Rumen Fermentation Profile and Greenhouse Gas Mitigation of Three Forage Species from Agroforestry Systems in Dry and Rainy Seasons
Abstract
:1. Introduction
2. Materials and Methods
2.1. Location
2.2. Animals
2.3. Forage Samples
2.4. Gas, CH4 Production and Rumen pH
2.5. Fermentation Profile
2.6. Experimental Design and Statistical Analysis
3. Results
3.1. Gas, CH4 Production and Rumen pH
3.2. Fermentation Profile
4. Discussion
4.1. Gas, CH4 Production and Rumen pH
4.2. Fermentation Profile
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Torres, O.P.N.; Rodriguez, M.B.; Sanchez, D.; Guishca-Cunuhay, C. Comportamiento productivo, degradación ruminal y producción de gas in vitro en ovinos alimentados con dietas a base de residuos pos-cosecha de Chenopodium quinoa. Rev. Investig. Vet. Perú 2018, 29, 765–773. [Google Scholar] [CrossRef] [Green Version]
- Hawu, O.; Ravhuhali, K.E.; Mokoboki, H.K.; Lebopa, C.K.; Sipango, N. Sustainable use of legume residues: Effect on nutritive value and ensiling characteristics of maize straw silage. Sustainability 2022, 14, 6743. [Google Scholar] [CrossRef]
- Lara, P.E.; Canché, M.C.; Magaña, H.; Aguilar, E.; Sanginés, J.R. Producción de gas in vitro y cinética de degradación de harina de forraje de morera (Morus alba) mezclada con maíz. Rev. Cubana Cienc. Agríc. 2009, 43, 273–279. [Google Scholar]
- Gaviria, X.; Naranjo, J.F.; Barahona, R. Cinética de fermentación in vitro de Leucaena leucocephala y Megathyrsus maximus y sus mezclas, con o sin suplementación energética. Pastos Forrajes 2015, 38, 55–63. [Google Scholar]
- Fulkerson, W.J.; Neal, J.S.; Clark, C.F.; Horadagoda, A.; Nandra, K.S.; Barchia, I. Nutritive value of forage species grown in the warm temperate climate of Australia for dairy cows: Grasses and legumes. Livest. Sci. 2007, 107, 253–264. [Google Scholar] [CrossRef]
- Kurihara, M.; Magner, T.; McCrabb, H.; McCrabb, G. Methane production and energy partition of cattle in the tropics. Brit. J. Nutr. 1999, 81, 227–234. [Google Scholar] [CrossRef]
- Hristov, N.A.; McAllister, T.A.; Van Herk, F.H.; Cheng, K.J.; Newbold, C.J.; Cheeke, P.R. Effect of Yucca schidigera on ruminal fermentation and nutrient digestion in heifers. J. Anim. Sci. 1999, 77, 2554. [Google Scholar] [CrossRef] [PubMed]
- Steinfeld, H.; Gerber, P.; Wassenaar, T.; Castel, V.; Rosales, M.; de Haan, C. Livestock’s Longs Adow: Environmental Issues and Options; Food and Agriculture Organization of the United Nations: Rome, Italy, 2006; Available online: http://www.fao.org/3/a0701e/a0701e00.pdf (accessed on 15 September 2022).
- Gerber, P.J.; Steinfeld, H.; Henderson, B.; Mottet, A.; Opio, C.; Dijkman, J.; Falcucci, A.; Tempio, G. Tackling Climate Change Through Livestock—A Global Assessment of Emissions and Mitigation Opportunities; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 2013; Available online: http://www.fao.org/3/i3437e/i3437e.pdf (accessed on 15 September 2022).
- Food and Agriculture Organization of the United Nations (FAO). Global Livestock Environmental Assessment Model (GLEAM); FAO: Rome, Italy, 2021; Available online: https://www.fao.org/gleam/ (accessed on 15 September 2022).
- Elghandour, M.M.Y.; Kholif, A.E.; Salem, A.Z.M.; de Oca, R.M.; Barbabosa, A.; Mariezcurrena, M.; Olafadehan, O.A. Addressing sustainable ruminal methane and carbon dioxide emissions of soybean hulls by organic acid salts. J. Clean. Prod. 2016, 135, 194–200. [Google Scholar] [CrossRef]
- Sun, K.; Liu, H.; Fan, H.; Liu, T.; Zheng, C. Research progress on the application of feed additives in ruminal methane emission reduction: A review. PeerJ 2021, 9, e11151. [Google Scholar] [CrossRef]
- Tjelele, T.J. Dry Matter Production, Intake and Nutritive Value of Certain Indigofera Species. Ph.D. Thesis, University of Pretoria, Pretoria, South Africa, 2007. Available online: https://repository.up.ac.za/bitstream/handle/2263/23754/Complete.pdf (accessed on 25 September 2022).
- Stoldt, A.K.; Derno, M.; Das, G.; Weitzel, J.M.; Wolffram, S.; Metges, C.C. Effects of rutin and buckwheat seeds on energy metabolism and methane production in dairy cows. J. Dairy Sci. 2016, 99, 2161–2168. [Google Scholar] [CrossRef] [Green Version]
- Salem, A.Z.; Kholif, A.E.; Elghandour, M.M.; Hernandez, S.R.; Domínguez-Vara, I.A.; Mellado, M. Effect of increasing levels of seven tree species extracts added to a high concentrate diet on in vitro rumen gas output. Anim. Sci. J. 2014, 85, 853–860. [Google Scholar] [CrossRef]
- Barros-Rodríguez, M.; Oña-Rodríguez, J.; Mera-Andrade, R.; Artieda-Rojas, J.; Curay-Quispe, S.; Avilés-Esquivel, D.; Guishca-Cunuhay, C. Degradación ruminal de dietas a base de biomasa pos-cosecha de Amaranthus cruentus: Efecto sobre los protozoos del rumen y producción de gas in vitro. Rev. Investig. Vet. Perú 2017, 28, 812–821. [Google Scholar] [CrossRef]
- Hassen, A.; Tessema, Z.K.; Tolera, A. Seasonal variations in chemical composition, in vitro digestibility and ruminal degradation of browse species in the Rift Valley of Ethiopia. Livest. Res. Rural. Dev. 2017, 29, 112. [Google Scholar]
- Mwangi, F.W.; Charmley, E.; Adegboye, O.A.; Gardiner, C.P.; Malau-Aduli, B.S.; Kinobe, R.T.; Malau-Aduli, A.E. Chemical composition and in situ degradability of Desmanthus spp. forage harvested at different maturity stages. Fermentation 2022, 8, 377. [Google Scholar] [CrossRef]
- Ravhuhali, K.E.; Msiza, N.H.; Mudau, H.S. Seasonal dynamics on nutritive value, chemical estimates and in vitro dry matter degradability of some woody species found in rangelands of South Africa. Agroforest. Syst. 2022, 96, 23–33. [Google Scholar] [CrossRef]
- Muir, J.P.; Pitman, W.D.; Foster, J.L.; Dubeux, J.C.J. Sustainable intensification of cultivated pastures using multiple herbivore species. Afr. J. Range Forage Sci. 2015, 32, 97–112. [Google Scholar] [CrossRef]
- Naumann, H.D.; Cooper, C.; Bow, J.R.; Muir, J.P. Condensed tannin characteristics of Limpopo, South Africa arboreal species retaining leaves in the dry season. Afr. J. Ecol. 2017, 55, 168–175. [Google Scholar] [CrossRef]
- Ramírez, R.G.; Foroughbackhch, R.; Hauad, L.; Alba-Avila, J.; García-Castillo, C.G.; Espinosa-Vázquez, M. Seasonal dynamics of dry matter, crude protein and cell wall digestion in total plant, leaves and stems of common buffelgrass (Cenchrus ciliaris). J. App. Anim. Res. 2001, 19, 209–218. [Google Scholar] [CrossRef]
- Beauchemin, K.A.; Ungerfeld, E.; Abdalla, A.; Álvarez, C.; Arndt, C.; Becquet, P.; Benchaar, C.; Berndt, A.; Mauricio, R.; McAllister, T.; et al. INVITED REVIEW: Current enteric methane mitigation. J. Dairy Sci. 2022. [Google Scholar] [CrossRef]
- Ku-Vera, J.C.; Jiménez-Ocampo, R.; Valencia-Salazar, S.S.; Montoya-Flores, M.D.; Molina Botero, I.C.; Arango, J.; Solorio Sánchez, F.J. Role of secondary plant metabolites on enteric methane mitigation in ruminants. Front. Vet. Sci. 2020, 7, 584. [Google Scholar] [CrossRef] [PubMed]
- Vargas-Ortiz, L.; Andrade-Yucailla, V.; Barros-Rodríguez, M.; Lima-Orozco, R.; Macías-Rodríguez, E.; Contreras-Barros, K.; Guishca-Cunuhay, C. Influence of Acacia Mearnsii Fodder on Rumen Digestion and Mitigation of Greenhouse Gas Production. Animals 2022, 12, 2250. [Google Scholar] [CrossRef] [PubMed]
- Jamarun, N.; Zain, M.; Arief, P.R.; Pazla, R. Populations of rumen microbes and the in vitro digestibility of fermented oil palm fronds in combination with tithonia (Tithonia diversifolia) and elephant grass (Pennisetum purpureum). Pak. J. Nutr. 2017, 17, 39–45. [Google Scholar] [CrossRef] [Green Version]
- Pazla, R.; Adrizal, S.R. Intake, nutrient digestibility and production performance of Pesisir cattle fed Tithonia diversifolia and Calliandra calothyrsus-based rations with different protein and energy ratios. Adv. Anim. Vet. Sci. 2021, 9, 1608–1615. [Google Scholar] [CrossRef]
- Barwani, D.K.; Bacigale, S.B.; Kibitok, N.K.; Webala, A.W.; Gicheha, M.G.; Katunga, D.M.; Osuga, I.M. Nutritional characterization of eight trees and shrubs used as livestock feeds in the Eastern Democratic Republic of the Congo. Livest. Res. Rural Dev. 2022, 34, 10. Available online: http://www.lrrd.org/lrrd34/10/3486issa.html (accessed on 24 October 2022).
- Jiménez-Ferrer, G.; Mendoza-Martínez, G.; Soto-Pinto, L.; Alayón-Gamboa, A. Evaluation of local energy sources in milk production in a tropical silvopastoral system with Erythrina poeppigiana. Trop. Anim. Health Prod. 2015, 47, 903–908. [Google Scholar] [CrossRef]
- Aragadvay-Yungán, R.G.; Barros-Rodríguez, M.; Ortiz, L.; Carro, M.D.; Marcos, C.N.; Elghandour, M.M.M.Y.; Salem, A.Z.M. Mitigation of ruminal methane production with enhancing the fermentation by supplementation of different tropical forage legumes. Environ. Sci. Pollut. Res. 2021, 29, 3438–3445. [Google Scholar] [CrossRef]
- Fagundes, G.M.; Benetel, G.; Carriero, M.M.; Sousa, R.L.M.; Muir, J.P.; Macedo, R.O.; Bueno, I.C.S. Tannin-rich forage as a methane mitigation strategy for cattle and the implications for rumen microbiota. Anim. Prod. Sci. 2020, 61, 12. [Google Scholar] [CrossRef]
- Menke, K.H.; Steingass, H. Estimation of the energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid. Anim. Res. Dev. 1988, 28, 7–55. [Google Scholar]
- Theodorou, M.K.; Williams, B.A.; Dhanoa, M.S.; Mcallan, A.B.; France, J. A simple gas production method using a pressure transducer to determine the fermentation kinetics of ruminants feeds. Anim. Feed Sci. Techol. 1994, 48, 185–197. [Google Scholar] [CrossRef]
- Elghandour, M.M.Y.; Rodríguez-Ocampo, I.; Parra-Garcia, A.; Salem, A.Z.M.; Greiner, R.; Marquez-Molina, O.; Barros-Rodriguez, M.; Barbabosa-Pilego, A. Biogas production from prickly pear cactus containing diets supplemented with Moringa oleifera leaf extract for a cleaner environmental livestock production. J. Clean. Prod. 2018, 185, 547–553. [Google Scholar] [CrossRef]
- Krishnamoorthy, U.; Soller, H.; Steingass, H.; Menke, K.H. A comparative study on rumen fermentation of energy supplements in vitro. J. Anim. Physiol. Anim. Nutr. 1991, 65, 28–35. [Google Scholar] [CrossRef]
- Ryan, J.P. Determination of volatile fatty acids and some related compounds in ovine rumen fluid, urine, and blood plasma, by gas-liquid chromatography. Anal. Biochem. 1980, 108, 374–384. [Google Scholar] [CrossRef]
- Ortiz-Tirado, P.; Barros-Rodriguez, M.; Mayorga-Paredes, S.; Chay-Canul, A.; Guishca-Cunuhay, C.; Romero-Herrera, R.; Reyes, H. Influence of cutting age on chemical composition, rumen degradation kinetics and in vitro digestibility of green hydroponic fodder of Avena sativa. Trop. Subtrop. Agroecosyst. 2019, 22, 819–825. Available online: https://www.revista.ccba.uady.mx/ojs/index.php/TSA/article/view/3082 (accessed on 26 September 2022).
- Andino, M.; Barros-Rodriguez, M.; Burgos, J.V.; Andrade-Yucailla, V.; Acosta-Lozano, N.; Aragadvay-Yungan, R.; Mayorga-Paredes, S. Effect of the cutting age of Brachiaria decumbens on rumen functions and in vitro gas production. Trop. Subtrop. Agroecosyst. 2019, 22, 803–809. Available online: https://www.revista.ccba.uady.mx/ojs/index.php/TSA/article/view/3080 (accessed on 26 September 2022).
- Canul-Solis, J.; Campos-Navarrete, M.; Piñeiro-Vázquez, A.; Casanova-Lugo, F.; Barros-Rodríguez, M.; Chay-Canul, A.; Cárdenas-Medina, J.; Castillo-Sánchez, L. Mitigation of rumen methane emissions with foliage and pods of tropical trees. Animals 2020, 10, 843. [Google Scholar] [CrossRef]
- Hassen, A.; Rethman, N.F.G.; van Niekerk, W.A.; Tjelele, T.J. Influence of season/year and species on chemical composition and in vitro digestibility of five Indigofera accessions. Anim. Feed Sci. Technol. 2007, 136, 312–322. [Google Scholar] [CrossRef]
- Alarcon-Zuniga, B.; Ramirez-Gonzalez, J.; Quijano-Hernandez, S.; Cervantes-Martinez, T. Yield components of three Brachiaria species harvested at two cutting frequencies in hueytamalco, puebla, mexico. In Molecular Breeding of Forage and Turf; Budak, H., Spangenberg, G., Eds.; Springer: Cham, Switzerland, 2015. [Google Scholar] [CrossRef]
- Warly, L.; Fariani, A.; Ichinohe, T.; Abdulrazak, S.A.; Fujihara, T. Comparative rumen degradability of some legume forages between wet and dry season in West Sumatra, Indonesia. Asian-Aust. J. Anim. Sci. 2004, 17, 1107–1111. Available online: https://www.animbiosci.org/upload/pdf/17_179.pdf (accessed on 26 September 2022).
- Carmona, J.C.; Bolívar, D.M.; Giraldo, L.A. El gas metano en la producción ganadera y alternativas para medir sus emisiones y aminorar su impacto a nivel ambiental y productivo. Rev. Colomb. Cienc. Pecu. 2005, 18, 49–63. [Google Scholar]
- Vanegas, J.L.; González, J.; Carro, M.D. Influence of protein fermentation and carbohydrate source on in vitro methane production. J. Anim. Physiol. Anim. Nutr. 2017, 101, e288–e296. [Google Scholar] [CrossRef]
- Lascano, C.E.; Cárdenas, E. Alternatives for methane emission mitigation in livestock systems. Rev. Bras. Zootec. 2010, 39, 175–182. [Google Scholar] [CrossRef] [Green Version]
- Kreuzer, M.; Hindrichsen, I.K. Methane mitigation in ruminants by dietary means: The role of their methane emission from manure. Int. Congr. Ser. 2006, 1293, 199–208. [Google Scholar] [CrossRef]
- Gallego-Castro, L.A.; Mahecha-Ledesma, L.; Angulo-Arizala, J. Potencial forrajero de Tithonia diversifolia Hemsl: A gray en la producción de vacas lecheras. Agron. Mesoam. 2014, 25, 393–403. [Google Scholar] [CrossRef]
- Rodríguez, R.; Fondevila, M.; Castrillo, C. In vitro ruminal fermentation of Pennisetum purpureum CT-115 supplemented with four tropical browse legume species. Anim. Feed Sci. Technol. 2009, 151, 65–74. [Google Scholar] [CrossRef]
- Herrera, A.; Tezara, W.; Marín, O.; Rengifo, E. Stomatal and non-stomatal limitations of photosynthesis in trees of a tropical seasonally flooded forest. Physiol. Plant. 2008, 134, 41–48. [Google Scholar] [CrossRef]
- Villalobos-González, L.; Alarcón, N.; Bastías, R.; Pérez, C.; Sanz, R.; Peña-Neira, Á.; Pastenes, C. Photoprotection is achieved by photorespiration and modification of the leaf incident light, and their extent is modulated by the stomatal sensitivity to water deficit in grapevines. Plants 2022, 11, 1050. [Google Scholar] [CrossRef] [PubMed]
Dry Seasons | Rainy Seasons | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Gas Production | Rumen pH | Gas Production | Rumen pH | ||||||||
D | k | 6 h | 12 h | 24 h | D | k | 6 h | 12 h | 24 h | ||
Forage | |||||||||||
T. diversifolia | 108.0 bA | 0.045 bA | 7.62 aA | 7.62 aA | 7.70 aA | 96.9 bB | 0.047 bA | 7.62 aA | 7.63 aA | 7.67 aA | |
E. poeppigiana | 114.0 bB | 0.040 bA | 7.60 aA | 7.66 aA | 7.65 aA | 116.3 aA | 0.037 cB | 7.60 aA | 7.65 aA | 7.62 aA | |
C. argentea | 121.7 aA | 0.053 aA | 7.62 aA | 7.67 aA | 7.67 aA | 118.3 aB | 0.054 aA | 7.63 aA | 7.69 aA | 7.65 aA | |
Ages (day) | |||||||||||
30 | 108.2 bA | 0.037 cA | 7.60 aA | 7.67 aA | 7.67 aA | 103.5 cB | 0.037 cA | 7.61 aA | 7.68 aA | 7.64 aA | |
45 | 114.3 abA | 0.037 cB | 7.61 aA | 7.66 aA | 7.65 aA | 108.9 bB | 0.044 bcA | 7.61 aA | 7.68 aA | 7.63 aA | |
60 | 117.3 aA | 0.049 bA | 7.62 aA | 7.63 aA | 7.65 aA | 112.6 abB | 0.047 bA | 7.63 aA | 7.65 aA | 7.62 aA | |
75 | 118.4 aA | 0.062 aA | 7.61 aA | 7.62 aA | 7.71 aA | 117.1 aA | 0.056 aB | 7.62 aA | 7.62 aA | 7.69 aA | |
Inteaction | |||||||||||
T. diversifolia | 30 | 100.8 bA | 0.034 bA | 7.65 aA | 7.70 aA | 7.73 aA | 88.8 dA | 0.035 dA | 7.65 aA | 7.70 aA | 7.71 aA |
45 | 105.4 abA | 0.033 bB | 7.61 aA | 7.67 aA | 7.70 aA | 95.0 dB | 0.039 cdA | 7.62 aA | 7.67 aA | 7.67 aA | |
60 | 112.5 abA | 0.040 bB | 7.61 aA | 7.57 aA | 7.67 aA | 96.1 cdB | 0.045 bcdA | 7.62 aA | 7.61 aA | 7.64 aA | |
75 | 113.1 abA | 0.073 aA | 7.61 aA | 7.53 aA | 7.69 aA | 107.8 bB | 0.068 aB | 7.60 aA | 7.53 aA | 7.67 aA | |
E. poeppigiana | 30 | 105.2 abA | 0.036 bA | 7.57 aA | 7.66 aA | 7.62 aA | 107.4 bcA | 0.033 dB | 7.58 aA | 7.67 aA | 7.58 aA |
45 | 115.0 abA | 0.036 bB | 7.61 aA | 7.69 aA | 7.64 aA | 113.0 abA | 0.038 cdA | 7.61 aA | 7.65 aA | 7.61 aA | |
60 | 116.8 abB | 0.064 aA | 7.59 aA | 7.67 aA | 7.62 aA | 122.1 aA | 0.038 cdB | 7.59 aA | 7.66 aA | 7.61 aA | |
75 | 118.9 abB | 0.067 aA | 7.63 aA | 7.62 aA | 7.71 aA | 122.6 aA | 0.039 cdB | 7.62 aA | 7.62 aA | 7.69 aA | |
C. argentea | 30 | 118.5 abA | 0.041 bA | 7.59 aA | 7.65 aA | 7.68 aA | 114.3 abB | 0.042 cdA | 7.60 aA | 7.66 aA | 7.64 aA |
45 | 122.4 aA | 0.040 bB | 7.61 aA | 7.64 aA | 7.62 aA | 118.6 abB | 0.054 abcA | 7.61 aA | 7.71 aA | 7.61 aA | |
60 | 122.6 aA | 0.064 aA | 7.68 aA | 7.67 aA | 7.66 aA | 119.5 aB | 0.059 abB | 7.68 aA | 7.69 aA | 7.62 aA | |
75 | 123.3 aA | 0.067 aA | 7.61 aA | 7.71 aA | 7.73 aA | 121.0 aB | 0.068 abA | 7.63 aA | 7.71 aA | 7.72 aA | |
SE | 4.03 | 0.003 | 0.02 | 0.06 | 0.04 | 1.35 | 0.003 | 0.03 | 0.05 | 0.04 | |
Forage | 0.0001 | 0.0001 | 0.2711 | 0.4566 | 0.1411 | 0.0001 | 0.0001 | 0.2475 | 0.2236 | 0.3252 | |
Ages | 0.0164 | 0.0001 | 0.7753 | 0.6894 | 0.1754 | 0.0001 | 0.0001 | 0.8662 | 0.4363 | 0.2363 | |
Forage × Ages | 0.8737 | 0.0001 | 0.1073 | 0.4777 | 0.5102 | 0.0552 | 0.0016 | 0.3361 | 0.5281 | 0.6432 |
Dry Seasons | Rainy Seasons | ||||
---|---|---|---|---|---|
CH4 Production | CH4 Production | ||||
D | k | D | k | ||
Forage | |||||
T. diversifolia | 73.5 cA | 1.23 aA | 51.7 cA | 1.21 aA | |
E. poeppigiana | 95.7 bA | 1.06 bA | 64.0 bB | 1.20 aA | |
C. argéntea | 132.1 aA | 1.04 bA | 73.5 aB | 0.91 bB | |
Ages (days) | |||||
30 | 42.1 dA | 1.24 aA | 35.7 dA | 1.34 aA | |
45 | 74.2 cA | 1.18 aA | 54.1 cB | 1.11 bA | |
60 | 136.2 bA | 1.14 aA | 75.2 bB | 0.90 cA | |
75 | 149.3 aA | 0.88 bA | 87.2 aB | 1.08 bA | |
Inteaction | |||||
T. diversifolia | 30 | 21.3 fA | 1.39 aA | 19.9 dA | 1.39 bA |
45 | 50.9 eA | 0.92 aA | 38.0 cdA | 1.39 abA | |
60 | 116.0 bcA | 0.92 deA | 73.7 abB | 0.88 eA | |
75 | 105.7 cA | 1.22 abcA | 75.0 abB | 1.25 bcA | |
E. poeppigiana | 30 | 52.8 eA | 1.26 abB | 33.8 cdB | 1.64 aA |
45 | 92.0 cdA | 1.10 bcdA | 54.1 bcB | 1.04 cdeA | |
60 | 182.6 aA | 0.75 eB | 74.7 abB | 0.95 deA | |
75 | 201.1 aA | 1.12 bcdA | 93.3 aB | 1.16 bcdA | |
C. argéntea | 30 | 52.1 eA | 1.05 bcdA | 53.3 bcA | 1.05 cdeA |
45 | 79.5 dA | 1.04 bcdA | 70.1 abA | 0.89 eB | |
60 | 110.2 cA | 0.97 cdeA | 77.2 abA | 0.87 eA | |
75 | 141.2 bA | 1.08 bcdA | 93.3 aB | 0.83 eB | |
SE | 5.22 | 0.05 | 5.01 | 0.05 | |
Forage | 0.0001 | 0.0001 | 0.0001 | 0.0001 | |
Ages | 0.0001 | 0.0001 | 0.0001 | 0.0001 | |
Forage × Ages | 0.0001 | 0.0013 | 0.0527 | 0.0001 |
Dry Seasons | Rainy Seasons | ||||||||
---|---|---|---|---|---|---|---|---|---|
Rumen VFA (mol %) | Rumen VFA (mol %) | ||||||||
Acetic | Propionic | Butyric | Total FVA (mmol/L) | Acetic | Propionic | Butyric | Total FVA (mmol/L) | ||
Forage | |||||||||
T. diversifolia | 73.19 aB | 16.54 aA | 10.27 aA | 35.56 aA | 76.03 abA | 15.81 bB | 8.16 aB | 30.18 aB | |
E. poeppigiana | 73.36 aB | 16.69 aA | 9.94 aA | 34.28 aA | 76.39 aA | 15.92 bA | 7.70 bB | 29.34 aA | |
C. argéntea | 73.82 aB | 16.75 aA | 9.43 aA | 34.04 aA | 75.72 bA | 16.31 aA | 7.97 abB | 32.28 aA | |
Ages (days) | |||||||||
30 | 73.53 aB | 16.49 aA | 9.99 aA | 34.70 aA | 76.31 aA | 15.83 aA | 7.86 aB | 29.94 aA | |
45 | 73.29 aB | 16.66 aA | 10.06 aA | 33.84 aA | 75.88 aA | 16.11 aA | 8.01 aB | 28.02 aB | |
60 | 73.34 aB | 16.65 aA | 10.01 aA | 34.65 aA | 76.02 aA | 16.00 aA | 7.98 aB | 32.56 aA | |
75 | 73.67 aB | 16.86 aA | 9.47 aA | 35.32 aA | 75.96 aA | 16.10 aA | 7.93 aB | 31.88 aA | |
Inteaction | |||||||||
T. diversifolia | 30 | 73.08 aB | 16.17 aA | 10.74 aA | 35.57 aA | 76.50 abcA | 15.53 aA | 7.97 aA | 29.07 aA |
45 | 73.51 aB | 16.34 aA | 10.16 aA | 36.51 aA | 75.65 bcdA | 15.90 aA | 8.45 aA | 29.36 aA | |
60 | 73.18 aB | 16.58 aA | 10.25 aA | 36.19 aA | 75.89 abcdA | 15.98 aA | 8.13 aB | 28.59 aA | |
75 | 72.98 aB | 7.09 aA | 9.93 aA | 33.99 aA | 76.07 abcdA | 15.84 aB | 8.10 aA | 33.72 aA | |
E. poeppigiana | 30 | 73.61 aB | 16.50 aA | 9.89 aA | 35.17 aA | 76.10 abcdA | 16.01 aA | 7.90 aA | 27.57 aA |
45 | 72.65 aB | 17.20 aA | 10.16 aA | 32.12 aA | 75.99 abcdA | 16.17 aA | 7.85 aA | 28.31 aA | |
60 | 73.39 aB | 16.66 aA | 9.95 aA | 35.03 aA | 76.75 aA | 15.65 aA | 7.61 aA | 32.88 aA | |
75 | 73.81 aB | 16.42 aA | 9.77 aA | 34.81 aA | 76.73 abA | 15.84 aA | 7.44 aA | 33.33 aA | |
C. Argéntea | 30 | 73.89 aB | 16.78 aA | 9.33 aA | 33.35 aA | 76.33 abcA | 15.96 aA | 7.71 aA | 33.17 aA |
45 | 73.70 aB | 16.44 aA | 9.86 aA | 32.88 aA | 76.02 abcdA | 16.26 aA | 7.72 aA | 26.41 aA | |
60 | 73.46 aA | 16.71 aA | 9.83 aA | 32.74 aA | 75.42 cdA | 16.38 aA | 8.20 aA | 36.21 aA | |
75 | 74.22 aA | 17.08 aA | 8.71 aA | 37.18 aA | 75.10 dA | 16.64 aA | 8.26 aA | 33.33 aA | |
SE | 0.79 | 0.45 | 0.82 | 1.75 | 0.22 | 0.19 | 0.22 | 4.45 | |
Forage | 0.5218 | 0.7921 | 0.3599 | 0.4255 | 0.0006 | 0.0104 | 0.0200 | 0.6326 | |
Ages | 0.9306 | 0.7846 | 0.7960 | 0.7797 | 0.1155 | 0.2401 | 0.8582 | 0.5947 | |
Forage × Ages | 0.9547 | 0.6494 | 0.9872 | 0.3887 | 0.0007 | 0.1518 | 0.1631 | 0.8688 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meza-Bone, G.; Meza-Bone, C.; Avellaneda-Cevallos, J.; Cabezas-Congo, R.; Villamar-Torres, R.; Cabanilla-Campos, M.; Vivas-Arturo, W.; Intriago-Flor, F.; Meza-Bone, F.; Zapatier-Santillan, A.; et al. Rumen Fermentation Profile and Greenhouse Gas Mitigation of Three Forage Species from Agroforestry Systems in Dry and Rainy Seasons. Fermentation 2022, 8, 630. https://doi.org/10.3390/fermentation8110630
Meza-Bone G, Meza-Bone C, Avellaneda-Cevallos J, Cabezas-Congo R, Villamar-Torres R, Cabanilla-Campos M, Vivas-Arturo W, Intriago-Flor F, Meza-Bone F, Zapatier-Santillan A, et al. Rumen Fermentation Profile and Greenhouse Gas Mitigation of Three Forage Species from Agroforestry Systems in Dry and Rainy Seasons. Fermentation. 2022; 8(11):630. https://doi.org/10.3390/fermentation8110630
Chicago/Turabian StyleMeza-Bone, Gary, Carlos Meza-Bone, Juan Avellaneda-Cevallos, Ronald Cabezas-Congo, Ronald Villamar-Torres, María Cabanilla-Campos, Walter Vivas-Arturo, Frank Intriago-Flor, Fabricio Meza-Bone, Aurelio Zapatier-Santillan, and et al. 2022. "Rumen Fermentation Profile and Greenhouse Gas Mitigation of Three Forage Species from Agroforestry Systems in Dry and Rainy Seasons" Fermentation 8, no. 11: 630. https://doi.org/10.3390/fermentation8110630
APA StyleMeza-Bone, G., Meza-Bone, C., Avellaneda-Cevallos, J., Cabezas-Congo, R., Villamar-Torres, R., Cabanilla-Campos, M., Vivas-Arturo, W., Intriago-Flor, F., Meza-Bone, F., Zapatier-Santillan, A., Bastidas-Espinoza, R., Solís-Barros, T., Muñoz-Arboleda, L., Garcia-Cox, W., & Barros-Rodríguez, M. (2022). Rumen Fermentation Profile and Greenhouse Gas Mitigation of Three Forage Species from Agroforestry Systems in Dry and Rainy Seasons. Fermentation, 8(11), 630. https://doi.org/10.3390/fermentation8110630