Metabolic Engineering of Zymomonas mobilis for Acetoin Production by Carbon Redistribution and Cofactor Balance
Abstract
:1. Introduction
2. Materials and Methods
2.1. Strains Plasmids and Cultural Conditions
2.2. DNA Manipulation Techniques
2.3. Cultivation Conditions in Shake Flasks
2.4. Construciton of gRNA Constructs for CRISPRi
2.5. Deletion of NAD(P)H Dehydrogenase Genen (ndh) Using Native I-F CRIPSR System
2.6. Identification of ndh Deletion in Z. mobilis
2.7. Curing of Targeting Plasmids
2.8. Electroporation for Z. mobilis
2.9. Analytical Methods
3. Results
3.1. Investigation of Fermentation Conditions for Acetoin Production in Z. mobilis
3.2. Identification and Construction of Heterogeneous Acetoin Biosynthetic in Z. mobilis
3.3. Recovery of Redox Imbalance by Expressing NADH Oxidase
3.4. Optimization of Fermentation Conditions for Acetoin Production
3.5. Increase in Acetoin Production by Redirecting Carbon Source from Ethanol Production
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xiao, Z.; Xu, P. Acetoin metabolism in bacteria. Crit. Rev. Microbiol. 2007, 33, 127–140. [Google Scholar] [CrossRef] [PubMed]
- Bursac, T.; Gralnick, J.A.; Gescher, J. Acetoin production via unbalanced fermentation in Shewanella oneidensis. Biotechnol. Bioeng. 2017, 114, 1283–1289. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Z.; Lu, J.R. Strategies for enhancing fermentative production of acetoin: A review. Biotechnol. Adv. 2014, 32, 492–503. [Google Scholar] [CrossRef]
- Li, S.; Gao, X.; Xu, N.; Liu, L.; Chen, J. Enhancement of acetoin production in Candida glabrata by in silico-aided metabolic engineering. Microb. Cell Factories 2014, 13, 55. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Renna, M.C.; Najimudin, N.; Winik, L.R.; Zahler, S.A. Regulation of the Bacillus subtilis alsS, alsD, and alsR genes involved in post-exponential-phase production of acetoin. J. Bacteriol. 1993, 175, 3863–3875. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Li, S.; Liu, L.; Wu, J. Acetoin production enhanced by manipulating carbon flux in a newly isolated Bacillus amyloliquefaciens. Biores. Technol. 2013, 130, 256–260. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, Q.; Ge, Y.; Li, L.; Ma, C. Biotechnological production of acetoin, a bio-based platform chemical, from lignocellulosic resource by metabolically engineered Enterobacter cloacae. Green Chem. 2016, 18, 1560–1570. [Google Scholar] [CrossRef]
- Sun, J.A.; Zhang, L.Y.; Rao, B.; Shen, Y.L.; Wei, D.Z. Enhanced acetoin production by Serratia marcescens H32 with expression of a water-forming NADH oxidase. Bioresour. Technol. 2012, 119, 94–98. [Google Scholar] [CrossRef]
- He, M.X.; Wu, B.; Qin, H.; Ruan, Z.Y.; Tan, F.R.; Wang, J.L.; Shui, Z.X.; Dai, L.C.; Zhu, Q.L.; Pan, K.; et al. Zymomonas mobilis: A novel platform for future biorefineries. Biotechnol. Biofuels 2014, 7, 101. [Google Scholar] [CrossRef] [Green Version]
- Bae, S.J.; Kim, S.; Hahn, J.S. Efficient production of acetoin in Saccharomyces cerevisiae by disruption of 2,3-butanediol dehydrogenase and expression of NADH oxidase. Sci. Rep. 2016, 6, 27667. [Google Scholar] [CrossRef]
- Liu, L.; Xu, Q.M.; Chen, T.; Cheng, J.S.; Yuan, Y.J. Artificial consortium that produces riboflavin regulates distribution of acetoin and 2,3-butanediol by Paenibacillus polymyxa CJX518. Eng. Life Sci. 2017, 17, 1039–1049. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Magee, R.J.; Kosaric, N. The microbial production of 2,3-butanediol. Adv. Appl. Microbiol. 1987, 32, 89–161. [Google Scholar]
- Hugenholtz, J.; Kleerebezem, M.; Starrenburg, M.; Delcour, J.; de Vos, W.; Hols, P. Lactococcus lactis as a cell factory for high-level diacetyl production. Appl. Environ. Microbiol. 2000, 66, 4112–4114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, Y.G.; Chang, A.K.; Nixon, P.F.; Li, W.; Duggleby, R.G. Mutagenesis at asp27 of pyruvate decarboxylase from Zymomonas mobilis: Effect on its ability to form acetoin and acetolactate. Eur. J. Biochem. 2000, 267, 6493–6500. [Google Scholar] [CrossRef] [Green Version]
- Chen, G.C.; Jordan, F. Brewers’ yeast pyruvate decarboxylase produces acetoin from acetaldehyde: A novel tool to study the mechanism of steps subsequent to carbon dioxide loss. Biochemistry 1984, 23, 3576–3582. [Google Scholar] [CrossRef]
- Jörnvall, H.; Persson, B.; Krook, M.; Atrian, S.; Gonzalez-Duarte, R.; Jeffery, J.; Ghosh, D. Short-chain dehydrogenases/reductases (SDR). Biochemistry 1995, 34, 6003–6013. [Google Scholar] [CrossRef]
- Kallberg, Y.; Oppermann, U.; Jörnvall, H.; Persson, B. Short-chain dehydrogenases/reductases (SDRs) Coenzyme-based functional assignments in completed genomes. Eur. J. Biochem. 2002, 269, 4409–4417. [Google Scholar] [CrossRef]
- Qiu, M.; Shen, W.; Yan, X.; He, Q.; Cai, D.; Chen, S.; Wei, H.; Knoshaug, E.P.; Zhang, M.; Himmel, M.E.; et al. Metabolic engineering of Zymomonas mobilis for anaerobic isobutanol production. Biotechnol. Biofuels 2020, 13, 15. [Google Scholar] [CrossRef]
- Wang, X.; He, Q.; Yang, Y.; Wang, J.; Haning, K.; Hu, Y.; Wu, B.; He, M.; Zhang, Y.; Bao, J.; et al. Advances and prospects in metabolic engineering of Zymomonas mobilis. Metab. Eng. 2018, 50, 57–73. [Google Scholar] [CrossRef]
- Yang, S.; Fei, Q.; Zhang, Y.; Contreras, L.M.; Utturkar, S.M.; Brown, S.D.; Himmel, M.E.; Zhang, M. Zymomonas mobilis as a model system for production of biofuels and biochemicals. Microb. Biotechnol. 2016, 9, 699–717. [Google Scholar] [CrossRef]
- Yang, S.; Mohagheghi, A.; Franden, M.A.; Chou, Y.C.; Chen, X.; Dowe, N.; Himmel, M.E.; Zhang, M. Metabolic engineering of Zymomonas mobilis for 2,3-butanediol production from lignocellulosic biomass sugars. Biotechnol. Biofuels 2016, 9, 189. [Google Scholar] [CrossRef] [PubMed]
- Rao, B.; Zhang, L.Y.; Sun, J.; Su, G.; Wei, D.; Chu, J.; Zhu, J.; Shen, Y. Characterization and regulation of the 2,3-butanediol pathway in Serratia marcescens. Appl. Microbiol. Biotechnol. 2012, 93, 2147–2159. [Google Scholar] [CrossRef]
- Mayer, D.; Schlensog, V.; Böck, A. Identification of the transcriptional activator controlling the butanediol fermentation pathway in Klebsiella terrigena. J. Bacteriol. 1995, 177, 5261–5269. [Google Scholar] [CrossRef] [Green Version]
- Hayashi, T.; Furuta, Y.; Furukawa, K. Respiration-deficient mutants of Zymomonas mobilis show improved growth and ethanol fermentation under aerobic and high temperature conditions. J. Biosci. Bioeng. 2011, 111, 414–419. [Google Scholar] [CrossRef] [PubMed]
- Kalnenieks, U.; Galinina, N.; Strazdina, I.; Kravale, Z.; Pickford, J.L.; Rutkis, R.; Poole, R.K. NADH dehydrogenase deficiency results in low respiration rate and improved aerobic growth of Zymomonas mobilis. Microbiology 2008, 154, 989–994. [Google Scholar] [CrossRef] [Green Version]
- Shen, W.; Zhang, J.; Geng, B.; Qiu, M.; Hu, M.; Yang, Q.; Bao, W.; Xiao, Y.; Zheng, Y.; Peng, W.; et al. Establishment and application of a CRISPR-Cas12a assisted genome-editing system in Zymomonas mobilis. Microb. Cell Factories 2019, 18, 162. [Google Scholar] [CrossRef] [Green Version]
- Zheng, Y.; Han, J.; Wang, B.; Hu, X.; Li, R.; Shen, W.; Ma, X.; Ma, L.; Yi, L.; Yang, S.; et al. Characterization and repurposing of the endogenous Type I-F CRISPR-Cas system of Zymomonas mobilis for genome engineering. Nucleic Acids Res. 2019, 47, 11461–11475. [Google Scholar] [CrossRef] [Green Version]
- Yang, S.; Tschaplinski, T.J.; Engle, N.L.; Carroll, S.L.; Martin, S.L.; Davison, B.H.; Palumbo, A.V.; Rodriguez, M., Jr.; Brown, S.D. Transcriptomic and metabolomic profiling of Zymomonas mobilis during aerobic and anaerobic fermentations. BMC Genom. 2009, 10, 34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, S.; Vera, J.M.; Grass, J.; Savvakis, G.; Moskvin, O.V.; Yang, Y.; McIlwain, S.J.; Lyu, Y.; Zinonos, I.; Hebert, A.S.; et al. Complete genome sequence and the expression pattern of plasmids of the model ethanologen Zymomonas mobilis ZM4 and its xylose-utilizing derivatives 8b and 2032. Biotechnol. Biofuels 2018, 11, 125. [Google Scholar] [CrossRef]
- Lou, J.; Wang, J.; Yang, Y.; Yang, Q.; Li, R.; Hu, M.; He, Q.; Du, J.; Wang, X.; Li, M.; et al. Development and characterization of efficient xylose utilization strains of Zymomonas mobilis. Biotechnol. Biofuels 2021, 14, 231. [Google Scholar] [CrossRef]
- Hayashi, T.; Kato, T.; Furukawa, K. Respiratory chain analysis of Zymomonas mobilis mutants producing high levels of ethanol. Appl. Environ. Microbiol. 2012, 78, 5622–5629. [Google Scholar] [CrossRef]
- Hu, M.; Chen, X.; Huang, J.; Du, J.; Li, M.; Yang, S. Revitalizing the ethanologenic bacterium Zymomonas mobilis for sugar reduction in high-sugar-content fruits and commercial products. Bioresour. Bioprocess. 2021, 8, 119. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Wang, Y.; Wang, R.; Yan, X.; Wang, J.; Wang, X.; Chen, S.; Bai, F.; He, Q.; Yang, S. Metabolic engineering of Zymomonas mobilis for continuous co-production of bioethanol and poly-3-hydroxybutyrate (PHB). Green Chem. 2022, 24, 2588–2601. [Google Scholar] [CrossRef]
- Yang, S.; Pan, C.; Hurst, G.B.; Dice, L.; Davison, B.H.; Brown, S.D. Elucidation of Zymomonas mobilis physiology and stress responses by quantitative proteomics and transcriptomics. Front. Microbiol. 2014, 5, 246. [Google Scholar] [CrossRef] [Green Version]
- Yang, S.; Pan, C.; Tschaplinski, T.J.; Hurst, G.B.; Engle, N.L.; Zhou, W.; Dam, P.; Xu, Y.; Rodriguez, M., Jr.; Dice, L.; et al. Systems biology analysis of Zymomonas mobilis ZM4 ethanol stress responses. PLoS ONE 2013, 8, e68886. [Google Scholar] [CrossRef] [Green Version]
- Zhang, M.; Eddy, C.; Deanda, K.; Finkelstein, M.; Picataggio, S. Metabolic engineering of a pentose metabolism pathway in ethanologenic Zymomonas mobilis. Science 1995, 267, 240–243. [Google Scholar] [CrossRef]
- Yang, Y.; Hu, M.; Tang, Y.; Geng, B.; Qiu, M.; He, Q.; Chen, S.; Wang, X.; Yang, S. Progress and perspective on lignocellulosic hydrolysate inhibitor tolerance improvement in Zymomonas mobilis. Bioresour. Bioprocess. 2018, 5, 6. [Google Scholar] [CrossRef]
- Strazdina, I.; Kravale, Z.; Galinina, N.; Rutkis, R.; Poole, R.K.; Kalnenieks, U. Electron transport and oxidative stress in Zymomonas mobilis respiratory mutants. Arch. Microbiol. 2012, 194, 461–471. [Google Scholar] [CrossRef]
Strains, Plasmids and Primers | Description | Source |
---|---|---|
Strain | ||
E. coli XL10-Gold | TetrΔ(mcrA)183Δ, Δ(mcrCBhsdSMR-mrr)173, endA1, supE44,thi-1,recA1,gryA96relA1,lacHte [F`, proAB, lacIq ZΔM15, Tn10::Tet`, Camr] | Invitrogen |
E. coli ET12567 | F- dam-13::Tn9 dcm-6 hsdM hsdR zjj-202::Tn10 recF143 galK2 galT22 ara-14 lacY1 xyl-5 leuB6 thi-1 tonA31 rpsL136 hisG4 tsx-78 mtl-1 glnV44 | Lab stock |
ZM4 | Z. mobilis subsp. mobilis ZM4, wild-type | Lab stock |
ZM4Δ1113 | Z. mobilis ZM4, ZMO1113 deletion mutant | This study |
ZM4 (pEZ) | ZM4 containing pEZ | This study |
ZM4 (pEZ-NoxE) | ZM4 containing pEZ-NoxE | This study |
ZM4 (pEZ-AldC) | ZM4 containing pEZ-AldC | This study |
ZM4 (pEZ-AldC-Als) | ZM4 containing pEZ-AldC-Als | This study |
ZM4 (pEZ-AldC-Als-NoxE) | ZM4 containing pEZ-AldC-Als-NoxE | This study |
ZM4-1759dCas12a (pEZ-AldC-Als-NoxE) | ZM4 (pEZ-AldC-Als-NoxE) with ZMO1759 replaced by gene dCas12a | This study |
ZM4Δ1113 (pEZ-AldC-Als-NoxE) | ZM4Δ1113 containing pEZ-AldC-Als-NoxE | This study |
Plasmid | ||
pEZ | pEZ15Asp, P15A_ori, Zymo_Ori, sper | [21] |
pEZ-NoxE | P15A_ori, Zymo_Ori, Ppdc::noxE, sper | This study |
pEZ-AldC | P15A_ori, Zymo_Ori, Pgap:: EcaldC, sper | This study |
pEZ-AldC-Als | P15A_ori, Zymo_Ori, Pgap:: EcaldC, Ptet::Bsals, sper | This study |
pEZ-AldC-Als-NoxE | P15A_ori, Zymo_Ori, Pgap:: EcaldC, Ptet::Bsals, Ppdc::noxE, sper | This study |
pEZ-sgr | P15A_ori, Zymo_Ori, sper, containing miniCRISPR of CRISPR–Cas12a system | [26] |
pST | P15A_ori, Zymo_Ori, sper, containing miniCRISPR of endogenous Type I-F CRISPR–Cas system | [27] |
Primer | Oligo Sequence (5′ → 3′) | |
NoxE-F | tttttctttgtgagtccaatgaaaatcgtagttatcggtacg | This study |
NoxE-R | cagcggccgctactagtattattttgcatttaaagctgcaacag | This study |
AldC-F | aattcgcggccgcttctattactcgggattgccttcg | This study |
AldC-R | cagcggccgctactagtactatgagtgttgatctgagatttcg | This study |
Als-F | tactagtagcggccgctg | This study |
Als-R | cagcggccgctactagtattacagagctttcgttttcatcagttc | This study |
1113US-F | accagctcaccgtctttggcaaatccgaaaacggc | This study |
1113US-R | tgcgtcaaatattgaaacctctattctcttccaagcga | This study |
1113DS-F | aggtttcaatatttgacgcagaagacttttgtagcac | This study |
1113DS-R | agatctgatatcactctgataggctctctgccgac | This study |
1113check-F | cgggctatgctggctaatca | This study |
1113check-R | ggctaagatagcgccgagtt | This study |
1113in-R | acgcccaaacgctgtaaaac | This study |
dCas12a-F | ctaaattttttcttcttaagacccactttcacatttaagttgtttttctaatc | This study |
dCas12a-R | atgacctattggtggtaaaacgaaaggcccagtctttcgac | This study |
1759check-F | gccaacatcatccgaaggga | This study |
1759check-R | tatgaatgttattcgctaccggttg | This study |
Volume | GCR (g∙L−1∙h−1) | GC (g∙L−1) | Ethanol (g∙L−1) | Acetate (g∙L−1) | Glycerol (g∙L−1) | Acetoin (g∙L−1) | Lactate (g∙L−1) |
---|---|---|---|---|---|---|---|
80% | 4.16 ± 0.24 | 46.50 ± 0.65 | 20.61 ± 0.57 | 0.51 ± 0.18 | 0.10 ± 0.03 | 1.21 ± 0.35 | 1.00 ± 0.06 |
50% | 4.15 ± 0.17 | 46.57 ± 0.26 | 20.31 ± 0.29 | 0.37 ± 0.04 | 0.11 ± 0.01 | 1.68 ± 0.19 | 1.05 ± 0.04 |
20% | 2.07 ± 0.29 | 40.76 ± 0.85 | 12.25 ± 1.34 | 0.62 ± 0.05 | 0.39 ± 0.05 | 5.02 ± 0.22 | 1.96 ± 0.04 |
Strains | GCR (g∙L−1∙h−1) | GC (g∙L−1) | Ethanol (g∙L−1) | Acetate (g∙L−1) | Glycerol (g∙L−1) | Acetoin (g∙L−1) | Lactate (g∙L−1) |
---|---|---|---|---|---|---|---|
ZM4 (pEZ) | 2.24 ± 0.11 | 38.90 ± 0.20 | 11.95 ± 0.03 | 0.69 ± 0.04 | 0.13 ± 0.01 | 5.16 ± 0.18 | 1.33 ± 0.04 |
ZM4 (pEZ-AldC) | 2.17 ± 0.33 | 38.99 ± 0.62 | 12.25 ± 1.34 | 0.52 ± 0.03 | 0.15 ± 0.01 | 5.55 ± 0.31 | 0.92 ± 0.08 |
ZM4 (pEZ-AldC-Als) | 2.41 ± 0.10 | 41.45 ± 0.39 | 13.25 ± 0.25 | 0.57 ± 0.13 | 0.19 ± 0.05 | 6.23 ± 0.24 | 0.36 ± 0.05 |
ZM4 (pEZ-AldC-Als-NoxE) | 4.18 ± 0.21 | 47.20 ± 0.54 | 15.8 ± 1.02 | 0.57 ± 0.11 | 0.23 ± 0.02 | 6.87 ± 0.15 | 0.05 ± 0.01 |
Volume | GCR (g∙L−1∙h−1) | GC (g∙L−1) | Ethanol (g∙L−1) | Acetate (g∙L−1) | Glycerol (g∙L−1) | Acetoin (g∙L−1) | Lactate (g∙L−1) |
---|---|---|---|---|---|---|---|
80% | 4.15 ± 0.08 | 46.38 ± 0.04 | 20.12 ± 0.07 | 0.14 ± 0.01 | 0.29 ± 0.02 | 2.16 ± 0.15 | 0.82 ± 0.05 |
50% | 4.16 ± 0.14 | 45.52 ± 0.16 | 19.16 ± 0.15 | 0.13 ± 0.00 | 0.36 ± 0.01 | 2.76 ± 0.11 | 0.66 ± 0.05 |
20% | 4. 11 ± 0.20 | 41.96 ± 0.75 | 14.34 ± 0.46 | 0.28 ± 0.03 | 0.45 ± 0.02 | 5.97 ± 0.03 | 0.00 ± 0.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bao, W.; Shen, W.; Peng, Q.; Du, J.; Yang, S. Metabolic Engineering of Zymomonas mobilis for Acetoin Production by Carbon Redistribution and Cofactor Balance. Fermentation 2023, 9, 113. https://doi.org/10.3390/fermentation9020113
Bao W, Shen W, Peng Q, Du J, Yang S. Metabolic Engineering of Zymomonas mobilis for Acetoin Production by Carbon Redistribution and Cofactor Balance. Fermentation. 2023; 9(2):113. https://doi.org/10.3390/fermentation9020113
Chicago/Turabian StyleBao, Weiwei, Wei Shen, Qiqun Peng, Jun Du, and Shihui Yang. 2023. "Metabolic Engineering of Zymomonas mobilis for Acetoin Production by Carbon Redistribution and Cofactor Balance" Fermentation 9, no. 2: 113. https://doi.org/10.3390/fermentation9020113
APA StyleBao, W., Shen, W., Peng, Q., Du, J., & Yang, S. (2023). Metabolic Engineering of Zymomonas mobilis for Acetoin Production by Carbon Redistribution and Cofactor Balance. Fermentation, 9(2), 113. https://doi.org/10.3390/fermentation9020113