Life Cycle Assessment of Bioethanol Production: A Case Study from Poplar Biomass Growth in the U.S. Pacific Northwest
Abstract
:1. Introduction
2. Materials and Methods
2.1. Goal and Scope Definition
2.2. Life Cycle Inventory
2.2.1. Feedstock and Harvesting Production
2.2.2. Transport to Biorefinery
2.2.3. Bioconversion of the Biomass Process
2.2.4. Fuel Use
2.3. Life Cycle Assessment
2.4. Uncertainty Analysis
3. Results
3.1. Life Cycle Assessment of Bioethanol from Hybrid Poplar
3.2. Uncertainty Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhu, J.; Chen, L.; Gleisner, R.; Zhu, J.Y. Co-Production of Bioethanol and Furfural from Poplar Wood via Low Temperature (≤90 °C) Acid Hydrotropic Fractionation (AHF). Fuel 2019, 254, 115572. [Google Scholar] [CrossRef]
- Pang, S. Advances in Thermochemical Conversion of Woody Biomass to Energy, Fuels and Chemicals. Biotechnol. Adv. 2019, 37, 589–597. [Google Scholar] [CrossRef]
- Stolarski, M.J.; Krzyzaniak, M.; Łuczyński, M.; Załuski, D.; Szczukowski, S.; Tworkowski, J.; Gołaszewski, J. Lignocellulosic Biomass from Short Rotation Woody Crops as a Feedstock for Second-Generation Bioethanol Production. Ind. Crops Prod. 2015, 75, 66–75. [Google Scholar] [CrossRef]
- Widjaya, E.R.; Chen, G.; Bowtell, L.; Hills, C. Gasification of Non-Woody Biomass: A Literature Review. Renew. Sustain. Energy Rev. 2018, 89, 184–193. [Google Scholar] [CrossRef] [Green Version]
- Sunde, K.; Brekke, A.; Solberg, B. Environmental Impacts and Costs of Woody Biomass-to-Liquid (BTL) Production and Use—A Review. For. Policy Econ. 2011, 13, 591–602. [Google Scholar] [CrossRef]
- Whittaker, C.; Shield, I. Short Rotation Woody Energy Crop Supply Chains. In Biomass Supply Chains for Bioenergy and Biorefining; Woodhead Publishing: Cambridge, UK, 2016; pp. 217–248. ISBN 9781782423874. [Google Scholar]
- Griffiths, N.A.; Rau, B.M.; Vaché, K.B.; Starr, G.; Bitew, M.M.; Aubrey, D.P.; Martin, J.A.; Benton, E.; Jackson, C.R. Environmental Effects of Short-Rotation Woody Crops for Bioenergy: What Is and Isn’t Known. GCB Bioenergy 2019, 11, 554–572. [Google Scholar] [CrossRef] [Green Version]
- Morales-Vera, R.; Crawford, J.; Dou, C.; Bura, R.; Gustafson, R. Techno-Economic Analysis of Producing Glacial Acetic Acid from Poplar Biomass via Bioconversion. Molecules 2020, 25, 4328. [Google Scholar] [CrossRef]
- Sharma, B.; Larroche, C.; Dussap, C.G. Comprehensive Assessment of 2G Bioethanol Production. Bioresour. Technol. 2020, 313, 123630. [Google Scholar] [CrossRef]
- Rajeswari, S.; Baskaran, D.; Saravanan, P.; Rajasimman, M.; Rajamohan, N.; Vasseghian, Y. Production of Ethanol from Biomass—Recent Research, Scientometric Review and Future Perspectives. Fuel 2022, 317, 123448. [Google Scholar] [CrossRef]
- Morales, M.; Quintero, J.; Conejeros, R.; Aroca, G. Life Cycle Assessment of Lignocellulosic Bioethanol: Environmental Impacts and Energy Balance. Renew. Sustain. Energy Rev. 2015, 42, 1349–1361. [Google Scholar] [CrossRef]
- Manochio, C.; Andrade, B.R.; Rodriguez, R.P.; Moraes, B.S. Ethanol from Biomass: A Comparative Overview. Renew. Sustain. Energy Rev. 2017, 80, 743–755. [Google Scholar] [CrossRef]
- Lamichhane, G.; Acharya, A.; Poudel, D.K.; Aryal, B.; Gyawali, N.; Niraula, P.; Phuyal, S.R.; Budhathoki, P.; Bk, G.; Parajuli, N. Recent Advances in Bioethanol Production from Lignocellulosic Biomass. Int. J. Green Energy 2021, 18, 731–744. [Google Scholar] [CrossRef]
- Schwarck, R.; Kemmet, N.; Baker, R.; Mcafee, E.; Doyal, R.; Sneed, J.; Huschitt, E.; Leiting, J.; Friese, C.; Markham, S.; et al. 2021 Ethanol Industry Outlook. Renewable Fuels Association; RFA: Ellisville, MO, USA, 2021. [Google Scholar]
- Dou, C.; Bura, R.; Ewanick, S.; Morales-Vera, R. Blending Short Rotation Coppice Poplar with Wheat Straw as a Biorefinery Feedstock in the State of Washington. Ind. Crops Prod. 2019, 132, 407–412. [Google Scholar] [CrossRef]
- Oregon Department of Environmental Quality. Oregon Clean Fuels Program; Oregon Department of Environmental Quality: Portland, OR, USA, 2022. [Google Scholar]
- Stanton, B.J.; Bourque, A.; Coleman, M.; Eisenbies, M.; Emerson, R.M.; Espinoza, J.; Gantz, C.; Himes, A.; Rodstrom, A.; Shuren, R.; et al. The Practice and Economics of Hybrid Poplar Biomass Production for Biofuels and Bioproducts in the Pacific Northwest. Bioenergy Res. 2021, 14, 543–560. [Google Scholar] [CrossRef]
- MacLean, H.L.; Spatari, S. The Contribution of Enzymes and Process Chemicals to the Life Cycle of Ethanol. Environ. Res. Lett. 2009, 4, 014001. [Google Scholar] [CrossRef]
- ISO 14044:2006; Environmental Management—Life Cycle Assessment—Requirements and Guidelines. ISO: Geneva, Switzerland, 2006.
- Neupane, B.; Halog, A.; Dhungel, S. Attributional Life Cycle Assessment of Woodchips for Bioethanol Production. J. Clean. Prod. 2011, 19, 733–741. [Google Scholar] [CrossRef]
- Rebolledo-Leiva, R.; Moreira, M.T.; González-García, S. Environmental Assessment of the Production of Itaconic Acid from Wheat Straw under a Biorefinery Approach. Bioresour. Technol. 2022, 345, 126481. [Google Scholar] [CrossRef]
- Arias, A.; Feijoo, G.; Moreira, M.T. Technological Feasibility and Environmental Assessment of Polylactic Acid-Nisin-Based Active Packaging. Sustain. Mater. Technol. 2022, 33, e00460. [Google Scholar] [CrossRef]
- Cao, B.; Jiang, D.; Zheng, Y.; Fatemeh Rupani, P.; Yuan, C.; Hu, Y.; Chen, H.; Li, C.; Hu, X.; Wang, S.; et al. Evaluation of Biochar-Derived Carbocatalysts for Pyrolytic Conversion of Sawdust: Life Cycle Assessment towards Monophenol Production. Fuel 2022, 330, 125476. [Google Scholar] [CrossRef]
- Farrell, A.E.; Plevin, R.J.; Turner, B.T.; Jones, A.D.; O’Hare, M.; Kammen, D.M. Ethanol Can Contribute to Energy and Environmental Goals. Science 2006, 311, 506–508. [Google Scholar] [CrossRef]
- Von Blottnitz, H.; Curran, M.A. A Review of Assessments Conducted on Bio-Ethanol as a Transportation Fuel from a Net Energy, Greenhouse Gas, and Environmental Life Cycle Perspective. J. Clean. Prod. 2007, 15, 607–619. [Google Scholar] [CrossRef]
- Kemppainen, A.J.; Shonnard, D.R. Comparative Life-Cycle Assessments for Biomass-to-Ethanol Production from Different Regional Feedstocks. Biotechnol. Prog. 2005, 21, 1075–1084. [Google Scholar] [CrossRef] [PubMed]
- Tonini, D.; Hamelin, L.; Alvarado-Morales, M.; Astrup, T.F. GHG Emission Factors for Bioelectricity, Biomethane, and Bioethanol Quantified for 24 Biomass Substrates with Consequential Life-Cycle Assessment. Bioresour. Technol. 2016, 208, 123–133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Belboom, S.; Bodson, B.; Léonard, A. Does the Production of Belgian Bioethanol Fit with European Requirements on GHG Emissions? Case of Wheat. Biomass Bioenergy 2015, 74, 58–65. [Google Scholar] [CrossRef]
- Numjuncharoen, T.; Papong, S.; Malakul, P.; Mungcharoen, T. Life-Cycle GHG Emissions of Cassava-Based Bioethanol Production; Elsevier B.V.: Amsterdam, The Netherlands, 2015; Volume 79. [Google Scholar]
- Wang, C.; Malik, A.; Wang, Y.; Chang, Y.; Pang, M.; Zhou, D. Understanding the Resource-Use and Environmental Impacts of Bioethanol Production in China Based on a MRIO-Based Hybrid LCA Model. Energy 2020, 203, 117877. [Google Scholar] [CrossRef]
- ISO 14040:2006; Environmental Management—Life Cycle Assessment—Principles and Framework. ISO: Geneva, Switzerland, 2006.
- Lippke, B.; Mason, L.; Morales-Vera, R.; Oneil, E.; Puettmann, M.; Shaler, S.; Volk, T.; Weiskittel, A.; Rials, T.; Katers, J.; et al. Carbon Cycling, Environmental & Rural Economic Impacts of Collecting & Processing Specific Woody Feedstocks in Biofuels; U.S. Department of Energy Office of Scientific and Technical Information: Oak Ridge, TN, USA, 2019.
- Wiloso, E.I.; Heijungs, R.; De Snoo, G.R. LCA of Second Generation Bioethanol: A Review and Some Issues to Be Resolved for Good LCA Practice. Renew. Sustain. Energy Rev. 2012, 16, 5295–5308. [Google Scholar] [CrossRef]
- Humbird, D.; Davis, R.; Tao, L.; Kinchin, C.; Hsu, D.; Aden, A.; Schoen, P.; Lukas, J.; Olthof, B.; Worley, M.; et al. Process Design and Economics for Biochemical Conversion of Lignocellulosic Biomass to Ethanol; NREL: Golden, CO, USA, 2011. [Google Scholar]
- Budsberg, E.; Crawford, J.; Gustafson, R.; Bura, R.; Puettmann, M. Ethanologens vs. Acetogens: Environmental Impacts of Two Ethanol Fermentation Pathways. Biomass Bioenergy 2015, 83, 23–31. [Google Scholar] [CrossRef]
- Gnansounou, E.; Dauriat, A.; Villegas, J.; Panichelli, L. Life Cycle Assessment of Biofuels: Energy and Greenhouse Gas Balances. Bioresour. Technol. 2009, 100, 4919–4930. [Google Scholar] [CrossRef] [PubMed]
- U.S. Department of Transportation; U.S. Department of Commerce. Commodity Flow Survey; U.S. Department of Transportation: Washington, DC, USA; U.S. Department of Commerce: Washington, DC, USA, 2012.
- Argonne National Laboratory’s Systems Assessment Center Argonne GREET Model. Available online: https://greet.es.anl.gov/ (accessed on 10 September 2022).
- Pré-Sustainability SimaProPRé Sustainability. Available online: https://pre-sustainability.com/solutions/tools/simapro/ (accessed on 10 September 2022).
- NREL National Renewable Energy Laboratory. Available online: https://www.lcacommons.gov/lca-collaboration/search/page=1&group=National_Renewable_Energy_Laboratory (accessed on 10 September 2022).
- Wernet, G.; Bauer, C.; Steubing, B.; Reinhard, J.; Moreno-Ruiz, E.; Weidema, B. The Ecoinvent Database Version 3 (Part I): Overview and Methodology. Int. J. Life Cycle Assess. 2016, 21, 1218–1230. [Google Scholar] [CrossRef]
- ASPENTECH. Aspen Plus|Leading Process Simulation Software|AspenTech. Available online: https://www.aspentech.com/en/products/engineering/aspen-plus (accessed on 10 September 2022).
- Kundu, C.; Lee, H.J.; Lee, J.W. Enhanced Bioethanol Production from Yellow Poplar by Deacetylation and Oxalic Acid Pretreatment without Detoxification. Bioresour. Technol. 2015, 178, 28–35. [Google Scholar] [CrossRef]
- Scott, F.; Aroca, G.; Caballero, J.A.; Conejeros, R. A Generalized Disjunctive Programming Framework for the Optimal Synthesis and Analysis of Processes for Ethanol Production from Corn Stover. Bioresour. Technol. 2017, 236, 212–224. [Google Scholar] [CrossRef] [Green Version]
- GAMS Software GmbH GAMS Documentation Center. Available online: https://www.gams.com/latest/docs/ (accessed on 20 September 2022).
- Spatari, S.; Bagley, D.M.; MacLean, H.L. Life Cycle Evaluation of Emerging Lignocellulosic Ethanol Conversion Technologies. Bioresour. Technol. 2010, 101, 654–667. [Google Scholar] [CrossRef]
- Budsberg, E.; Morales-Vera, R.; Crawford, J.T.; Bura, R.; Gustafson, R. Production Routes to Bio-Acetic Acid: Life Cycle Assessment. BMC 2020, 13, 154. [Google Scholar] [CrossRef] [PubMed]
- Rytter, R.M. The Potential of Willow and Poplar Plantations as Carbon Sinks in Sweden. Biomass Bioenergy 2012, 36, 86–95. [Google Scholar] [CrossRef]
- González-García, S.; Gasol, C.M.; Gabarrell, X.; Rieradevall, J.; Moreira, M.T.; Feijoo, G. Environmental Profile of Ethanol from Poplar Biomass as Transport Fuel in Southern Europe. Renew. Energy 2010, 35, 1014–1023. [Google Scholar] [CrossRef]
- Morales, M.; Gonzalez-García, S.; Aroca, G.; Moreira, M.T. Life Cycle Assessment of Gasoline Production and Use in Chile. Sci. Total Environ. 2015, 505, 833–843. [Google Scholar] [CrossRef] [PubMed]
- González-García, S.; Moreira, M.T.; Feijoo, G.; Murphy, R.J. Comparative Life Cycle Assessment of Ethanol Production from Fast-Growing Wood Crops (Black Locust, Eucalyptus and Poplar). Biomass Bioenergy 2012, 39, 378–388. [Google Scholar] [CrossRef]
- Cheali, P.; Posada, J.A.; Gernaey, K.V.; Sin, G. Economic Risk Analysis and Critical Comparison of Optimal Biorefinery Concepts. Biofuels Bioprod. Biorefin. 2016, 10, 435–445. [Google Scholar] [CrossRef]
Material | Unit | Average Annual Amount |
---|---|---|
Forest Annual Carbon Uptake | Tons C·ha−1·yr−1 | 7 |
Bioenergy Removals | ||
Dry Tons of Dedicated Harvest | Dry ton·ha−1 | 15 |
Hardwood Uncollected Biomass | Dry ton·ha−1 | 1 |
Energy Use | ||
Diesel | BTU·ha−1 | 3,590,012 |
Lubricant | BTU·ha−1 | 64,129 |
Pesticide Use | ||
Herbicide | g·ha−1 | 5239 |
Insecticide | g·ha−1 | 1 |
Inputs | Unit | Amount |
---|---|---|
Poplar chips (bone dry) | g | 170.53 |
Sulfuric Acid (93%) | g | 4.05 |
Lime | g | 1.62 |
Ammonia | g | 3.52 |
Corn steep liquor | g | 2.67 |
Sodium hydroxide (50%) | g | 14.00 |
Diammonium Phosphate | g | 0.25 |
Sulfur Dioxide | g | 0.03 |
Outputs (conversion process) | ||
Carbon dioxide | g | 236.07 |
Carbon monoxide | g | 0.03 |
Nitrogen oxides | g | 0.03 |
Sulfuric dioxide | g | 0.12 |
Bioethanol | MJ | 1 |
Excess Electricity (avoided production) | kW | 0.036 |
Parameter | Minimum | Base Case | Maximum |
---|---|---|---|
Glucan-to-glucose yield in enzymatic hydrolysis | 0.70 | 0.90 | 0.95 |
Glucose-to-ethanol yield in fermentation | 0.75 | 0.95 | 0.97 |
Glucan content in poplar (wt. fraction, dry basis) | 0.350 | 0.385 | 0.465 |
Environmental Impact Category | Feedstock and Harvesting Production | Transport to Biorefinery | Bioconversion of the Biomass Process | Fuel Use | Carbon in Biomass | Avoided Electricity Production | Total Net Value |
---|---|---|---|---|---|---|---|
Global warming potential (kg CO2 eq) | 2.6 × 10−2 | 3.9 × 10−5 | 2.4 × 10−1 | 6.7 × 10−2 | −3.1 × 10−1 | −2.3 × 10−2 | −1.1 × 10−3 |
Eutrophication (kg N eq) | 4.2 × 10−6 | 4.4 × 10−8 | 9.4 × 10−6 | 1.1 × 10−6 | − | −1.6 × 10−6 | 1.3 × 10−5 |
Acidification (kg SO2 eq) | 3.6 × 10−5 | 8.1 × 10−7 | 3.6 × 10−4 | 1.7 × 10−5 | − | −2.0 × 10−4 | 2.1 × 10−4 |
Ozone depletion (kg CFC-11 eq) | 6.8 × 10−11 | 1.5 × 10−15 | 2.1 × 10−9 | − | − | −1.6 × 10−11 | 2.2 × 10−9 |
Smog (kg O3 eq) | 1.1 × 10−3 | 2.4 × 10−5 | 1.8 × 10−3 | 7.0 × 10−4 | − | −3.2 × 10−4 | 3.4 × 10−3 |
Carcinogenics (CTUh) | 4.6 × 10−11 | 5.3 × 10−13 | 1.6 × 10−10 | − | − | −9.6 × 10−11 | 1.1 × 10−10 |
Non carcinogenics (CTUh) | 4.0 × 10−10 | 5.1 × 10−12 | 7.3 × 10−9 | − | − | −1.2 × 10−9 | 6.6 × 10−9 |
Respiratory effects (kg PM2.5 eq) | 8.3 × 10−7 | 1.3 × 10−8 | 2.1 × 10−5 | 1.7 × 10−6 | − | −1.2 × 10−5 | 1.1 × 10−5 |
Ecotoxicity (CTUe) | 7.4 × 10−3 | 9.8 × 10−5 | 9.9 × 10−3 | − | − | −1.5 × 10−2 | 2.0 × 10−3 |
Fossil fuel depletion (MJ surplus) | 5.5 × 10−3 | 7.0 × 10−5 | 3.3 × 10−2 | − | − | −5.3 × 10−2 | −1.4 × 10−2 |
Plant Ethanol Yield | Net Exported Power | CO2 Emissions | ||||
---|---|---|---|---|---|---|
Percent Change | r | Percent Change | r | Percent Change | r | |
Glucan-to-glucose yield in enzymatic hydrolysis | 0.80 | 0.98 | −1.46 | −1.00 | −1.02 | −1.00 |
Glucose-to-ethanol yield in fermentation | 0.84 | 1.00 | −1.41 | −1.00 | −1.07 | −1.00 |
Glucan content in poplar (wt. fraction, dry basis) | 5.37 | 0.98 | −3.22 | −0.98 | −2.02 | −0.98 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morales-Vera, R.; Vásquez-Ibarra, L.; Scott, F.; Puettmann, M.; Gustafson, R. Life Cycle Assessment of Bioethanol Production: A Case Study from Poplar Biomass Growth in the U.S. Pacific Northwest. Fermentation 2022, 8, 734. https://doi.org/10.3390/fermentation8120734
Morales-Vera R, Vásquez-Ibarra L, Scott F, Puettmann M, Gustafson R. Life Cycle Assessment of Bioethanol Production: A Case Study from Poplar Biomass Growth in the U.S. Pacific Northwest. Fermentation. 2022; 8(12):734. https://doi.org/10.3390/fermentation8120734
Chicago/Turabian StyleMorales-Vera, Rodrigo, Leonardo Vásquez-Ibarra, Felipe Scott, Maureen Puettmann, and Richard Gustafson. 2022. "Life Cycle Assessment of Bioethanol Production: A Case Study from Poplar Biomass Growth in the U.S. Pacific Northwest" Fermentation 8, no. 12: 734. https://doi.org/10.3390/fermentation8120734
APA StyleMorales-Vera, R., Vásquez-Ibarra, L., Scott, F., Puettmann, M., & Gustafson, R. (2022). Life Cycle Assessment of Bioethanol Production: A Case Study from Poplar Biomass Growth in the U.S. Pacific Northwest. Fermentation, 8(12), 734. https://doi.org/10.3390/fermentation8120734