J. Production of Candida Utilis Biomass on Molasses in Different Culture Types. Aquac. Eng. 2001, 25, 111–124. [Google Scholar] [CrossRef]
- Graf, M.; Zieringer, J.; Haas, T.; Nieß, A.; Blombach, B.; Takors, R. Physiological Response of Corynebacterium glutamicum to Increasingly Nutrient-Rich Growth Conditions. Front. Microbiol. 2018, 9, 2058. [Google Scholar] [CrossRef]
- Xu, J.; Liu, N.; Qiao, K.; Vogg, S.; Stephanopoulos, G. Application of Metabolic Controls for the Maximization of Lipid Production in Semicontinuous Fermentation. Proc. Natl. Acad. Sci. USA 2017, 114, E5308–E5316. [Google Scholar] [CrossRef]
- Naveira-Pazos, C.; Veiga, M.C.; Kennes, C. Accumulation of Lipids by the Oleaginous Yeast Yarrowia lipolytica Grown on Carboxylic Acids Simulating Syngas and Carbon Dioxide Fermentation. Bioresour. Technol. 2022, 360, 127649. [Google Scholar] [CrossRef]
- Sofeo, N.; Toi, M.G.; Ee, E.Q.G.; Ng, J.Y.; Busran, C.T.; Lukito, B.R.; Thong, A.; Hermansen, C.; Peterson, E.C.; Glitsos, R.; et al. Sustainable Production of Lipids from Cocoa Fatty Acid Distillate Fermentation Driven by Adaptive Evolution in Yarrowia lipolytica. Bioresour. Technol. 2024, 394, 130302. [Google Scholar] [CrossRef]
- Lee, S.Y.; Weingarten, M.; Ottenheim, C. Current Upstream and Downstream Process Strategies for Sustainable Yeast Lipid Production. Bioresour. Technol. 2024, 414, 131601. [Google Scholar] [CrossRef] [PubMed]
- Özcan, N.; Ejsing, C.S.; Shevchenko, A.; Lipski, A.; Morbach, S.; Krämer, R. Osmolality, Temperature, and Membrane Lipid Composition Modulate the Activity of Betaine Transporter BetP in Corynebacterium glutamicum. J. Bacteriol. 2007, 189, 7485–7496. [Google Scholar] [CrossRef] [PubMed]
Cellulose Bioconversion Titre, Rate and Yield Coefficients | |||
---|---|---|---|
Yield on cellulose (dwb) | A. thermocellus | Cellulolytic consortium | |
Acetic acid yield (YAcetic acid) | 0.11 g/g | 0.07 g/g | |
Butyric acid yield (YButyric acid) | 0.00 g/g | 0.01 g/g | |
Lactic acid yield (YLactic acid) | 0.49 g/g | 0.37 g/g | |
Ethanol yield (YEthanol) | 0.12 g/g | 0.16 g/g | |
End-products yield (YS/Cellulose) 1 | 0.72 g/g | 0.62 g/g | |
End-products to SCPO bioconversion titre, rate and yield (TRY) coefficients | |||
TRY on end-products (dwb) | C. jadinii | Y. lipolytica | C. glutamicum |
Biomass titre (x) | 2.47 ± 0.03 g/L | 5.20 ± 0.14 g/L | 3.15 ± 0.41 g/L |
Biomass rate (qX) | 0.10 ± 0.00 g/L/h | 0.22 ± 0.01 g/L/h | 0.13 ± 0.02 g/L/h |
Biomass yield (YX/S) 2 | 0.20 ± 0.003 g/g | 0.43 ± 0.012 g/g | 0.26 ± 0.034 g/g |
Two-stage bioconversion of cellulose to SCPO yield coefficients | |||
Yield on cellulose (dwb) | C. jadinii | Y. lipolytica | C. glutamicum |
Biomass yield (YX/Cellulose) 3 | 0.13 ± 0.002 g/g | 0.27 ± 0.007 g/g | 0.16 ± 0.021 g/g |
Protein yield (YP/Cellulose) | 0.07 ± 0.001 g/g | 0.11 ± 0.003 g/g | 0.09 ± 0.012 g/g |
Lipid yield (YL/Cellulose) | 0.010 ± 0.000 g/g | 0.023 ± 0.001 g/g | 0.013 ± 0.002 g/g |
Amino Acid (Protein Basis) | C. jadinii | Y. lipolytica | C. glutamicum |
---|---|---|---|
L-Aspartic acid | 9.4% | 9.1% | 10.3% |
L-Glutamic Acid | 15.2% | 17.9% | 15.5% |
Serine | 5.1% | 4.4% | 4.5% |
L-Histidine | 2.8% | 2.3% | 2.9% |
L-Glycine | 4.7% | 13.2% | 5.4% |
L-Threonine | 5.6% | 3.4% | 5.3% |
L-Arginine | 5.6% | 5.2% | 7.2% |
L-Alanine | 6.5% | 7.8% | 9.2% |
L-Tyrosine | 5.0% | 1.9% | 2.5% |
L-Cysteine | 1.2% | 1.1% | 0.6% |
L-Valine | 6.5% | 4.1% | 6.5% |
L-Methionine | 1.8% | 1.2% | 2.2% |
L-Tryptophan | 1.2% | 0.6% | 1.2% |
L-Phenylalanine | 4.5% | 3.0% | 4.0% |
L-Isoleucine | 4.7% | 3.1% | 4.5% |
L-Leucine | 7.7% | 4.7% | 7.9% |
L-Lysine | 8.3% | 5.5% | 5.3% |
L-Proline | 4.2% | 11.6% | 4.9% |
Σ EAA 1 | 43.2% | 27.8% | 39.9% |
Σ NEAA 2 | 56.8% | 72.2% | 60.1% |
Crude protein (dwb 3) | 55.6% | 42.5% | 57.9% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peterson, E.C.; Hermansen, C.; Yong, A.; Siao, R.; Chua, G.G.; Ho, S.; Busran, C.T.; Teo, M.; Thong, A.; Weingarten, M.; et al. Two-Stage Bioconversion of Cellulose to Single-Cell Protein and Oil via a Cellulolytic Consortium. Fermentation 2025, 11, 72. https://doi.org/10.3390/fermentation11020072
Peterson EC, Hermansen C, Yong A, Siao R, Chua GG, Ho S, Busran CT, Teo M, Thong A, Weingarten M, et al. Two-Stage Bioconversion of Cellulose to Single-Cell Protein and Oil via a Cellulolytic Consortium. Fermentation. 2025; 11(2):72. https://doi.org/10.3390/fermentation11020072
Chicago/Turabian StylePeterson, Eric Charles, Christian Hermansen, Ashriel Yong, Rowanne Siao, Gi Gi Chua, Sherilyn Ho, Coleen Toledo Busran, Megan Teo, Aaron Thong, Melanie Weingarten, and et al. 2025. "Two-Stage Bioconversion of Cellulose to Single-Cell Protein and Oil via a Cellulolytic Consortium" Fermentation 11, no. 2: 72. https://doi.org/10.3390/fermentation11020072
APA StylePeterson, E. C., Hermansen, C., Yong, A., Siao, R., Chua, G. G., Ho, S., Busran, C. T., Teo, M., Thong, A., Weingarten, M., & Lindley, N. (2025). Two-Stage Bioconversion of Cellulose to Single-Cell Protein and Oil via a Cellulolytic Consortium. Fermentation, 11(2), 72. https://doi.org/10.3390/fermentation11020072