Advances of Rumen Functional Bacteria and the Application of Micro-Encapsulation Fermentation Technology in Ruminants: A Review
Abstract
:1. Introduction
2. General Situation of Rumen Functional Bacteria
3. Rumen Functional Bacteria Development Technology and Its Corresponding Effects
4. Micro-Encapsulation Technology of Micro-Organisms
5. Application of Microbial Micro-Encapsulation Technology
6. The Limitations of Micro-Encapsulation Technology and the Application of Rumen Functional Bacteria
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, K.; Wang, L.; Yan, T.; Wang, Z.; Xue, B.; Peng, Q. Relationship between the structure and composition of rumen microorganisms and the digestibility of neutral detergent fibre in goats. Asian-Australas J. Anim. Sci. 2019, 32, 82–91. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, K.; Zhang, Y.; Yu, Z.; Xu, Q.; Zheng, N.; Zhao, S.; Huang, G.; Wang, J. Ruminal microbiota-host interaction and its effect on nutrient metabolism. Anim. Nutr. 2021, 7, 49–55. [Google Scholar] [CrossRef] [PubMed]
- Indugu, N.; Vecchiarelli, B.; Baker, L.D.; Ferguson, J.D.; Vanamala, J.K.P.; Pitta, D.W. Comparison of rumen bacterial communities in dairy herds of different production. BMC Microbiol. 2017, 17, 190. [Google Scholar] [CrossRef] [PubMed]
- Edwards, J.E.; Forster, R.J.; Callaghan, T.M.; Dollhofer, V.; Dagar, S.S.; Cheng, Y.; Chang, J.; Kittelmann, S.; Fliegerova, K.; Puniya, A.K.; et al. PCR and Omics Based Techniques to Study the Diversity, Ecology and Biology of Anaerobic Fungi: Insights, Challenges and Opportunities. Front. Microbiol. 2017, 8, 1657. [Google Scholar] [CrossRef] [Green Version]
- Chaucheyras-Durand, F.; Ameilbonne, A.; Auffret, P.; Bernard, M.; Mialon, M.M.; Dunière, L.; Forano, E. Supplementation of live yeast based feed additive in early life promotes rumen microbial colonization and fibrolytic potential in lambs. Sci. Rep. 2019, 9, 19216. [Google Scholar] [CrossRef] [Green Version]
- Zhang, K.; Li, B.; Guo, M.; Liu, G.; Yang, Y.; Wang, X.; Chen, Y.; Zhang, E. Maturation of the Goat Rumen Microbiota Involves Three Stages of Microbial Colonization. Animals 2019, 9, 1028. [Google Scholar] [CrossRef] [Green Version]
- Stevenson, D.M.; Weimer, P.J. Dominance of Prevotella and low abundance of classical ruminal bacterial species in the bovine rumen revealed by relative quantification real-time PCR. Appl. Microbiol. Biotechnol. 2007, 75, 165–174. [Google Scholar] [CrossRef]
- Henderson, G.; Cox, F.; Ganesh, S.; Jonker, A.; Young, W.; Janssen, P.H. Rumen microbial community composition varies with diet and host, but a core microbiome is found across a wide geographical range. Sci. Rep. 2015, 5, 14567. [Google Scholar] [CrossRef] [Green Version]
- Moon, C.D.; Carvalho, L.; Kirk, M.R.; McCulloch, A.F.; Kittelmann, S.; Young, W.; Janssen, P.H.; Leathwick, D.M. Effects of long-acting, broad spectra anthelmintic treatments on the rumen microbial community compositions of grazing sheep. Sci. Rep. 2021, 11, 3836. [Google Scholar] [CrossRef]
- Krause, D.O.; Nagaraja, T.G.; Wright, A.D.; Callaway, T.R. Board-invited review: Rumen microbiology: Leading the way in microbial ecology. J. Anim. Sci. 2013, 91, 331–341. [Google Scholar] [CrossRef]
- Xu, J.; Koyanagi, Y.; Isogai, E.; Nakamura, S. Effects of fermentation products of the commensal bacterium Clostridium ramosum on motility, intracellular pH, and flagellar synthesis of enterohemorrhagic Escherichia coli. Arch. Microbiol. 2019, 201, 841–846. [Google Scholar] [CrossRef] [PubMed]
- Amin, A.B.; Mao, S. Influence of yeast on rumen fermentation, growth performance and quality of products in ruminants: A review. Anim. Nutr. 2021, 7, 31–41. [Google Scholar] [CrossRef] [PubMed]
- Ghadaksaz, A.; Nodoushan, S.M.; Sedighian, H.; Behzadi, E.; Fooladi, A.A.I. Evaluation of the Role of Probiotics As a New Strategy to Eliminate Microbial Toxins: A Review. Probiot. Antimicrob. Proteins 2022, 14, 224–237. [Google Scholar] [CrossRef] [PubMed]
- Sams, L.; Paume, J.; Giallo, J.; Carrière, F. Relevant pH and lipase for in vitro models of gastric digestion. Food Funct. 2016, 7, 30–45. [Google Scholar] [CrossRef] [PubMed]
- Yin, X.; Ji, S.; Duan, C.; Ju, S.; Zhang, Y.; Yan, H.; Liu, Y. Rumen fluid transplantation affects growth performance of weaned lambs by altering gastrointestinal microbiota, immune function and feed digestibility. Animal 2021, 15, 100076. [Google Scholar] [CrossRef]
- Zhao, C.; Zhu, Y.; Kong, B.; Huang, Y.; Yan, D.; Tan, H.; Shang, L. Dual-Core Prebiotic Microcapsule Encapsulating Probiotics for Metabolic Syndrome. ACS Appl. Mater. Interfaces 2020, 12, 42586–42594. [Google Scholar] [CrossRef]
- Dolan, K.T.; Chang, E.B. Diet, gut microbes, and the pathogenesis of inflammatory bowel diseases. Mol. Nutr. Food Res. 2017, 61, 1600129. [Google Scholar] [CrossRef] [Green Version]
- Yeoman, C.J.; Fields, C.J.; Lepercq, P.; Ruiz, P.; Forano, E.; White, B.A.; Mosoni, P. In Vivo Competitions between Fibrobacter succinogenes, Ruminococcus flavefaciens, and Ruminoccus albus in a Gnotobiotic Sheep Model Revealed by Multi-Omic Analyses. Mbio 2021, 12, e03533-20. [Google Scholar] [CrossRef]
- Cerqueira, F.M.; Photenhauer, A.L.; Pollet, R.M.; Brown, H.A.; Koropatkin, N.M. Starch Digestion by Gut Bacteria: Crowdsourcing for Carbs. Trends Microbiol. 2020, 28, 95–108. [Google Scholar] [CrossRef]
- Flint, H.J.; Scott, K.P.; Duncan, S.H.; Louis, P.; Forano, E. Microbial degradation of complex carbohydrates in the gut. Gut Microbes 2012, 3, 289–306. [Google Scholar] [CrossRef]
- Wang, Y.; Shen, Q.; Zhong, S.; Chen, Y.; Yang, Y. Comparison of Rumen Microbiota and Serum Biochemical Indices in White Cashmere Goats Fed Ensiled or Sun-Dried Mulberry Leaves. Microorganisms 2020, 8, 981. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Wei, W.; Yang, S.; Huang, Z.; Li, C.; Yu, X.; Qi, R.; Liu, W.; Loor, J.J.; Wang, M.; et al. Regulation of Dietary Protein Solubility Improves Ruminal Nitrogen Metabolism In Vitro: Role of Bacteria-Protozoa Interactions. Nutrients 2022, 14, 2972. [Google Scholar] [CrossRef] [PubMed]
- Enjalbert, F.; Combes, S.; Zened, A.; Meynadier, A. Rumen microbiota and dietary fat: A mutual shaping. J. Appl. Microbiol. 2017, 123, 782–797. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mills, J.A.; Crompton, L.A.; Ellis, J.L.; Dijkstra, J.; Bannink, A.; Hook, S.; Benchaar, C.; France, J. A dynamic mechanistic model of lactic acid metabolism in the rumen. J. Dairy Sci. 2014, 97, 2398–2414. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Monteiro, H.F.; Faciola, A.P. Ruminal acidosis, bacterial changes and lipopolysaccharides. J. Anim. Sci. 2020, 98, skaa248. [Google Scholar] [CrossRef] [PubMed]
- Patra, A.; Park, T.; Kim, M.; Yu, Z. Rumen methanogens and mitigation of methane emission by anti-methanogenic compounds and substances. J. Anim. Sci. Biotechnol. 2017, 8, 13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tseten, T.; Sanjorjo, R.A.; Kwon, M.; Kim, S.W. Strategies to Mitigate Enteric Methane Emissions from Ruminant Animals. J. Microbiol. Biotechnol. 2022, 32, 269–277. [Google Scholar] [CrossRef]
- Rodríguez Hernáez, J.; Cerón Cucchi, M.E.; Cravero, S.; Martinez, M.C.; Gonzalez, S.; Puebla, A.; Dopazo, J.; Farber, M.; Paniego, N.; Rivarola, M. The first complete genomic structure of Butyrivibrio fibrisolvens and its chromid. Microb. Genom. 2018, 4, e000216. [Google Scholar] [CrossRef]
- Anderson, K.L. Biochemical analysis of starch degradation by Ruminobacter amylophilus 70. Appl. Environ. Microbiol. 1995, 61, 1488–1491. [Google Scholar] [CrossRef] [Green Version]
- Cotta, M.A.; Hespell, R.B. Proteolytic activity of the ruminal bacterium Butyrivibrio fibrisolvens. Appl. Environ. Microbiol. 1986, 52, 51–58. [Google Scholar] [CrossRef]
- Prins, R.A.; Lankhorst, A.; van der Meer, P.; Van Nevel, C.J. Some characteristics of Anaerovibrio lipolytica a rumen lipolytic organism. Antonie Leeuwenhoek 1975, 41, 1–11. [Google Scholar] [CrossRef]
- Uusitupa, H.M.; Rasinkangas, P.; Lehtinen, M.J.; Mäkelä, S.M.; Airaksinen, K.; Anglenius, H.; Ouwehand, A.C.; Maukonen, J. Bifidobacterium animalis subsp. lactis 420 for Metabolic Health: Review of the Research. Nutrients 2020, 12, 892. [Google Scholar] [CrossRef] [Green Version]
- Anjum, N.; Maqsood, S.; Masud, T.; Ahmad, A.; Sohail, A.; Momin, A. Lactobacillus acidophilus: Characterization of the species and application in food production. Crit. Rev. Food Sci. Nutr. 2014, 54, 1241–1251. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.; Xia, G.; Jin, Y.; Wang, H. Ambient pH regulates lactate catabolism pathway of the ruminal Megasphaera elsdenii BE2-2083 and Selenomonas ruminantium HD4. J. Appl. Microbiol. 2022, 132, 2661–2672. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Shen, Y.; Wang, C.; Ding, L.; Zhao, F.; Wang, M.; Fu, J.; Wang, H. Megasphaera elsdenii Lactate Degradation Pattern Shifts in Rumen Acidosis Models. Front. Microbiol. 2019, 10, 162. [Google Scholar] [CrossRef] [Green Version]
- Ma, J.; Wang, X.; Zhou, T.; Hu, R.; Zou, H.; Wang, Z.; Tan, C.; Zhang, X.; Peng, Q.; Xue, B.; et al. Effects of cofD gene knock-out on the methanogenesis of Methanobrevibacter ruminantium. AMB Express 2021, 11, 77. [Google Scholar] [CrossRef]
- Yanagita, K.; Kamagata, Y.; Kawaharasaki, M.; Suzuki, T.; Nakamura, Y.; Minato, H. Phylogenetic analysis of methanogens in sheep rumen ecosystem and detection of Methanomicrobium mobile By fluorescence in situ hybridization. Biosci. Biotechnol. Biochem. 2000, 64, 1737–1742. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dewsbury, D.M.A.; Cernicchiaro, N.; Depenbusch, B.; Nagaraja, T.G.; Renter, D.G. Effectiveness of a Direct-Fed Microbial Product Containing Lactobacillus acidophilus and Lactobacillus casei in Reducing Fecal Shedding of Escherichia coli O157:H7 in Commercial Feedlot Cattle. Foodborne Pathog. Dis. 2021, 18, 16–23. [Google Scholar] [CrossRef]
- Thaiss, C.A.; Zmora, N.; Levy, M.; Elinav, E. The microbiome and innate immunity. Nature 2016, 535, 65–74. [Google Scholar] [CrossRef]
- Hassan, A.; Gado, H.; Anele, U.Y.; Berasain, M.A.M.; Salem, A.Z.M. Influence of dietary probiotic inclusion on growth performance, nutrient utilization, ruminal fermentation activities and methane production in growing lambs. Anim. Biotechnol. 2020, 31, 365–372. [Google Scholar] [CrossRef]
- Guo, Y.; Qi, Y.; Yang, X.; Zhao, L.; Wen, S.; Liu, Y.; Tang, L. Association between Polycystic Ovary Syndrome and Gut Microbiota. PLoS ONE 2016, 11, e0153196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yurtdaş, G.; Akdevelioğlu, Y. A New Approach to Polycystic Ovary Syndrome: The Gut Microbiota. J. Am. Coll. Nutr. 2020, 39, 371–382. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Zhang, K.; Li, C.; Wang, X.; Chen, Y.; Yang, Y. Characterization and Comparison of Microbiota in the Gastrointestinal Tracts of the Goat (Capra hircus) During Preweaning Development. Front. Microbiol. 2019, 10, 2125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ban, Y.; Guan, L.L. Implication and challenges of direct-fed microbial supplementation to improve ruminant production and health. J. Anim. Sci. Biotechnol. 2021, 12, 109. [Google Scholar] [CrossRef] [PubMed]
- Wiley, N.C.; Dinan, T.G.; Ross, R.P.; Stanton, C.; Clarke, G.; Cryan, J.F. The microbiota-gut-brain axis as a key regulator of neural function and the stress response: Implications for human and animal health. J. Anim. Sci. 2017, 95, 3225–3246. [Google Scholar] [CrossRef]
- Quigley, E.M.M. Prebiotics and Probiotics in Digestive Health. Clin. Gastroenterol. Hepatol. 2019, 17, 333–344. [Google Scholar] [CrossRef]
- Raabis, S.; Li, W.; Cersosimo, L. Effects and immune responses of probiotic treatment in ruminants. Vet. Immunol. Immunopathol. 2019, 208, 58–66. [Google Scholar] [CrossRef]
- Herdian, H.; Sofyan, A.; Sakti, A.A.; Julendra, H.; Karimy, M.F.; Suryani, A.E.; Damayanti, E.; Istiqomah, L. Performance and Meat Quality of Local Sheep Administered with Feed Additive Containing Probiotic and Organic Mineral Complex. Media Peternak. 2013, 36, 203–208. [Google Scholar] [CrossRef] [Green Version]
- Ishaq, S.L.; Kim, C.J.; Reis, D.; Wright, A.D. Fibrolytic Bacteria Isolated from the Rumen of North American Moose (Alces alces) and Their Use as a Probiotic in Neonatal Lambs. PLoS ONE 2015, 10, e0144804. [Google Scholar] [CrossRef]
- Maragkoudakis, P.A.; Mountzouris, K.C.; Rosu, C.; Zoumpopoulou, G.; Papadimitriou, K.; Dalaka, E.; Hadjipetrou, A.; Theofanous, G.; Strozzi, G.P.; Carlini, N.; et al. Feed supplementation of Lactobacillus plantarum PCA 236 modulates gut microbiota and milk fatty acid composition in dairy goats--a preliminary study. Int. J. Food Microbiol. 2010, 141 (Suppl. 1), S109–S116. [Google Scholar] [CrossRef]
- Frakolaki, G.; Giannou, V.; Kekos, D.; Tzia, C. A review of the microencapsulation techniques for the incorporation of probiotic bacteria in functional foods. Crit. Rev. Food Sci. Nutr. 2021, 61, 1515–1536. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Teng, D.; Mao, R.; Hao, Y.; Wang, X.; Wang, J. Recent progress in preparation and agricultural application of microcapsules. J. Biomed. Mater. Res. A 2019, 107, 2371–2385. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, R.; Liaqat, A.; Jahangir Chughtai, M.F.; Tanweer, S.; Tehseen, S.; Ahsan, S.; Nadeem, M.; Mehmood, T.; Ur Rehman, S.J.; Saeed, K.; et al. Microencapsulation: A pragmatic approach towards delivery of probiotics in gut. J. Microencapsul. 2021, 38, 437–458. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Liu, F.; Ren, T.; Wang, J.; Yang, M.; Yao, Y.; Chen, H. Fabrication of fish gelatin / sodium alginate double network gels for encapsulation of probiotics. J. Sci. Food Agric. 2021, 101, 4398–4408. [Google Scholar] [CrossRef]
- Bah, M.G.; Bilal, H.M.; Wang, J. Fabrication and application of complex microcapsules: A review. Soft Matter 2020, 16, 570–590. [Google Scholar] [CrossRef]
- Yao, M.; Xie, J.; Du, H.; McClements, D.J.; Xiao, H.; Li, L. Progress in microencapsulation of probiotics: A review. Compr. Rev. Food Sci. Food Saf. 2020, 19, 857–874. [Google Scholar] [CrossRef] [Green Version]
- Kailasapathy, K. Microencapsulation of probiotic bacteria: Technology and potential applications. Curr. Issues Intest. Microbiol. 2002, 3, 39–48. [Google Scholar]
- Lee, Y.; Ji, Y.R.; Lee, S.; Choi, M.J.; Cho, Y. Microencapsulation of Probiotic Lactobacillus acidophilus KBL409 by Extrusion Technology to Enhance Survival under Simulated Intestinal and Freeze-Drying Conditions. J. Microbiol. Biotechnol. 2019, 29, 721–730. [Google Scholar] [CrossRef] [Green Version]
- Ji, R.; Wu, J.; Zhang, J.; Wang, T.; Zhang, X.; Shao, L.; Chen, D.; Wang, J. Extending Viability of Bifidobacterium longum in Chitosan-Coated Alginate Microcapsules Using Emulsification and Internal Gelation Encapsulation Technology. Front. Microbiol. 2019, 10, 1389. [Google Scholar] [CrossRef]
- Yoshimaru, T.; Shibata, M.; Fukugomori, T.; Matsumoto, K. Preparation and characteristics of rumen-bypass microcapsules for improvement of productivity in ruminants. J. Agric. Food Chem. 1999, 47, 554–557. [Google Scholar] [CrossRef]
- Mytara, A.D.; Chronaki, K.; Nikitakos, V.; Papaspyrides, C.D.; Beltsios, K.; Vouyiouka, S. Synthesis of Polyamide-Based Microcapsules via Interfacial Polymerization: Effect of Key Process Parameters. Materials 2021, 14, 5895. [Google Scholar] [CrossRef]
- Jeoung, H.J.; Kim, K.W.; Chang, Y.J.; Jung, Y.C.; Ku, H.; Oh, K.W.; Choi, H.M.; Chung, J.W. Self-Healing EPDM Rubbers with Highly Stable and Mechanically-Enhanced Urea-Formaldehyde (UF) Microcapsules Prepared by Multi-Step In Situ Polymerization. Polymers 2020, 12, 1918. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Nava, R.; López-Malo, A.; Palou, E.; Ramírez-Corona, N.; Jiménez-Munguía, M.T. Complex Coacervation Between Gelatin and Chia Mucilage as an Alternative of Encapsulating Agents. J. Food Sci. 2019, 84, 1281–1287. [Google Scholar] [CrossRef]
- Jing, H.; Du, X.; Mo, L.; Wang, H. Self-coacervation of carboxymethyl chitosan as a pH-responsive encapsulation and delivery strategy. Int. J. Biol. Macromol. 2021, 192, 1169–1177. [Google Scholar] [CrossRef]
- Abulateefeh, S.R.; Alkawareek, M.Y.; Abdullah, F.R.; Alkilany, A.M. Preparation of Aqueous Core-Poly(d,l-Lactide-co-Glycolide) Shell Microcapsules With Mononuclear Cores by Internal Phase Separation: Optimization of Formulation Parameters. J. Pharm. Sci. 2017, 106, 1136–1142. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Wang, X.; Xue, C.; Wei, Z. Latest developments in food-grade delivery systems for probiotics: A systematic review. Crit. Rev. Food Sci. Nutr. 2021, 1–18. [Google Scholar] [CrossRef]
- Soh, S.H.; Lee, L.Y. Microencapsulation and Nanoencapsulation Using Supercritical Fluid (SCF) Techniques. Pharmaceutics 2019, 11, 21. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, S.U.; Li, B.; Sun, J.; Arbab, S.; Dong, Z.; Cheng, F.; Zhou, X.; Mahfuz, S.; Zhang, J. Recent advances in microencapsulation of drugs for veterinary applications. J. Vet. Pharmacol. Ther. 2021, 44, 298–312. [Google Scholar] [CrossRef]
- Misra, S.; Pandey, P.; Dalbhagat, C.G.; Mishra, H.N. Emerging Technologies and Coating Materials for Improved Probiotication in Food Products: A Review. Food Bioproc. Tech. 2022, 15, 998–1039. [Google Scholar] [CrossRef]
- Fonseca, F.; Girardeau, A.; Passot, S. Freeze-Drying of Lactic Acid Bacteria: A Stepwise Approach for Developing a Freeze-Drying Protocol Based on Physical Properties. Methods Mol. Biol. 2021, 2180, 703–719. [Google Scholar] [CrossRef] [PubMed]
- Knezevic, Z.; Gosak, D.; Hraste, M.; Jalsenjak, I. Fluid-bed microencapsulation of ascorbic acid. J. Microencapsul. 1998, 15, 237–252. [Google Scholar] [CrossRef]
- Dierings de Souza, E.J.; Kringel, D.H.; Guerra Dias, A.R.; da Rosa Zavareze, E. Polysaccharides as wall material for the encapsulation of essential oils by electrospun technique. Carbohydr. Polym. 2021, 265, 118068. [Google Scholar] [CrossRef]
- Chen, A.Z.; Li, Y.; Chen, D.; Hu, J.Y. Development of core-shell microcapsules by a novel supercritical CO2 process. J. Mater. Sci. Mater. Med. 2009, 20, 751–758. [Google Scholar] [CrossRef]
- Tong, W.; Song, X.; Gao, C. Layer-by-layer assembly of microcapsules and their biomedical applications. Chem. Soc. Rev. 2012, 41, 6103–6124. [Google Scholar] [CrossRef]
- Lin, T.; Meletharayil, G.; Kapoor, R.; Abbaspourrad, A. Bioactives in bovine milk: Chemistry, technology, and applications. Nutr. Rev. 2021, 79, 48–69. [Google Scholar] [CrossRef]
- Bosnea, L.A.; Moschakis, T.; Biliaderis, C.G. Microencapsulated cells of Lactobacillus paracasei subsp. paracasei in biopolymer complex coacervates and their function in a yogurt matrix. Food Funct. 2017, 8, 554–562. [Google Scholar] [CrossRef]
- Speranza, B.; Campaniello, D.; Bevilacqua, A.; Altieri, C.; Sinigaglia, M.; Corbo, M.R. Viability of Lactobacillus plantarum on Fresh-Cut Chitosan and Alginate-Coated Apple and Melon Pieces. Front. Microbiol. 2018, 9, 2538. [Google Scholar] [CrossRef] [Green Version]
- Centurion, F.; Basit, A.W.; Liu, J.; Gaisford, S.; Rahim, M.A.; Kalantar-Zadeh, K. Nanoencapsulation for Probiotic Delivery. ACS Nano 2021, 15, 18653–18660. [Google Scholar] [CrossRef]
- Chang, X.; Liu, D.; Lambo, M.T. Nanofiber could deliver lactic acid bacteria to the intestine of ruminant in vitro experiment. J. Anim. Physiol. Anim. Nutr. 2021, 1–8. [Google Scholar] [CrossRef]
- Verruck, S.; de Carvalho, M.W.; de Liz, G.R.; Amante, E.R.; Vieira, C.R.W.; Amboni, R.D.D.; Prudencio, E.S. Survival of Bifidobacterium BB-12 microencapsulated with full-fat goat’s milk and prebiotics when exposed to simulated gastrointestinal conditions and thermal treatments. Small Rumin. Res. 2017, 153, 48–56. [Google Scholar] [CrossRef]
- Piano, M.D.; Carmagnola, S.; Ballarè, M.; Balzarini, M.; Montino, F.; Pagliarulo, M.; Anderloni, A.; Orsello, M.; Tari, R.; Sforza, F.; et al. Comparison of the kinetics of intestinal colonization by associating 5 probiotic bacteria assumed either in a microencapsulated or in a traditional, uncoated form. J. Clin. Gastroenterol. 2012, 46, S85–S92. [Google Scholar] [CrossRef]
- Zhou, H.B.; Chen, J.; Li, S.; Zhang, J.; Zhu, C.E.; Ran, H.; Luo, M.; Pan, X.; Hu, H.; Wu, C. Preparation of Acid-Resistant Microcapsules with Shell-Matrix Structure to Enhance Stability of Streptococcus Thermophilus IFFI 6038. J. Food Sci. 2017, 82, 1978–1984. [Google Scholar] [CrossRef] [PubMed]
- Yadav, M.; Mandeep; Shukla, P. Probiotics of Diverse Origin and Their Therapeutic Applications: A Review. J. Am. Coll. Nutr. 2020, 39, 469–479. [Google Scholar] [CrossRef] [PubMed]
- Saarela, M.; Mogensen, G.; Fondén, R.; Mättö, J.; Mattila-Sandholm, T. Probiotic bacteria: Safety, functional and technological properties. J. Biotechnol. 2000, 84, 197–215. [Google Scholar] [CrossRef]
Classification. | Latin Name of Bacteria | Gram Staining | Function | Source |
---|---|---|---|---|
Cellulolytic bacteria | Ruminococcus flavefaciens | G+ | degrade cellulose, hemicellulase, xylan | Yeoman et al. [18] |
Ruminococcus albus | G+ | degrade cellulose, hemicellulase, xylan | ||
Fibrobacter succinogenes | G− | ferment cellulose and cellobiose | ||
Butyrivibrio fibrisolvens | G− | utilize cellulose, starch, and other polysaccharides, secrete pectinase, utilize xylan | Rodríguez Hernáez et al. [28] | |
Amylolytic bacteria | Streptococcus bovis | G+ | degrade starch to produce lactic acid | Cerqueira et al. [19] |
Prevotella ruminicola | G− | degrade starch, xylan, pectin | ||
Ruminobacter amylophilus | G− | ferment starch, degrade protein | Anderson et al. [29] | |
Protein-degrading bacteria | Ruminobacter amylophilus | G− | ferment starch, degrade protein | Anderson et al. [29] |
Butyrivibrio fibrisolvens | G− | utilize cellulose, starch and other polysaccharides, secrete pectinase, utilize xylan | Cotta et al. [30] | |
Fat-degrading bacteria | Anaerovibrio lipolytica | G− | utilize fat and lactic acid | Prins et al. [31] |
Lactic acid-producing bacteria | Bifidobacterium lactis | G+ | produce acetic acid, lactic acid, inhibit spoilage bacteria | Uusitupa et al. [32] |
Lactobacillus acidophilus | G+ | produce lactic acid and acetic acid | Anjum et al. [33] | |
Streptococcus bovis | G+ | produce lactic acid and acetic acid | Cerqueira et al. [19] | |
Lactic-acid-utilising bacteria | Selenomonas ruminantium | G− | utilize lactic acid to produce acetic and propionic acids | Fan et al. [34] |
Megasphaera elsdenii | G− | ferment fructose, lactic acid | Monteiro et al., Chen et al. [25,35] | |
Methanogens | Methanobrevibacter ruminantium | G+ | reduce CO2, CH4 | Ma et al. [36] |
Methanomicrobium mobile | G− | reduce CO2, CH4 | Yanagita et al. [37] |
Principles | Methods | Wall Materials | Advantages | Disadvantages | Source |
---|---|---|---|---|---|
Physical process | Spray drying | phthalate, (modified) starch, soy protein isolates, etc. | low cost, simple process, convenient transportation and storage | uneven particle size, low embedding rate | Yanagita et al. [37] |
Extrusion | alginate, calcium chloride, gellan gum, protein, etc. | good sealing, suitable temperature, long storage period | low production efficiency | Lee et al., Kailasapathy et al., Yao et al. [56,57,58] | |
Emulsification | gum arabic, gelatin, chitosan, etc. | strong stability, suitable temperature | low production efficiency | Ji et al. [59] | |
Freeze drying | maltodextrins, sorbitol, gums, trehalose, etc. | core material damage is small | equipment requirements are high, and sieving is required after granulation | Fonseca et al. [70] | |
Fluid bed coating | casein, alginate, waxes etc. | uniform particle size | easily damaged, low production efficiency, and many influencing factors | Knezevic et al. [71] | |
Electrospinning and Electrospraying | pectin, guar gum, cellulose, chitosan, alginate etc. | nanoscale, low cost, | high voltage, complex equipment | Dierings de Souza et al. [72] | |
Chemical process | Interfacial Polymerization | polyamide, polyurea, polyester, polyurethane, etc. | good sealing, low cost and simple process | part of the monomer remains in the micro-encapsules | Mytara et al. [61] |
In situ polymerization | polymethyl methacrylate, polystyrene, urea-formaldehyde resin, polyurethane, etc. | easy to form spherical shape, wider application | some monomers remain in the micro-encapsules, the process is more complicated | Jeoung et al. [62] | |
Physico and chemical process | Complex coacervation | gelatin, gum arabic, etc. | high temperature resistance, high yield and low loss of biological activity | reaction conditions and costs are difficult to control, and storage period is short | Hernández-Nava et al. [63] |
Self-coacervation | agar, sodium alginate, chitosan etc. | high temperature resistance, high productivity | high cost and complex process | Jing et al. [64] | |
Phase separation | ethyl cellulose, polyethylene, polystyrene, nitrocellulose, etc. | the process is simpler | time consuming and risk of contamination | Abulateefeh et al. [65] | |
Supercritical CO2 Method | gum arabic, sodium alginate, chitosan etc. | high production efficiency, low investment | unstable shape, low load | Chen et al. [73] | |
Layer by Layer method | sodium alginate, chitosan, pectin, gum arabic, etc. | controlled release, high stability, nanoscale | complex process | Tong et al. [74] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, W.; Zhen, Y.; Wang, Y.; Shahzad, K.; Wang, M. Advances of Rumen Functional Bacteria and the Application of Micro-Encapsulation Fermentation Technology in Ruminants: A Review. Fermentation 2022, 8, 564. https://doi.org/10.3390/fermentation8100564
Wei W, Zhen Y, Wang Y, Shahzad K, Wang M. Advances of Rumen Functional Bacteria and the Application of Micro-Encapsulation Fermentation Technology in Ruminants: A Review. Fermentation. 2022; 8(10):564. https://doi.org/10.3390/fermentation8100564
Chicago/Turabian StyleWei, Wenjun, Yongkang Zhen, Yusu Wang, Khuram Shahzad, and Mengzhi Wang. 2022. "Advances of Rumen Functional Bacteria and the Application of Micro-Encapsulation Fermentation Technology in Ruminants: A Review" Fermentation 8, no. 10: 564. https://doi.org/10.3390/fermentation8100564
APA StyleWei, W., Zhen, Y., Wang, Y., Shahzad, K., & Wang, M. (2022). Advances of Rumen Functional Bacteria and the Application of Micro-Encapsulation Fermentation Technology in Ruminants: A Review. Fermentation, 8(10), 564. https://doi.org/10.3390/fermentation8100564