Rumen Function and In Vitro Gas Production of Diets Influenced by Two Levels of Tannin-Rich Forage
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Location
2.2. Animals
2.3. Fodder Samples and Treatments
2.4. Rumen Degradation
2.5. Gas, CH4 Production, and In Vitro Digestibility
2.6. Rumen pH
2.7. Chemical Analysis
2.8. Experimental Design and Statistical Analysis
3. Results
3.1. In Situ Rumen Degradation Kinetics
3.2. In Vitro Digestibility and Rumen pH
3.3. Gas and CH4 Production
4. Discussion
4.1. Rumen Degradation Kinetics and Digestibility
4.2. Gas and CH4 Production
4.3. Rumen pH
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fusaro, I.; Cavallini, D.; Giammarco, M.; Manetta, A.C.; Martuscelli, M.; Mammi, L.M.E.; Lanzoni, L.; Formigoni, A.; Vignola, G. Oxidative Status of Marchigiana Beef Enriched in n-3 Fatty Acids and Vitamin E, Treated With a Blend of Oregano and Rosemary Essential Oils. Front. Vet. Sci. 2021, 8, 662079. [Google Scholar] [CrossRef]
- Buonaiuto, G.; Palmonari, A.; Ghiaccio, F.; Visentin, G.; Cavallini, D.; Campidonico, L.; Formigoni, A.; Mammi, L.M.E. Effects of complete replacement of corn flour with sorghum flour in dairy cows fed Parmigiano Reggiano dry hay-based ration. Ital. J. Anim. Sci. 2021, 20, 826–833. [Google Scholar] [CrossRef]
- Cavallini, D.; Mammi, L.M.E.; Palmonari, A.; García-González, R.; Chapman, J.D.; McLean, D.J.; Formigoni, A. Effect of an Immunomodulatory Feed Additive in Mitigating the Stress Responses in Lactating Dairy Cows to a High Concentrate Diet Challenge. Animals 2022, 12, 2129. [Google Scholar] [CrossRef]
- Zubieta, Á.S.; Savian, J.V.; de Souza Filho, W.; Wallau, M.O.; Gómez, A.M.; Bindelle, J.; François Bonnet, O.J.; de Faccio Carvalho, P.C. Does grazing management provide opportunities to mitigate methane emissions by ruminants in pastoral ecosystems? Sci. Total Environ. 2021, 754, 142029. [Google Scholar] [CrossRef]
- Buonaiuto, G.; Cavallini, D.; Mammi, L.M.E.; Ghiaccio, F.; Palmonari, A.; Formigoni, A.; Visentin, G. The accuracy of NIRS in predicting chemical composition and fibre digestibility of hay-based total mixed rations. Ital. J. Anim. Sci. 2021, 20, 1730–1739. [Google Scholar] [CrossRef]
- Barros-Rodríguez, M.; Oña-Rodríguez, J.; Mera-Andrade, R.; Artieda-Rojas, J.; Curay-Quispe, S.; Avilés-Esquivel, D.; Guishca-Cunuhay, C. Degradación ruminal de dietas a base de biomasa pos-cosecha de Amaranthus cruentus: Efecto sobre los protozoos del rumen y producción de gas in vitro. Rev. Investig. Vet. Perú 2017, 28, 812–821. [Google Scholar]
- Núñez Torres, O.P.; Barros Rodríguez, M.; Sanchez, D.; Guishca-Cunuhay, C. Comportamiento productivo, degradación ruminal y producción de gas in vitro en ovinos alimentados con dietas a base de residuos pos-cosecha de Chenopodium quinoa. Rev. Investig. Vet. Perú 2018, 9, 765–773. [Google Scholar]
- Gerber, P.J.; Hristov, A.N.; Henderson, B.; Makkar, H.; Oh, J.; Lee, C.; Meinen, R.; Montes, F.; Ott, T.; Firkins, J.; et al. Technical options for the mitigation of direct methane and nitrous oxide emissions from livestock: A review. Animal 2013, 7, 220–234. [Google Scholar] [CrossRef] [Green Version]
- Johnson, K.A.; Johnson, D.E. Methane emissions from cattle. J. Ani. Sci. 1995, 73, 2483–2492. [Google Scholar] [CrossRef]
- Haque, M.N. Dietary manipulation: A sustainable way to mitigate methane emissions from ruminants. J. Ani. Sci. Techno. 2018, 60, 15. [Google Scholar] [CrossRef] [Green Version]
- Sun, K.; Liu, H.; Fan, H. Research progress on the application of feed additives in ruminal methane emission reduction: A review. PeerJ 2021, 9, e11151. [Google Scholar] [CrossRef]
- Vallejo-Hernández, L.H.; Elghandour, M.M.; Greiner, R.; Anele, U.Y.; Rivas-Cáceres, R.R.; Barros-Rodríguez, M.; Salem, A.Z. Environmental impact of yeast and exogenous xylanase on mitigating carbon dioxide and enteric methane production in ruminants. J. Clean. Prod. 2018, 189, 40–46. [Google Scholar] [CrossRef]
- Slade, E.M.; Riutta, T.; Roslin, T.; Tuomisto, H.L. The role of dung beetles in reducing greenhouse gas emissions from cattle farming. Sci. Rep. 2016, 6, 18140. [Google Scholar] [CrossRef] [Green Version]
- Membrive, C.M.B. Anatomy and Physiology of the Rumen. In Rumenology; Millen, E.D., De Beni Arrigoni, M., Lauritano Pacheco, R., Eds.; Springer: Cham, Switzerland, 2016; pp. 1–38. [Google Scholar] [CrossRef]
- Buenaño-Sanchez, M.; Barros-Rodriguez, M.; Zurita-Vasquez, H.; Hidalgo, L.; Perez-Aldas, L.; Arias-Toro, D. Effect of drying temperature of passiflora edulis residues on rumen degradation kinetics and enteric CH4 and CO2 production. Trop. Subtrop. Agroecosyst. 2019, 22. Available online: https://www.revista.ccba.uady.mx/ojs/index.php/TSA/article/view/3081/1338 (accessed on 11 October 2022).
- Correddu, F.; Lunesu, M.F.; Buffa, G.; Atzori, A.S.; Nudda, A.; Battacone, G.; Pulina, G. Can Agro-Industrial By-Products Rich in Polyphenols be Advantageously Used in the Feeding and Nutrition of Dairy Small Ruminants? Animals 2020, 10, 131. [Google Scholar] [CrossRef] [Green Version]
- Pacheco, D.; Waghorn, G.; Janssen, P.H. Decreasing methane emissions from ruminants grazing forages: A fit with productive and financial realities? Anim. Prod. Sci. 2014, 54, 1141–1154. [Google Scholar] [CrossRef]
- Choudhary, S.; Santra, A.; Muwel, N.; Sarkar, S.; Mandal, A.; Das, S.K. Screening of forest tree leaves from North Eastern Himalayan region as feed additives for modulating in vitro rumen fermentation and methanogenesis from total mixed ration. Agroforest Syst. 2022, 96, 359–374. [Google Scholar] [CrossRef]
- Vastolo, A.; Calabrò, S.; Cutrignelli, M.I. A review on the use of agro-industrial Co-products in animals’ diets. Ital. J. Anim. Sci. 2022, 21, 577–594. [Google Scholar] [CrossRef]
- Lagrange, S.; Beauchemin, K.A.; MacAdam, J.; Villalba, J.J. Grazing diverse combinations of tanniferous and non-tanniferous legumes: Implications for beef cattle performance and environmental impact. Sci. Total Environ. 2020, 746, 140788. [Google Scholar] [CrossRef]
- Boussaada, A.; Arhab, R.; Calabrò, S.; Grazioli, R.; Ferrara, M.; Musco, N.; Thlidjane, M.; Cutrignelli, M.I. Effect of Eucalyptus globulus leaves extracts on in vitro rumen fermentation, methanogenesis, degradability and protozoa population. Ann. Anim. Sci. 2018, 18, 753–767. [Google Scholar] [CrossRef] [Green Version]
- Ku-Vera, J.C.; Jiménez-Ocampo, R.; Valencia-Salazar, S.S.; Montoya-Flores, M.D.; Molina-Botero, I.C.; Arango, J.; Solorio-Sánchez, F.J. Role of secondary plant metabolites on enteric methane mitigation in ruminants. Front. Vet. Sci. 2020, 584. [Google Scholar] [CrossRef]
- Tedeschi, L.O.; Muir, J.P.; Naumann, H.D.; Norris, A.B.; Ramírez-Restrepo, C.A.; Mertens-Talcott, S.U. Nutritional aspects of ecologically relevant phytochemicals in ruminant production. Front. Vet. Sci. 2021, 8, 155. [Google Scholar] [CrossRef]
- Aboagye, I.A.; Beauchemin, K.A. Potential of molecular weight and structure of tannins to reduce methane emissions from ruminants: A review. Animals 2019, 9, 856. [Google Scholar] [CrossRef] [Green Version]
- Vargas-Ortiz, L.; Andrade-Yucailla, V.; Barros-Rodríguez, M.; Lima-Orozco, R.; Macías-Rodríguez, E.; Contreras-Barros, K.; Guishca-Cunuhay, C. Influence of Acacia mearnsii Fodder on Rumen Digestion and Mitigation of Greenhouse Gas Production. Animals 2022, 12, 2250. [Google Scholar] [CrossRef]
- Ibrahim, S.L.; Hassen, A. Effects of Graded Levels of Mimosa (Acacia mearnsii) Tannin Purified with Organic Solvents on Gas, Methane, and In Vitro Organic Matter Digestibility of Eragrostis curvula Hay. Animals 2022, 12, 562. [Google Scholar] [CrossRef]
- Min, B.R.; Barry, T.N.; Attwood, G.T.; McNabb, W.C. The effect of condensed tannins on the nutrition and health of ruminants fed fresh temperate forages: A review. Anim. Feed Sci. Tech. 2003, 106, 3–19. [Google Scholar] [CrossRef]
- Piñeiro-Vázquez, A.T.; Jiménez-Ferrer, G.; Alayon-Gamboa, J.A.; Chay-Canul, A.J.; Ayala-Burgos, A.J.; Aguilar-Pérez, C.F.; Ku-Vera, J.C. Effects of quebracho tannin extract on intake, digestibility, rumen fermentation, and methane production in crossbred heifers fed low-quality tropical grass. Trop. Anim. Health Pro. 2018, 50, 29–36. [Google Scholar] [CrossRef]
- Ørskov, E.R.; Hovell, D.; Mould, F. The use of the nylon bag technique for the evaluation of feedstuffs. Trop. Anim. Pro. 1980, 5, 195–213. [Google Scholar]
- Ørskov, E.R.; McDonald, I. The estimation of protein degradability in the rumen from incubation measurements weighted according to rate of passage. J. Agric. Sci. 1979, 92, 499–503. [Google Scholar] [CrossRef] [Green Version]
- Menke, K.H.; Steingass, H. Estimation of the energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid. Anim. Res. Dev. 1988, 28, 7–55. [Google Scholar]
- Theodorou, M.K.; Williams, B.A.; Dhanoa, M.S.; Mcallan, A.B.; France, J. A simple gas production method using a pressure transducer to determine the fermentation kinetics of ruminants feeds. Anim. Feed Sci. Tech. 1994, 48, 185–197. [Google Scholar]
- Elghandour, M.M.Y.; Rodríguez-Ocampo, I.; Parra-Garcia, A.; Salem, A.Z.M.; Greiner, R.; Marquez-Molina, O.; Barros-Rodriguez, M.; Barbabosa-Pilego, A. Biogas production from prickly pear cactus containing diets supplemented with Moringa oleifera leaf extract for a cleaner environmental livestock production. J. Clean. Prod. 2018, 185, 547–553. [Google Scholar] [CrossRef]
- Groot, J.C.; Cone, J.W.; Williams, B.A.; Debersaques, F.M.; Lantinga, E.A. Multiphasic analysis of gas production kinetics for in vitro fermentation of ruminant feeds. Anim. Feed Sci. Tech. 1996, 64, 77–89. [Google Scholar]
- AOAC. Official Methods of Analysis, 15th ed.; Association of Official Analytical Chemists: Arlington, VA, USA, 1990. [Google Scholar]
- Price, M.L.; Van Scoyoc, S.; Butler, L.G. A critical evaluation of the vanillin reaction assay for tannin in sorghum grain. J. Agric. Food Chem. 1978, 26, 1214–1218. [Google Scholar] [CrossRef]
- Steel, R.G.D.; Torrie, J.H.; Dickey, D.A. Principles and Procedures of Statistics, A Biometrical Approach, 3rd ed.; McGraw-Hill: Boston, MA, USA, 1997. [Google Scholar]
- SAS. Institute Inc. SAS/STAT® 9.2 User’s Guide; SAS Institute Inc.: Cary, NC, USA, 2008. [Google Scholar]
- Soltan, Y.A.; Patra, A.K. Ruminal Microbiome Manipulation to Improve Fermentation Efficiency in Ruminants. In Animal Feed Science and Nutrition-Production, Health and Environment; Patra, A., Ed.; IntechOpen: London, UK, 2021; Available online: https://www.intechopen.com/chapters/79866 (accessed on 11 October 2022).
- Hoover, W.H.; Stokes, S.R. Balancing carbohydrates and proteins for optimum rumen microbial yield. J. Dairy Sci. 1991, 74, 3630–3644. [Google Scholar] [CrossRef]
- Barros-Rodríguez, M.A.; Solorio-Sánchez, F.J.; Sandoval-Castro, C.A.; Ahmed, A.M.M.; Rojas-Herrera, R.; Briceño-Poot, E.G.; Ku-Vera, J.C. Effect of intake of diets containing tannins and saponins on in vitro gas production and sheep performance. Anim. Prod. Sci. 2014, 54, 1486–1489. [Google Scholar]
- Krause, D.O.; Denman, S.E.; Mackie, R.I.; Morrison, M.; Rae, A.L.; Attwood, G.T.; McSweeney, C.S. Opportunities to improve fibre degradation in the rumen: Microbiology, ecology and genomics. FEMS Microbiol. Rev. 2003, 27, 663–693. [Google Scholar] [CrossRef]
- Hervás, G.; Frutos, P.; Giraldes, F.J.; Mantecon, A.R.; Álvarez del Pino, M.C. Effect of different doses of quebracho tannins extract on rumen fermentation in ewes. Anim. Feed Sci. Tech. 2003, 109, 65–78. [Google Scholar] [CrossRef]
- Jones, G.A.; McAllister, T.A.; Muir, A.D.; Cheng, K.J. Effects of sainfoin (Onobrichys viciifolia Scop.) condensed tannins on growth and proteolysis by four strains of ruminal bacteria. Appl. Environ. Microbiol. 1994, 60, 1374–1378. [Google Scholar] [CrossRef] [Green Version]
- Goel, G.; Makkar, H.P. Methane mitigation from ruminants using tannins and saponins. Trop. Anim. Health Pro. 2012, 44, 729–739. [Google Scholar] [CrossRef]
- Monforte-Briceño, G.E.; Sandoval-Castro, C.A.; Ramírez-Avilés, L.; Leal, C.M.C. Defaunating capacity of tropical fodder trees: Effects of polyethylene glycol and its relationship to in vitro gas production. Anim. Feed Sci. Tech. 2005, 123, 313–327. [Google Scholar] [CrossRef]
- Bhatta, R.; Krishnamoorthy, U.; Mohammed, F. Effect of feeding tamarind (Tamarindus indica) seed husk as a source of tannin on dry matter intake, digestibility of nutrients and production performance of crossbred dairy cows in mid-lactation. Anim. Feed Sci. Tech. 2000, 83, 67–74. [Google Scholar] [CrossRef]
- McSweeney, C.S.; Palmer, B.; McNeill, D.M.; Krause, D.O. Microbial interactions with tannins: Nutritional consequences for ruminants. Anim. Feed Sci. Tech. 2001, 91, 83–93. [Google Scholar] [CrossRef]
- Reed, J.D. Nutritional toxicology of tannins and related polyphenols in forage legumes. J. Ani. Sci. 1995, 73, 1516–1528. [Google Scholar] [CrossRef]
- Lesschaeve, I.; Noble, A.C. Polyphenols: Factors influencing their sensory properties and their effects on food and beverage preferences. Am. J. Clin. Nutr. 2005, 81, 330S–335S. [Google Scholar] [CrossRef] [Green Version]
- Waghorn, G. Beneficial and detrimental effects of dietary condensed tannins for sustainable sheep and goat production-Progress and challenges. Anim. Feed Sci. Tech. 2008, 147, 116–139. [Google Scholar] [CrossRef]
- Silanikove, N.; Perevolotsky, A.; Provenza, F.D. Use of tannin-binding chemicals to assay for tannins and their negative postingestive effects in ruminants. Anim. Feed Sci. Tech. 2001, 91, 69–81. [Google Scholar] [CrossRef]
- Blümmel, M.; Makkar, H.P.S.; Becker, K. In vitro gas production: A technique revisited. J. Anim. Physiol. Anim. Nutr. 1997, 77, 24–34. [Google Scholar] [CrossRef]
- Barros-Rodríguez, M.A.; Solorio-Sánchez, F.J.; Sandoval-Castro, C.A.; Klieve, A.; Rojas-Herrera, R.A.; Briceño-Poot, E.G.; Ku-Vera, J.C. Rumen function in vivo and in vitro in sheep fed Leucaena leucocephala. Trop. Anim. Health Pro. 2015, 47, 757–764. [Google Scholar] [CrossRef]
- Tavendale, M.H.; Meagher, L.P.; Pacheco, D.; Walker, N.; Attwood, G.T.; Sivakumaran, S. Methane production from in vitro rumen incubations with Lotus pedunculatus and Medicago sativa, and effects of extractable condensed tannin fractions on methanogenesis. Anim. Feed Sci. Tech. 2005, 123, 403–419. [Google Scholar] [CrossRef]
- Choudhury, P.K.; Salem, A.Z.M.; Singh, R.; Puniya, A.K. Rumen microbiology: An overview. In Rumen Microbiology: From Evolution to Revolution; Puniya, A.K., Singh, R., Kamra, D.N., Eds.; Springer: Delhi, India, 2015; pp. 3–16. [Google Scholar] [CrossRef]
- Formato, M.; Piccolella, S.; Zidorn, C.; Vastolo, A.; Calabrò, S.; Cutrignelli, M.I.; Pacifico, S. UHPLC-ESI-QqTOF Analysis and In Vitro Rumen Fermentation for Exploiting Fagus sylvatica Leaf in Ruminant Diet. Molecules 2022, 27, 2217. [Google Scholar] [CrossRef]
- Moss, A.R.; Jouany, J.P.; Newbold, J. Methane production by ruminants: Its contribution to global warming. Ann. Zootech. 2000, 49, 231–253. [Google Scholar] [CrossRef] [Green Version]
- Aragadvay-Yungán, R.G.; Barros-Rodríguez, M.; Ortiz, L.; Carro, M.D.; Navarro Marcos, C.; Elghandour, M.M.M.Y.; Salem, A.Z.M. Mitigation of ruminal methane production with enhancing the fermentation by supplementation of different tropical forage legumes. Environ. Sci. Pollut. Res. 2021, 29, 3438–3445. [Google Scholar] [CrossRef]
- Russell, J.B.; O’Connor, J.D.; Fox, D.G.; Van Soest, P.J.; Sniffen, C.J. A net carbohydrate and protein system for evaluating cattle diets: I. Ruminal fermentation. J. Anim. Sci. 1992, 70, 3551–3561. [Google Scholar] [CrossRef]
- Van Soest, P.J. Nutritional Ecology of the Ruminant, 2nd ed.; Comstock Pub., Cornel University: Ithaca, NY, USA, 1994; ISBN 0-8014-2772-X. [Google Scholar]
- Hariadi, B.T.; Santoso, B. Evaluation of tropical plants containing tannin on in vitro methanogenesis and fermentation parameters using rumen fluid. J. Sci. Food Agric. 2010, 90, 456–461. [Google Scholar] [CrossRef]
- De Oliveira, S.G.; Berchielli, T.T.; dos Santos Pedreira, M.; Primavesi, O.; Frighetto, R.; Lima, M.A. Effect of tannin levels in sorghum silage and concentrate supplementation on apparent digestibility and methane emission in beef cattle. Anim. Feed Sci. Tech. 2007, 135, 236–248. [Google Scholar] [CrossRef]
- Śliwiński, B.J.; Kreuzer, M.; Wettstein, H.R.; Machmüller, A. Rumen fermentation and nitrogen balance of lambs fed diets containing plant extracts rich in tannins and saponins, and associated emissions of nitrogen and methane. Arch. Anim. Nutr. 2002, 56, 379–392. [Google Scholar] [CrossRef]
Items | Treatments | |||
---|---|---|---|---|
AM0 | AM20 | AM40 | ||
Palm kernel cake | 12.2 | 10.2 | 6.0 | |
Wheat bran | 19.5 | 29.0 | 18.0 | |
Soybean meal | 9.0 | 7.5 | 7.4 | |
Alfalfa hay | 26.1 | 5.8 | 0.0 | |
Cornmeal | 17.1 | 13.3 | 10.3 | |
A. mearnsii | 0 | 20.7 | 39.9 | |
Molasses | 9.8 | 8.3 | 10.3 | |
Palm kernel oil | 5.0 | 3.7 | 6.3 | |
Salt | 0.7 | 0.8 | 0.9 | |
Mineral and vitamin mixture | 0.7 | 0.8 | 0.9 | |
Total | 100 | 100 | 100 | |
Chemical composition | p-Value | |||
Dry matter | 88.7 | 89.6 | 90.6 | 0.3291 |
Organic matter | 93.2 | 94.5 | 96.9 | 0.2012 |
Crude protein | 15.2 | 16.0 | 16.5 | 0.1871 |
Neutral detergent fiber | 33.5 | 35.8 | 32.1 | 0.0972 |
Acid detergent fiber | 16.5 | 16.7 | 17.3 | 0.1021 |
Metabolizable energy (MJ/ kg MS) | 10.5 | 10.2 | 10.6 | 0.2810 |
Condensed tannins | 0 c | 3.8 b | 6.5 a | 0.0001 |
Treatments | SE | p-Value | |||
---|---|---|---|---|---|
AM0 | AM20 | AM40 | |||
Degradation DM | |||||
A | 50.6 a | 45.1 b | 38.8 c | 1.18 | <0.0001 |
B | 37.0 a | 33.9 a | 32.2 a | 1.47 | 0.1005 |
c | 0.063 a | 0.043 ab | 0.032 b | 0.005 | 0.0040 |
A+B | 87.7 a | 77.3 b | 72.8 b | 1.27 | <0.0001 |
Effective Degradation * | |||||
0.02 | 78.5 a | 67.2 b | 58.6 c | 0.91 | <0.0001 |
0.05 | 71.1 a | 60.1 b | 51.5 c | 0.99 | <0.0001 |
0.08 | 66.8 a | 56.5 b | 48.2 c | 0.96 | <0.0001 |
Degradation OM | |||||
A | 48.7 a | 44.2 b | 39.7 c | 1.20 | 0.0004 |
B | 39.4 a | 33.1 b | 34.0 b | 1.48 | 0.0176 |
c | 0.063 a | 0.042 b | 0.033 b | 0.004 | 0.0022 |
A+B | 88.1 a | 77.4 b | 73.7 b | 1.25 | <0.0001 |
Effective Degradation * | |||||
0.02 | 78.4 a | 66.7 b | 59.6 c | 0.91 | <0.0001 |
0.05 | 70.5 a | 59.4 b | 52.4 c | 0.99 | <0.0001 |
0.08 | 65.9 a | 55.7 b | 49.1 c | 0.97 | <0.0001 |
Treatments | SE | p-Value | |||
---|---|---|---|---|---|
AM0 | AM20 | AM40 | |||
Digestibility: | |||||
Dry matter | 66.9 a | 55.6 b | 46.6 c | 2.42 | 0.0001 |
Organic matter | 69.5 a | 57.5 b | 49.6 c | 2.54 | 0.0002 |
pH at: | |||||
4 h | 6.95 a | 6.95 a | 6.94 a | 0.023 | 0.9170 |
8 h | 6.95 a | 6.96 a | 6.97 a | 0.026 | 0.8387 |
12 h | 6.95 a | 6.98 a | 6.94 a | 0.027 | 0.5716 |
24 h | 6.96 a | 7.03 a | 7.04 a | 0.054 | 0.5322 |
Treatment | Gas Production Parameters | CH4 Production Parameters | % CH4/ Total Gas Production | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
GP | B | c | 24 h | 48 h | 96 h | CH4 | B | c | 24 h | 48 h | 96 h | ||
AM0 | 389.9 b | 18.2 b | 0.981 a | 212.6 a | 290.0 a | 321.4 a | 139.3 a | 31.7 a | 4.586 a | 42.0 a | 119.3 a | 135.4 a | 35.9 a |
AM20 | 409.7 ab | 18.5 b | 1.004 a | 224.8 a | 304.0 a | 338.7 a | 128.8 a | 29.3 a | 3.696 a | 32.3 a | 103.9 ab | 123.9 a | 31.5 a |
AM40 | 449.6 a | 22.6 a | 0.830 b | 223.6 a | 301.0 a | 341.5 a | 93.9 b | 28.8 a | 3.631 a | 30.2 a | 84.9 b | 92.3 b | 20.9 b |
SE | 11.18 | 0.58 | 0.015 | 6.47 | 7.92 | 9.14 | 4.65 | 1.45 | 0.378 | 4.68 | 5.81 | 5.08 | 1.38 |
p-Value | 0.0058 | 0.0001 | 0.0001 | 0.3655 | 0.4416 | 0.2750 | 0.0001 | 0.3480 | 0.1720 | 0.1968 | 0.0030 | 0.0001 | 0.0001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vargas-Ortiz, L.; Chavez-Garcia, D.; Barros-Rodríguez, M.; Andrade-Yucailla, V.; Lima-Orozco, R.; Macías-Rodríguez, E.; Guishca-Cunuhay, C.; Zeidan Mohamed Salem, A. Rumen Function and In Vitro Gas Production of Diets Influenced by Two Levels of Tannin-Rich Forage. Fermentation 2022, 8, 607. https://doi.org/10.3390/fermentation8110607
Vargas-Ortiz L, Chavez-Garcia D, Barros-Rodríguez M, Andrade-Yucailla V, Lima-Orozco R, Macías-Rodríguez E, Guishca-Cunuhay C, Zeidan Mohamed Salem A. Rumen Function and In Vitro Gas Production of Diets Influenced by Two Levels of Tannin-Rich Forage. Fermentation. 2022; 8(11):607. https://doi.org/10.3390/fermentation8110607
Chicago/Turabian StyleVargas-Ortiz, Luis, Debbie Chavez-Garcia, Marcos Barros-Rodríguez, Veronica Andrade-Yucailla, Raciel Lima-Orozco, Edis Macías-Rodríguez, Carlos Guishca-Cunuhay, and Abdelfattah Zeidan Mohamed Salem. 2022. "Rumen Function and In Vitro Gas Production of Diets Influenced by Two Levels of Tannin-Rich Forage" Fermentation 8, no. 11: 607. https://doi.org/10.3390/fermentation8110607
APA StyleVargas-Ortiz, L., Chavez-Garcia, D., Barros-Rodríguez, M., Andrade-Yucailla, V., Lima-Orozco, R., Macías-Rodríguez, E., Guishca-Cunuhay, C., & Zeidan Mohamed Salem, A. (2022). Rumen Function and In Vitro Gas Production of Diets Influenced by Two Levels of Tannin-Rich Forage. Fermentation, 8(11), 607. https://doi.org/10.3390/fermentation8110607