Engineering Microorganisms to Produce Bio-Based Monomers: Progress and Challenges
Abstract
:1. Introduction
2. Efficient Utilization of Cheap Substrates
2.1. Designing Substrate Utilization Pathways
2.1.1. Exploiting Endogenous Substrate Utilization Pathway
2.1.2. Building Artificial Substrate Utilization Pathway
2.1.3. Combining Endogenous and Artificial Substrate Utilization Pathways
2.1.4. Building Orthogonal Substrate Utilization Pathways
2.1.5. Coupling Multi-Bacterial Substrate Utilization Pathways
2.2. Enhancing Substrate Utilization Capacity
2.2.1. Expanding Substrate Spectrum
2.2.2. Optimizing Mass Transfer
2.2.3. Depolymerizing Substrates
2.2.4. Detoxification of Substrates
2.2.5. Enhancing Strain Growth Performance
2.3. Optimizing Substrate Conversion Process
2.3.1. Optimizing Substrate Transport
2.3.2. Relieving Carbon Catabolite Repression
2.3.3. Co-Utilizing Multi-Substrate
2.3.4. Achieving One-Step Biotransformation
2.3.5. Strengthening Energy Supplement
3. Improving Bio-Monomer Synthetic Efficiency
3.1. Strengthening Key Enzymes Performance
3.1.1. Screening Heterologous Enzymes
3.1.2. Promoting Enzyme Folding
3.1.3. Enhancing Protein Expression Level
3.1.4. Enzymes-Directed Evolution
3.1.5. Establishing Enzymes Recycling
3.2. Optimizing Synthetic Pathway Efficiency
3.2.1. Balancing Enzyme Expression Level
3.2.2. Redirecting Target Metabolic Flux
3.2.3. Reducing Pathway Energy Consumption
3.2.4. Constructing Substrate Channels
3.2.5. Dynamic Pathway Regulation
3.3. Regulating Cellular Metabolic Networks
3.3.1. Omics-Assisted Key Targets Identifying
3.3.2. Decoupling Cell Growth and Production
3.3.3. Metabolic Driving Design
3.3.4. Engineering Transcription Factor
3.3.5. Tuning Redox Homeostasis
4. Strengthening Cell Environmental Tolerance
4.1. Enhancing Acid-Base Stress Tolerance
4.1.1. Introducing Protective Agents
4.1.2. Cell Membrane Engineering
4.1.3. Expression of the Acid-Resistant Gene
4.1.4. Screening of Resistant Strains
4.2. Improving Osmotic Stress Tolerance
4.2.1. Strengthening Efflux System
4.2.2. Mutation of Key Proteins and Strains
4.2.3. Strengthening Global Regulation
4.2.4. Adding Protective Agent
4.3. Enhancing Metabolite Stress Tolerance
4.3.1. Adaptive Laboratory Evolution
4.3.2. Establishing Cell Mutagenesis
4.3.3. Expressing Transporters
4.3.4. In Situ Product Separation
5. Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Van Eygen, E.; Feketitsch, J.; Laner, D.; Rechberger, H.; Fellner, J. Comprehensive analysis and quantification of national plastic flows: The case of Austria. Resour. Conserv. Recycl. 2017, 117, 183–194. [Google Scholar] [CrossRef]
- Lee, Y.; Cho, I.J.; Choi, S.Y.; Lee, S.Y. Systems metabolic engineering strategies for non-natural microbial polyester production. Biotechnol. J. 2019, 14, e1800426. [Google Scholar] [CrossRef]
- Bajt, O. From plastics to microplastics and organisms. FEBS Open Bio 2021, 11, 954–966. [Google Scholar] [CrossRef]
- Prata, J.C.; da Costa, J.P.; Lopes, I.; Duarte, A.C.; Rocha-Santos, T. Environmental exposure to microplastics: An overview on possible human health effects. Sci. Total Environ. 2020, 702, 134455. [Google Scholar] [CrossRef]
- Shen, M.C.; Song, B.; Zeng, G.M.; Zhang, Y.X.; Huang, W.; Wen, X.F.; Tang, W.W. Are biodegradable plastics a promising solution to solve the global plastic pollution? Environ. Pollut. 2020, 263, 114469. [Google Scholar] [CrossRef]
- Henderson, L.; Green, C. Making sense of microplastics? Public understandings of plastic pollution. Mar. Pollut. Bull. 2020, 152, 110908. [Google Scholar] [CrossRef]
- Leal, W.; Salvia, A.L.; Bonoli, A.; Saari, U.A.; Voronova, V.; Kloga, M.; Kumbhar, S.S.; Olszewski, K.; De Quevedo, D.M.; Barbir, J. An assessment of attitudes towards plastics and bioplastics in Europe. Sci. Total Environ. 2021, 755, 142732. [Google Scholar] [CrossRef]
- Plastics give and plastics take. Nat. Rev. Mater. 2022, 7, 67. Available online: https://rdcu.be/c4s1i (accessed on 1 December 2022). [CrossRef]
- Karan, H.; Funk, C.; Grabert, M.; Oey, M.; Hankamer, B. Green bioplastics as part of a circular bioeconomy. Trends Plant Sci. 2019, 24, 237–249. [Google Scholar] [CrossRef]
- Rosenboom, J.G.; Langer, R.; Traverso, G. Bioplastics for a circular economy. Nat. Rev. Mater. 2022, 7, 117–137. [Google Scholar] [CrossRef]
- Wojnowska-Baryla, I.; Kulikowska, D.; Bernat, K. Effect of bio-based products on waste management. Sustainability 2020, 12, 2088. [Google Scholar] [CrossRef] [Green Version]
- Chocarro-Wrona, C.; de Vicente, J.; Antich, C.; Jimenez, G.; Martinez-Moreno, D.; Carrillo, E.; Montanez, E.; Galvez-Martin, P.; Peran, M.; Lopez-Ruiz, E.; et al. Validation of the 1,4-butanediol thermoplastic polyurethane as a novel material for 3D bioprinting applications. Bioeng. Transl. Med. 2021, 6, e10192. [Google Scholar] [CrossRef]
- Naureen, B.; Haseeb, A.; Basirun, W.J.; Muhamad, F. Recent advances in tissue engineering scaffolds based on polyurethane and modified polyurethane. Mater. Sci. Eng. C-Mater. Biol. Appl. 2021, 118, 111228. [Google Scholar] [CrossRef]
- Li, W.J.; Narancic, T.; Kenny, S.T.; Niehoff, P.J.; O’Connor, K.; Blank, L.M.; Wierckx, N. Unraveling 1,4-butanediol metabolism in Pseudomonas putida KT2440. Front. Microbiol. 2020, 11, 382. [Google Scholar] [CrossRef] [Green Version]
- Yang, M.M.; An, Y.F.; Zabed, H.M.; Guoa, Q.; Yun, J.H.; Zhang, G.Y.; Awad, F.N.; Sun, W.J.; Qi, X.H. Random mutagenesis of Clostridium butyricum strain and optimization of biosynthesis process for enhanced production of 1,3-propanediol. Bioresour. Technol. 2019, 284, 188–196. [Google Scholar] [CrossRef]
- Zabed, H.M.; Zhang, Y.F.; Guo, Q.; Yun, J.H.; Yang, M.M.; Zhang, G.Y.; Qi, X.Y. Co-biosynthesis of 3-hydroxypropionic acid and 1,3-propanediol by a newly isolated Lactobacillus reuteri strain during whole cell biotransformation of glycerol. J. Clean. Prod. 2019, 226, 432–442. [Google Scholar] [CrossRef]
- Zhou, S.F.; Lama, S.; Sankaranarayanan, M.; Park, S. Metabolic engineering of Pseudomonas denitrificans for the 1,3-propanediol production from glycerol. Bioresour. Technol. 2019, 292, 121933. [Google Scholar] [CrossRef]
- Bozell, J.J.; Petersen, G.R. Technology development for the production of biobased products from biorefinery carbohydrates-the US Department of Energy’s “Top 10” revisited. Green Chem. 2010, 12, 539–554. [Google Scholar] [CrossRef]
- Zhou, S.; Zhang, M.; Zhu, L.; Zhao, X.; Chen, J.; Chen, W.; Chang, C. Hydrolysis of lignocellulose to succinic acid: A review of treatment methods and succinic acid applications. Biotechnol. Biofuels Bioprod. 2023, 16, 1. [Google Scholar] [CrossRef]
- Skoog, E.; Shin, J.H.; Saez-Jimenez, V.; Mapelli, V.; Olsson, L. Biobased adipic acid—The challenge of developing the production host. Biotechnol. Adv. 2018, 36, 2248–2263. [Google Scholar] [CrossRef]
- Rios, J.; Lebeau, J.; Yang, T.; Li, S.; Lynch, M.D. A critical review on the progress and challenges to a more sustainable, cost competitive synthesis of adipic acid. Green Chem. 2021, 23, 3172–3190. [Google Scholar] [CrossRef]
- Bart, J.C.J.; Cavallaro, S. Transiting from adipic acid to bioadipic acid. 1, petroleum-based processes. Ind. Eng. Chem. Res. 2015, 54, 1–46. [Google Scholar] [CrossRef]
- Qian, Z.G.; Xia, X.X.; Lee, S.Y. Metabolic engineering of Escherichia coli for the production of cadaverine: A five carbon diamine. Biotechnol. Bioeng. 2011, 108, 93–103. [Google Scholar] [CrossRef]
- Melchor-Martinez, E.M.; Castillo, N.T.E.; Macias-Garbett, R.; Lucero-Saucedo, S.L.; Parra-Saldivar, R.; Sosa-Hernandez, J.E. Modern world applications for nano-bio materials: Tissue engineering and COVID-19. Front. Bioeng. Biotechnol. 2021, 9, 597958. [Google Scholar] [CrossRef]
- Wang, J.; Lu, X.L.; Ying, H.X.; Ma, W.C.; Xu, S.; Wang, X.; Chen, K.Q.; Ouyang, P.K. A novel process for cadaverine bio-production using a consortium of two engineered Escherichia coli. Front. Microbiol. 2018, 9, 1312. [Google Scholar] [CrossRef]
- Wang, J.; Mao, J.W.; Tian, W.L.; Wei, G.G.; Xu, S.; Ma, W.C.; Chen, K.Q.; Jiang, M.; Ouyang, P.K. Coproduction of succinic acid and cadaverine using lysine as a neutralizer and CO2 donor with L-lysine decarboxylase overexpressed Escherichia coli AFP111. Green Chem. 2018, 20, 2880–2887. [Google Scholar] [CrossRef]
- Jancewicz, A.L.; Gibbs, N.M.; Masson, P.H. Cadaverine’s functional role in plant development and environmental response. Front. Plant Sci. 2016, 7, 870. [Google Scholar] [CrossRef] [Green Version]
- Ting, W.W.; Huang, C.Y.; Wu, P.Y.; Huang, S.F.; Lin, H.Y.; Li, S.F.; Chang, J.S.; Ng, I.S. Whole-cell biocatalyst for cadaverine production using stable, constitutive and high expression of lysine decarboxylase in recombinant Escherichia coli W3110. Enzym. Microb. Technol. 2021, 148, 109811. [Google Scholar] [CrossRef]
- Rohles, C.M.; Giesselmann, G.; Kohlstedt, M.; Wittmann, C.; Becker, J. Systems metabolic engineering of Corynebacterium glutamicum for the production of the carbon-5 platform chemicals 5-aminovalerate and glutarate. Microb. Cell Factories 2016, 15, 154. [Google Scholar] [CrossRef] [Green Version]
- Bhatia, S.K.; Bhatia, R.K.; Yang, Y.H. Biosynthesis of polyesters and polyamide building blocks using microbial fermentation and biotransformation. Rev. Environ. Sci. Bio-Technol. 2016, 15, 639–663. [Google Scholar] [CrossRef]
- Adkins, J.; Jordan, J.; Nielsen, D.R. Engineering Escherichia coli for renewable production of the 5-carbon polyamide building-blocks 5-aminovalerate and glutarate. Biotechnol. Bioeng. 2013, 110, 1726–1734. [Google Scholar] [CrossRef]
- Datta, R.; Henry, M. Lactic acid: Recent advances in products, processes and technologies—A review. J. Chem. Technol. Biotechnol. 2006, 81, 1119–1129. [Google Scholar] [CrossRef]
- Gao, C.; Ma, C.Q.; Xu, P. Biotechnological routes based on lactic acid production from biomass. Biotechnol. Adv. 2011, 29, 930–939. [Google Scholar] [CrossRef]
- Shuklov, I.A.; Dubrovina, N.V.; Kuhlein, K.; Borner, A. Chemo-catalyzed pathways to lactic acid and lactates. Adv. Synth. Catal. 2016, 358, 3910–3931. [Google Scholar] [CrossRef]
- Tian, X.J.; Chen, H.; Liu, H.; Chen, J.H. Recent Advances in lactic acid production by lactic acid bacteria. Appl. Biochem. Biotechnol. 2021, 193, 4151–4171. [Google Scholar] [CrossRef]
- Guo, H.; Liu, H.; Jin, Y.H.; Zhang, R.W.; Yu, Y.; Deng, L.; Wang, F. Advances in research on the bio-production of 1,4-butanediol by the engineered microbes. Biochem. Eng. J. 2022, 185, 108478. [Google Scholar] [CrossRef]
- Utsunomia, C.; Ren, Q.; Zinn, M. Poly(4-Hydroxybutyrate): Current state and perspectives. Front. Bioeng. Biotechnol. 2020, 8, 257. [Google Scholar] [CrossRef] [Green Version]
- Thakur, S.; Chaudhary, J.; Singh, P.; Alsanie, W.F.; Grammatikos, S.A.; Thakur, V.K. Synthesis of Bio-based monomers and polymers using microbes for a sustainable bioeconomy. Bioresour. Technol. 2022, 344, 126156. [Google Scholar] [CrossRef]
- Nguyen, L.T.; Phan, D.P.; Sarwar, A.; Tran, M.H.; Lee, O.K.; Lee, E.Y. Valorization of industrial lignin to value-added chemicals by chemical depolymerization and biological conversion. Ind. Crops Prod. 2021, 161, 113219. [Google Scholar] [CrossRef]
- Prell, C.; Busche, T.; Ruckert, C.; Nolte, L.; Brandenbusch, C.; Wendisch, V.F. Adaptive laboratory evolution accelerated glutarate production by Corynebacterium glutamicum. Microb. Cell Factories 2021, 20, 97. [Google Scholar] [CrossRef]
- Liu, H.L.; Liu, S.Y.; Osire, T.; Zhang, X.; Xu, M.J.; Yang, S.T.; Yang, T.W.; Rao, Z.M. Engineering the 2,3-BD pathway in Bacillus subtilis by shifting the carbon flux in favor of 2,3-BD synthesis. Biochem. Eng. J. 2021, 169, 107969. [Google Scholar] [CrossRef]
- Thapa, L.P.; Lee, S.J.; Park, C.; Kim, S.W. Metabolic engineering of Enterobacter aerogenes to improve the production of 2,3-butanediol. Biochem. Eng. J. 2019, 143, 169–178. [Google Scholar] [CrossRef]
- Liu, H.; Jin, Y.; Zhang, R.; Ning, Y.; Yu, Y.; Xu, P.; Deng, L.; Wang, F. Recent advances and perspectives on production of value-added organic acids through metabolic engineering. Biotechnol. Adv. 2023, 62, 108076. [Google Scholar] [CrossRef]
- Li, Y.; Yang, S.; Ma, D.; Song, W.; Gao, C.; Liu, L.; Chen, X. Microbial engineering for the production of C2-C6 organic acids. Nat. Prod. Rep. 2021, 38, 1518–1546. [Google Scholar] [CrossRef]
- Aversa, C.; Barletta, M.; Gisario, A.; Pizzi, E.; Prati, R.; Vesco, S. Design, manufacturing and preliminary assessment of the suitability of bioplastic bottles for wine packaging. Polym. Test. 2021, 100, 107227. [Google Scholar] [CrossRef]
- Filiciotto, L.; Rothenberg, G. Biodegradable plastics: Standards, policies, and impacts. ChemSusChem 2021, 14, 56–72. [Google Scholar] [CrossRef]
- Moradali, M.F.; Rehm, B.H.A. Bacterial biopolymers: From pathogenesis to advanced materials. Nat. Rev. Microbiol. 2020, 18, 195–210. [Google Scholar] [CrossRef]
- McAdam, B.; Fournet, M.B.; McDonald, P.; Mojicevic, M. Production of polyhydroxybutyrate (PHB) and factors impacting its chemical and mechanical characteristics. Polymers 2020, 12, 2908. [Google Scholar] [CrossRef]
- Nguyen, T.T.; Lee, O.K.; Naizabekov, S.; Lee, E.Y. Bioconversion of methane to cadaverine and lysine using an engineered type II methanotroph, Methylosinus trichosporium OB3b. Green Chem. 2020, 22, 7803–7811. [Google Scholar] [CrossRef]
- Imao, K.; Konishi, R.; Kishida, M.; Hirata, Y.; Segawa, S.; Adachi, N.; Matsuura, R.; Tsuge, Y.; Matsumoto, T.; Tanaka, T.; et al. 1,5-Diaminopentane production from xylooligosaccharides using metabolically engineered Corynebacterium glutamicum displaying beta-xylosidase on the cell surface. Bioresour. Technol. 2017, 245, 1684–1691. [Google Scholar] [CrossRef]
- Gao, S.; Zhang, A.; Ma, D.; Zhang, K.; Wang, J.; Wang, X.; Chen, K. Enhancing pH stability of lysine decarboxylase via rational engineering and its application in cadaverine industrial production. Biochem. Eng. J. 2022, 186, 108548. [Google Scholar] [CrossRef]
- Xi, Y.; Ye, L.D.; Yu, H.W. Enhanced thermal and alkaline stability of L-lysine decarboxylase CadA by combining directed evolution and computation-guided virtual screening. Bioresour. Bioprocess. 2022, 9, 24. [Google Scholar] [CrossRef]
- Noh, M.; Yoo, S.M.; Yang, D.; Lee, S.Y. Broad-spectrum gene repression using scaffold engineering of synthetic sRNAs. ACS Synth. Biol. 2019, 8, 1452–1461. [Google Scholar] [CrossRef] [PubMed]
- Du, Y.; Pu, Z.J.; Kang, H.; Mi, J.L.; Liu, S.M.; Qi, H.S.; Zhang, L. Zwitterionic peptides encircling-assisted enhanced catalytic performance of lysine decarboxylase for cadaverine biotransformation and mechanism analyses. Chem. Eng. Sci. 2022, 251, 117447. [Google Scholar] [CrossRef]
- Wei, G.; Zhang, A.; Lu, X.; He, F.; Li, H.; Xu, S.; Li, G.; Chen, K.; Ouyang, P. An environmentally friendly strategy for cadaverine bio-production: In situ utilization of CO2 self-released from L-lysine decarboxylation for pH control. J. CO2 Util. 2020, 37, 278–284. [Google Scholar] [CrossRef]
- Bretschneider, L.; Heuschkel, I.; Buehler, K.; Karande, R.; Buehler, B. Rational orthologous pathway and biochemical process engineering for adipic acid production using Pseudomonas taiwanensis VLB120. Metab. Eng. 2022, 70, 206–217. [Google Scholar] [CrossRef]
- Wu, M.; Di, J.; Gong, L.; He, Y.-C.; Ma, C.; Deng, Y. Enhanced adipic acid production from sugarcane bagasse by a rapid room temperature pretreatment. Chem. Eng. J. 2023, 452, 139320. [Google Scholar] [CrossRef]
- Raj, K.; Partow, S.; Correia, K.; Khusnutdinova, A.N.; Yakunin, A.F.; Mahadevan, R. Biocatalytic production of adipic acid from glucose using engineered Saccharomyces cerevisiae. Metab. Eng. Commun. 2018, 6, 28–32. [Google Scholar] [CrossRef]
- Hao, T.; Li, G.; Zhou, S.; Deng, Y. Engineering the reductive TCA pathway to dynamically regulate the biosynthesis of adipic acid in Escherichia coli. ACS Synth. Biol. 2021, 10, 632–639. [Google Scholar] [CrossRef]
- Pereira, R.; Wei, Y.J.; Mohamed, E.; Radi, M.; Malina, C.; Herrgard, M.J.; Feist, A.M.; Nielsen, J.; Chen, Y. Adaptive laboratory evolution of tolerance to dicarboxylic acids in Saccharomyces cerevisiae. Metab. Eng. 2019, 56, 130–141. [Google Scholar] [CrossRef]
- Li, Y.; Cheng, Z.; Zhao, C.; Gao, C.; Song, W.; Liu, L.; Chen, X. Reprogramming Escherichia coli metabolism for bioplastics synthesis from waste cooking oil. ACS Synth. Biol. 2021, 10, 1966–1979. [Google Scholar] [CrossRef]
- Hu, G.P.; Li, Z.H.; Ma, D.L.; Ye, C.; Zhang, L.P.; Gao, C.; Liu, L.M.; Chen, X.L. Light-driven CO2 sequestration in Escherichia coli to achieve theoretical yield of chemicals. Nat. Catal. 2021, 4, 395–406. [Google Scholar] [CrossRef]
- Hu, G.; Zhou, J.; Chen, X.; Qian, Y.; Gao, C.; Guo, L.; Xu, P.; Chen, W.; Chen, J.; Li, Y.; et al. Engineering synergetic CO2-fixing pathways for malate production. Metab. Eng. 2018, 47, 496–504. [Google Scholar] [CrossRef]
- Chen, Z.; Geng, F.; Zeng, A.P. Protein design and engineering of a de novo pathway for microbial production of 1,3-propanediol from glucose. Biotechnol. J. 2015, 10, 284–289. [Google Scholar] [CrossRef]
- Lee, J.H.; Jung, M.Y.; Oh, M.K. High-yield production of 1,3-propanediol from glycerol by metabolically engineered Klebsiella pneumoniae. Biotechnol. Biofuels 2018, 11, 104. [Google Scholar] [CrossRef] [Green Version]
- Sato, R.; Tanaka, T.; Ohara, H.; Aso, Y. Engineering Escherichia coli for direct production of 1,2-propanediol and 1,3-propanediol from starch. Curr. Microbiol. 2020, 77, 3704–3710. [Google Scholar] [CrossRef]
- Gupta, P.; Kumar, M.; Gupta, R.P.; Puri, S.K.; Ramakumar, S.S.V. Fermentative reforming of crude glycerol to 1,3-propanediol using Clostridium butyricum strain L4. Chemosphere 2022, 292, 133426. [Google Scholar] [CrossRef]
- Lu, X.Y.; Ren, S.L.; Lu, J.Z.; Zong, H.; Song, J.; Zhuge, B. Enhanced 1,3-propanediol production in Klebsiella pneumoniae by a combined strategy of strengthening the TCA cycle and weakening the glucose effect. J. Appl. Microbiol. 2018, 124, 682–690. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, R.H.; Zhang, J.L.; Gong, X.Y.; Jiang, T.; Sun, X.X.; Shen, X.L.; Wang, J.; Yuan, Q.P.; Yan, Y.J. Tunable hybrid carbon metabolism coordination for the carbon-efficient biosynthesis of 1,3-butanediol in Escherichia coli. Green Chem. 2021, 23, 8694–8706. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, Z.H.; Liu, Y.; Cen, X.C.; Liu, D.H.; Chen, Z. Systems metabolic engineering of Vibrio natriegens for the production of 1,3-propanediol. Metab. Eng. 2021, 65, 52–65. [Google Scholar] [CrossRef]
- Ju, J.H.; Heo, S.Y.; Choi, S.W.; Kim, Y.M.; Kim, M.S.; Kim, C.H.; Oh, B.R. Effective bioconversion of 1,3-propanediol from biodiesel-derived crude glycerol using organic acid resistance-enhanced Lactobacillus reuteri JH83. Bioresour. Technol. 2021, 337, 125361. [Google Scholar] [CrossRef] [PubMed]
- Fujiwara, R.; Noda, S.; Tanaka, T.; Kondo, A. Metabolic engineering of Escherichia coli for shikimate pathway derivative production from glucose-xylose co-substrate. Nat. Commun. 2020, 11, 279. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, Y.P.; Lin, Y.H.; Wang, J.; Wu, Y.F.; Zhang, R.H.; Cheng, M.Y.; Shen, X.L.; Wang, J.; Chen, Z.Y.; Li, C.Y.; et al. Sensor-regulator and RNAi based bifunctional dynamic control network for engineered microbial synthesis. Nat. Commun. 2018, 9, 3043. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scholz, S.A.; Graves, I.; Minty, J.J.; Lin, X.X.N. Production of cellulosic organic acids via synthetic fungal consortia. Biotechnol. Bioeng. 2018, 115, 1096–1100. [Google Scholar] [CrossRef] [PubMed]
- Zou, L.H.; Ouyang, S.P.; Hu, Y.L.; Zheng, Z.J.; Ouyang, J. Efficient lactic acid production from dilute acid-pretreated lignocellulosic biomass by a synthetic consortium of engineered Pseudomonas putida and Bacillus coagulans. Biotechnol. Biofuels 2021, 14, 227. [Google Scholar] [CrossRef]
- Sievert, C.; Nieves, L.M.; Panyon, L.A.; Loeffler, T.; Morris, C.; Cartwright, R.A.; Wang, X. Experimental evolution reveals an effective avenue to release catabolite repression via mutations in XylR. Proc. Natl. Acad. Sci. USA 2017, 114, 7349–7354. [Google Scholar] [CrossRef] [Green Version]
- Rawoof, S.A.A.; Kumar, P.S.; Devaraj, K.; Devaraj, T.; Subramanian, S. Enhancement of lactic acid production from food waste through simultaneous saccharification and fermentation using selective microbial strains. Biomass Convers. Biorefinery 2022, 12, 5947–5958. [Google Scholar] [CrossRef]
- Abdullah Al, M.; Sugimoto, S.; Higashi, C.; Matsumoto, S.; Sonomoto, K. Improvement of multiple-stress tolerance and lactic acid production in Lactococcus lactis NZ9000 under conditions of thermal stress by heterologous expression of Escherichia coli DnaK. Appl. Environ. Microbiol. 2010, 76, 4277–4285. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Fu, R.Y.; Hugenholtz, J.; Li, Y.; Chen, J. Glutathione protects Lactococcus lactis against acid stress. Appl. Environ. Microbiol. 2007, 73, 5268–5275. [Google Scholar] [CrossRef] [Green Version]
- Zhong, W.; Yang, M.; Hao, X.; Sharshar, M.M.; Wang, Q.; Xing, J. Improvement of D-lactic acid production at low pH through expressing acid-resistant gene IoGAS1 in engineered Saccharomyces cerevisiae. J. Chem. Technol. Biotechnol. 2020, 96, 732–742. [Google Scholar] [CrossRef]
- Zhu, Z.; Ji, X.; Wu, Z.; Zhang, J.; Du, G. Improved acid-stress tolerance of Lactococcus lactis NZ9000 and Escherichia coli BL21 by overexpression of the anti-acid component recT. J. Ind. Microbiol. Biotechnol. 2018, 45, 1091–1101. [Google Scholar] [CrossRef]
- Lin, T.Y.; Wen, R.C.; Shen, C.R.; Tsai, S.L. Biotransformation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid by a syntrophic consortium of engineered Synechococcus elongatus and Pseudomonas putida. Biotechnol. J. 2020, 15, 1900357. [Google Scholar] [CrossRef]
- Luo, Z.W.; Lee, S.Y. Biotransformation of p-xylene into terephthalic acid by engineered Escherichia coli. Nat. Commun. 2017, 8, 15689. [Google Scholar] [CrossRef] [Green Version]
- Kang, M.J.; Kim, H.T.; Lee, M.W.; Kim, K.A.; Khang, T.U.; Song, H.M.; Park, S.J.; Joo, J.C.; Cha, H.G. A chemo-microbial hybrid process for the production of 2-pyrone-4,6-dicarboxylic acid as a promising bioplastic monomer from PET waste. Green Chem. 2020, 22, 3461–3469. [Google Scholar] [CrossRef]
- Qin, R.; Zhu, Y.; Ai, M.; Jia, X. Reconstruction and optimization of a Pseudomonas putida-Escherichia coli microbial consortium for mcl-PHA production from lignocellulosic biomass. Front. Bioeng. Biotechnol. 2022, 10, 1023325. [Google Scholar] [CrossRef]
- Gao, H.; Wang, J.; Wu, H.; Xin, F.X.; Zhang, W.M.; Jiang, M.; Fang, Y. Biofilm-integrated glycosylated membrane for biosuccinic acid production. ACS Appl. Bio Mater. 2021, 4, 7517–7523. [Google Scholar] [CrossRef]
- Yu, J.H.; Zhu, L.W.; Xia, S.T.; Li, H.M.; Tang, Y.L.; Liang, X.H.; Chen, T.; Tang, Y.J. Combinatorial optimization of CO2 transport and fixation to improve succinate production by promoter engineering. Biotechnol. Bioeng. 2016, 113, 1531–1541. [Google Scholar] [CrossRef]
- Ahn, J.H.; Seo, H.; Park, W.; Seok, J.; Lee, J.A.; Kim, W.J.; Kim, G.B.; Kim, K.J.; Lee, S.Y. Enhanced succinic acid production by Mannheimia employing optimal malate dehydrogenase. Nat. Commun. 2020, 11, 1970. [Google Scholar] [CrossRef] [Green Version]
- Liu, R.M.; Liang, L.Y.; Chen, K.Q.; Ma, J.F.; Jiang, M.; Wei, P.; Ouyang, P.K. Fermentation of xylose to succinate by enhancement of ATP supply in metabolically engineered Escherichia coli. Appl. Microbiol. Biotechnol. 2012, 94, 959–968. [Google Scholar] [CrossRef]
- Yu, Y.; Zhu, X.N.; Xu, H.T.; Zhang, X.L. Construction of an energy-conserving glycerol utilization pathways for improving anaerobic succinate production in Escherichia coli. Metab. Eng. 2019, 56, 181–189. [Google Scholar] [CrossRef]
- Wu, M.K.; Guan, Z.; Wang, Y.J.; Ma, J.F.; Wu, H.; Jiang, M. Efficient succinic acid production by engineered Escherichia coli using ammonia as neutralizer. J. Chem. Technol. Biotechnol. 2016, 91, 2412–2418. [Google Scholar] [CrossRef]
- Xiao, M.; Zhu, X.; Fan, F.; Xu, H.; Tang, J.; Qin, Y.; Ma, Y.; Zhang, X. Osmotolerance in Escherichia coli is improved by activation of copper efflux genes or supplementation with sulfur-containing amino acids. Appl. Environ. Microbiol. 2017, 83, e03050-16. [Google Scholar] [CrossRef] [Green Version]
- Xiao, M.; Zhu, X.; Xu, H.; Tang, J.; Liu, R.; Bi, C.; Fan, F.; Zhang, X. A novel point mutation in RpoB improves osmotolerance and succinic acid production in Escherichia coli. BMC Biotechnol. 2017, 17, 10. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.M.; Zhu, J.R.; Zhu, X.G.; Song, M.; Zhang, T.; Xin, F.X.; Dong, W.L.; Ma, J.F.; Jiang, M. Expression of global regulator IrrE for improved succinate production under high salt stress by Escherichia coli. Bioresour. Technol. 2018, 254, 151–156. [Google Scholar] [CrossRef]
- Fang, X.J.; Li, J.; Zheng, X.Y.; Xi, Y.L.; Chen, K.Q.; Wei, P.; Ouyang, P.K.; Jiang, M. Influence of osmotic stress on fermentative production of succinic acid by Actinobacillus succinogenes. Appl. Biochem. Biotechnol. 2011, 165, 138–147. [Google Scholar] [CrossRef]
- Pham, H.L.; Wong, A.; Chua, N.; Teo, W.S.; Yew, W.S.; Chang, M.W. Engineering a riboswitch-based genetic platform for the self-directed evolution of acid-tolerant phenotypes. Nat. Commun. 2017, 8, 411. [Google Scholar] [CrossRef]
- Li, X.L.; Wei, L.Q.; Wang, Z.Q.; Wang, Y.S.; Su, Z.G. Efficient co-production of propionic acid and succinic acid by Propionibacterium acidipropionici using membrane separation coupled technology. Eng. Life Sci. 2021, 21, 429–437. [Google Scholar] [CrossRef]
- Ahn, J.H.; Lee, J.A.; Bang, J.; Lee, S.Y. Membrane engineering via trans-unsaturated fatty acids production improves succinic acid production in Mannheimia succiniciproducens. J. Ind. Microbiol. Biotechnol. 2018, 45, 555–566. [Google Scholar] [CrossRef]
- Ong, K.L.; Fickers, P.; Lin, C.S.K. Enhancing succinic acid productivity in the yeast Yarrowia lipolytica with improved glycerol uptake rate. Sci. Total Environ. 2020, 702, 134911. [Google Scholar] [CrossRef]
- Sui, X.; Zhao, M.; Liu, Y.L.; Wang, J.; Li, G.H.; Zhang, X.J.; Deng, Y. Enhancing glutaric acid production in Escherichia coli by uptake of malonic acid. J. Ind. Microbiol. Biotechnol. 2020, 47, 311–318. [Google Scholar] [CrossRef]
- Li, W.; Ma, L.; Shen, X.; Wang, J.; Feng, Q.; Liu, L.; Zheng, G.; Yan, Y.; Sun, X.; Yuan, Q. Targeting metabolic driving and intermediate influx in lysine catabolism for high-level glutarate production. Nat. Commun. 2019, 10, 3337. [Google Scholar] [CrossRef] [Green Version]
- Gao, C.; Wang, J.P.; Guo, L.; Hu, G.P.; Liu, J.; Song, W.; Liu, L.M.; Chen, X.L. Immobilization of microbial consortium for glutaric acid production from lysine. Chemcatchem 2021, 13, 5047–5055. [Google Scholar] [CrossRef]
- Wang, J.; Gao, C.; Chen, X.; Liu, L. Engineering the Cad pathway in Escherichia coli to produce glutarate from L-lysine. Appl. Microbiol. Biotechnol. 2021, 105, 3587–3599. [Google Scholar] [CrossRef]
- Gao, C.; Guo, L.; Hu, G.; Liu, J.; Chen, X.; Xia, X.; Liu, L. Engineering a CRISPRi circuit for autonomous control of metabolic flux in Escherichia coli. ACS Synth. Biol. 2021, 10, 2661–2671. [Google Scholar] [CrossRef]
- Han, T.; Kim, G.B.; Lee, S.Y. Glutaric acid production by systems metabolic engineering of an L-lysine-overproducing Corynebacterium glutamicum. Proc. Natl. Acad. Sci. USA 2020, 117, 30328–30334. [Google Scholar] [CrossRef]
- Lu, X.Y.; He, S.Y.; Zong, H.; Song, J.; Chen, W.; Bin, Z.G. Improved 1, 2, 4-butanetriol production from an engineered Escherichia coli by co-expression of different chaperone proteins. World J. Microbiol. Biotechnol. 2016, 32, 149. [Google Scholar] [CrossRef]
- Li, S.Y.; Fu, W.X.; Su, R.F.; Zhao, Y.Y.; Deng, Y. Metabolic engineering of the malonyl-CoA pathway to efficiently produce malonate in Saccharomyces cerevisiae. Metab. Eng. 2022, 73, 1–10. [Google Scholar] [CrossRef]
- Moon, T.S.; Dueber, J.E.; Shiue, E.; Prather, K.L.J. Use of modular, synthetic scaffolds for improved production of glucaric acid in engineered E. coli. Metab. Eng. 2010, 12, 298–305. [Google Scholar] [CrossRef] [Green Version]
- Hou, J.S.; Gao, C.; Guo, L.; Nielsen, J.; Ding, Q.; Tang, W.X.; Hu, G.P.; Chen, X.L.; Liu, L.M. Rewiring carbon flux in Escherichia coli using a bifunctional molecular switch. Metab. Eng. 2020, 61, 47–57. [Google Scholar] [CrossRef]
- Yin, X.; Shin, H.D.; Li, J.H.; Du, G.C.; Liu, L.; Chen, J. Pgas, a low-pH-induced promoter, as a tool for dynamic control of gene expression for metabolic engineering of Aspergillus niger. Appl. Environ. Microbiol. 2017, 83, e03222-16. [Google Scholar] [CrossRef]
- Boecker, S.; Harder, B.J.; Kutscha, R.; Pflugl, S.; Klamt, S. Increasing ATP turnover boosts productivity of 2,3-butanediol synthesis in Escherichia coli. Microb. Cell Factories 2021, 20, 63. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.F.; Chong, H.Q.; Ching, C.B.; Jiang, R.R. Random mutagenesis of global transcription factor cAMP receptor protein for improved osmotolerance. Biotechnol. Bioeng. 2012, 109, 1165–1172. [Google Scholar] [CrossRef] [PubMed]
- Dookeran, Z.A.; Nielsen, D.R. Systematic engineering of Synechococcus elongatus UTEX 2973 for photosynthetic production of l-lysine, cadaverine, and glutarate. ACS Synth. Biol. 2021, 10, 3561–3575. [Google Scholar] [CrossRef] [PubMed]
- Lad, B.C.; Coleman, S.M.; Alper, H.S. Microbial valorization of underutilized and nonconventional waste streams. J. Ind. Microbiol. Biotechnol. 2022, 49, kuab056. [Google Scholar] [CrossRef] [PubMed]
- Zou, W.; Edros, R.; Al-Rubeai, M. The relationship of metabolic burden to productivity levels in CHO cell lines. Biotechnol. Appl. Biochem. 2018, 65, 173–180. [Google Scholar] [CrossRef]
- Olson, D.G.; McBride, J.E.; Shaw, A.J.; Lynd, L.R. Recent progress in consolidated bioprocessing. Curr. Opin. Biotechnol. 2012, 23, 396–405. [Google Scholar] [CrossRef]
- Chandel, A.K.; Garlapati, V.K.; Singh, A.K.; Fernandes Antunes, F.A.; da Silva, S.S. The path forward for lignocellulose biorefineries: Bottlenecks, solutions, and perspective on commercialization. Bioresour. Technol. 2018, 264, 370–381. [Google Scholar] [CrossRef]
- Yazawa, K.; Imai, K.; Tamura, Z. Oligosaccharides and polysaccharides specifically utilizable by bifidobacteria. Chem. Pharm. Bull. 1978, 26, 3306–3311. [Google Scholar] [CrossRef] [Green Version]
- Jiang, L.; Song, X.G.; Li, Y.F.; Xu, Q.; Pu, J.H.; Huang, H.; Zhong, C. Programming integrative extracellular and intracellular biocatalysis for rapid, robust, and recyclable synthesis of trehalose. ACS Catal. 2018, 8, 1837–1842. [Google Scholar] [CrossRef]
- Nguyen, P.Q.; Botyanszki, Z.; Tay, P.K.R.; Joshi, N.S. Programmable biofilm-based materials from engineered curli nanofibres. Nat. Commun. 2014, 5, 4945. [Google Scholar] [CrossRef]
- Olmez, T.T.; Kehribar, E.S.; Isilak, M.E.; Lu, T.K.; Seker, U.O.S. Synthetic genetic circuits for self-actuated cellular nanomaterial fabrication devices. ACS Synth. Biol. 2019, 8, 2152–2162. [Google Scholar] [CrossRef] [Green Version]
- Wei, W.; Sun, P.Q.; Li, Z.; Song, K.S.; Su, W.Y.; Wang, B.; Liu, Y.Z.; Zhao, J. A surface-display biohybrid approach to light-driven hydrogen production in air. Sci. Adv. 2018, 4, eaap9253. [Google Scholar] [CrossRef] [Green Version]
- Ding, Q.; Liu, Y.D.; Hu, G.P.; Guo, L.; Gao, C.; Chen, X.L.; Chen, W.; Chen, J.; Liu, L.M. Engineering Escherichia coli biofilm to increase contact surface for shikimate and L-malate production. Bioresour. Bioprocess. 2021, 8, 118. [Google Scholar] [CrossRef]
- Gao, C.; Zhang, A.; Chen, K.Q.; Hao, Z.K.; Tong, J.M.; Ouyang, P.K. Characterization of extracellular chitinase from Chitinibacter sp GC72 and its application in GlcNAc production from crayfish shell enzymatic degradation. Biochem. Eng. J. 2015, 97, 59–64. [Google Scholar] [CrossRef]
- Singh, B.; Verma, A.; Pooja; Mandal, P.K.; Datta, S. A biotechnological approach for degradation of inhibitory compounds present in lignocellulosic biomass hydrolysate liquor using Bordetella sp. BTIITR. Chem. Eng. J. 2017, 328, 519–526. [Google Scholar] [CrossRef]
- Wang, X.L.; Zhou, J.J.; Liu, S.; Sun, Y.Q.; Xiu, Z.L. In situ carbon dioxide capture to co-produce 1,3-propanediol, biohydrogen and micro-nano calcium carbonate from crude glycerol by Clostridium butyricum. Biotechnol. Biofuels Bioprod. 2022, 15, 91. [Google Scholar] [CrossRef]
- Gao, C.; Hou, J.; Xu, P.; Guo, L.; Chen, X.; Hu, G.; Ye, C.; Edwards, H.; Chen, J.; Chen, W.; et al. Programmable biomolecular switches for rewiring flux in Escherichia coli. Nat. Commun. 2019, 10, 3751. [Google Scholar] [CrossRef] [Green Version]
- Johnson, C.W.; Abraham, P.E.; Linger, J.G.; Khanna, P.; Hettich, R.L.; Beckham, G.T. Eliminating a global regulator of carbon catabolite repression enhances the conversion of aromatic lignin monomers to muconate in Pseudomonas putida KT2440. Metab. Eng. Commun. 2017, 5, 19–25. [Google Scholar] [CrossRef]
- Gao, C.; Guo, L.; Ding, Q.; Hu, G.; Ye, C.; Liu, J.; Chen, X.; Liu, L. Dynamic consolidated bioprocessing for direct production of xylonate and shikimate from xylan by Escherichia coli. Metab. Eng. 2020, 60, 128–137. [Google Scholar] [CrossRef]
- Chen, C.X.; Ding, S.P.; Wang, D.Z.; Li, Z.M.; Ye, Q. Simultaneous saccharification and fermentation of cassava to succinic acid by Escherichia coli NZN111. Bioresour. Technol. 2014, 163, 100–105. [Google Scholar] [CrossRef]
- Schlieker, C. Prevention and reversion of protein aggregation by molecular chaperones in the E. coli cytosol: Implications for their applicability in biotechnology. J. Biotechnol. 2002, 96, 13–21. [Google Scholar] [CrossRef]
- Wang, Y.; Xue, P.; Cao, M.; Yu, T.; Lane, S.T.; Zhao, H. Directed evolution: Methodologies and applications. Chem. Rev. 2021, 121, 12384–12444. [Google Scholar] [CrossRef]
- Porter, J.L.; Rusli, R.A.; Ollis, D.L. Directed evolution of enzymes for industrial biocatalysis. Chembiochem 2016, 17, 197–203. [Google Scholar] [CrossRef]
- Wei, G.G.; Chen, Y.; Zhou, N.; Lu, Q.H.; Xu, S.; Zhang, A.L.; Chen, K.Q.; Ouyang, P.K. Chitin biopolymer mediates self-sufficient biocatalyst of pyridoxal 5′-phosphate and L-lysine decarboxylase. Chem. Eng. J. 2022, 427, 132030. [Google Scholar] [CrossRef]
- Liang, G.; Zhou, P.; Lu, J.; Liu, H.; Qi, Y.; Gao, C.; Guo, L.; Hu, G.; Chen, X.; Liu, L. Dynamic regulation of membrane integrity to enhance l-malate stress tolerance in Candida glabrata. Biotechnol. Bioeng. 2021, 118, 4347–4359. [Google Scholar] [CrossRef]
- Gao, C.; Tang, W.; Guo, L.; Hu, G.; Liu, J.; Liu, L.; Chen, X. Improving succinate production by engineering oxygen-dependent dynamic pathway regulation in Escherichia coli. Syst. Microbiol. Biomanufacturing 2022, 2, 331–344. [Google Scholar] [CrossRef]
- Jiang, G.; Yao, M.; Wang, Y.; Xiao, W.; Yuan, Y. A “push-pull-restrain” strategy to improve citronellol production in Saccharomyces cerevisiae. Metab. Eng. 2021, 66, 51–59. [Google Scholar] [CrossRef]
- Somasundaram, S.; Jeong, J.; Irisappan, G.; Kim, T.W.; Hong, S.H. Enhanced production of malic acid by co-localization of phosphoenolpyruvate carboxylase and malate dehydrogenase using synthetic protein scaffold in Escherichia coli. Biotechnol. Bioprocess Eng. 2020, 25, 39–44. [Google Scholar] [CrossRef]
- Ding, Q.; Li, Z.; Guo, L.; Song, W.; Wu, J.; Chen, X.; Liu, L.; Gao, C. Engineering Escherichia coli asymmetry distribution-based synthetic consortium for shikimate production. Biotechnol. Bioeng. 2022, 119, 3230–3240. [Google Scholar] [CrossRef]
- Gupta, A.; Reizman, I.M.; Reisch, C.R.; Prather, K.L. Dynamic regulation of metabolic flux in engineered bacteria using a pathway-independent quorum-sensing circuit. Nat. Biotechnol. 2017, 35, 273–279. [Google Scholar] [CrossRef]
- Ling, C.; Peabody, G.L.; Salvachua, D.; Kim, Y.M.; Kneucker, C.M.; Calvey, C.H.; Monninger, M.A.; Munoz, N.M.; Poirier, B.C.; Ramirez, K.J.; et al. Muconic acid production from glucose and xylose in Pseudomonas putida via evolution and metabolic engineering. Nat. Commun. 2022, 13, 4925. [Google Scholar] [CrossRef]
- Li, J.; Li, Y.; Cui, Z.; Liang, Q.; Qi, Q. Enhancement of succinate yield by manipulating NADH/NAD(+) ratio and ATP generation. Appl. Microbiol. Biotechnol. 2017, 101, 3153–3161. [Google Scholar] [CrossRef]
- Liu, H.; Qi, Y.; Zhou, P.; Ye, C.; Gao, C.; Chen, X.; Liu, L. Microbial physiological engineering increases the efficiency of microbial cell factories. Crit. Rev. Biotechnol. 2021, 41, 339–354. [Google Scholar] [CrossRef]
- Ding, Q.; Diao, W.; Gao, C.; Chen, X.; Liu, L. Microbial cell engineering to improve cellular synthetic capacity. Biotechnol. Adv. 2020, 45, 107649. [Google Scholar] [CrossRef]
- Qi, Y.; Liu, H.; Chen, X.; Liu, L. Engineering microbial membranes to increase stress tolerance of industrial strains. Metab. Eng. 2018, 53, 24–34. [Google Scholar] [CrossRef]
- Zhu, Z.M.; Yang, P.S.; Yang, J.H.; Zhang, J. Comparative transcriptome analysis reveals the contribution of membrane transporters to acid tolerance in Lactococcus lactis. J. Biotechnol. 2022, 357, 9–17. [Google Scholar] [CrossRef]
- Yang, J.H.; Peng, Z.; Zhu, Q.; Zhang, J.; Du, G.C. NiFe hydrogenase accessory proteins HypB-HypC accelerate proton conversion to enhance the acid resistance and D-lactic acid production of Escherichia coli. ACS Synth. Biol. 2022, 11, 1521–1530. [Google Scholar] [CrossRef]
- Brameyer, S.; Schumacher, K.; Kuppermann, S.; Jung, K. Division of labor and collective functionality in Escherichia coli under acid stress. Commun. Biol. 2022, 5, 327. [Google Scholar] [CrossRef]
- Jang, B.K.; Ju, Y.B.; Jeong, D.; Jung, S.K.; Kim, C.K.; Chung, Y.S.; Kim, S.R. L-lactic acid production using engineered Saccharomyces cerevisiae with improved organic acid tolerance. J. Fungi 2021, 7, 928. [Google Scholar] [CrossRef]
- Gao, C.; Xu, P.; Ye, C.; Chen, X.; Liu, L. Genetic circuit-assisted smart microbial engineering. Trends Microbiol. 2019, 27, 1011–1024. [Google Scholar] [CrossRef]
- Iijima, H.; Watanabe, A.; Sukigara, H.; Iwazumi, K.; Shirai, T.; Kondo, A.; Osanai, T. Four-carbon dicarboxylic acid production through the reductive branch of the open cyanobacterial tricarboxylic acid cycle in Synechocystis sp. PCC 6803. Metab. Eng. 2021, 65, 88–98. [Google Scholar] [CrossRef]
- Luo, S.; Lin, P.P.; Nieh, L.-Y.; Liao, G.-B.; Tang, P.-W.; Chen, C.; Liao, J.C. A cell-free self-replenishing CO2-fixing system. Nat. Catal. 2022, 5, 154–162. [Google Scholar] [CrossRef]
- Scheffen, M.; Marchal, D.G.; Beneyton, T.; Schuller, S.K.; Klose, M.; Diehl, C.; Lehmann, J.; Pfister, P.; Carrillo, M.; He, H.; et al. A new-to-nature carboxylation module to improve natural and synthetic CO2 fixation. Nat. Catal. 2021, 4, 105–115. [Google Scholar] [CrossRef]
- Miller, T.E.; Beneyton, T.; Schwander, T.; Diehl, C.; Girault, M.; McLean, R.; Chotel, T.; Claus, P.; Cortina, N.S.; Baret, J.C.; et al. Light-powered CO2 fixation in a chloroplast mimic with natural and synthetic parts. Science 2020, 368, 649–654. [Google Scholar] [CrossRef]
- Bogorad, I.W.; Lin, T.S.; Liao, J.C. Synthetic non-oxidative glycolysis enables complete carbon conservation. Nature 2013, 502, 693–698. [Google Scholar] [CrossRef]
- Ding, Q.; Luo, Q.; Zhou, J.; Chen, X.; Liu, L. Enhancing L-malate production of Aspergillus oryzae FMME218-37 by improving inorganic nitrogen utilization. Appl. Microbiol. Biotechnol. 2018, 102, 8739–8751. [Google Scholar] [CrossRef]
- Xie, N.Z.; Liang, H.; Huang, R.B.; Xu, P. Biotechnological production of muconic acid: Current status and future prospects. Biotechnol. Adv. 2014, 32, 615–622. [Google Scholar] [CrossRef]
- Guarnieri, M.T.; Chou, Y.C.; Salvachua, D.; Mohagheghi, A.; St John, P.C.; Peterson, D.J.; Bomble, Y.J.; Beckham, G.T. Metabolic engineering of Actinobacillus succinogenes provides insights into succinic acid biosynthesis. Appl. Environ. Microbiol. 2017, 83, e00996-17. [Google Scholar] [CrossRef]
Monomers | Applications | Market | References |
---|---|---|---|
1,4-butanediol | Medical treatment, Food, Chemical industry, Materials | USD 6.19 billion | [12,13,14] |
1,3 propanediol | Chemical industry, Materials | USD 776.3 million | [15,16,17] |
Succinic acid | Agriculture, Green solvents, Pharmaceuticals, Biodegradable plastics, Materials | 245,000 tons | [18,19] |
Adipic acid | Chemical industry, Materials | USD 6 billion | [20,21,22] |
Cadaverine | Nylon, Chelating agents, Materials | 220 million | [23,24,25,26,27,28] |
Glutaric acid | Fine chemicals, Monomers, Building blocks, Materials | NM | [29,30,31] |
Lactic acid | Food, Pharmaceutical, Chemical, Cosmetic industries | 2 million tons | [32,33,34,35] |
Monomers | Strains | Tools or Strategies | Features | References |
---|---|---|---|---|
Cadaverine | Methylosinus trichosporium | Introducing lysine decarboxylase, aspartokinase, and meso-diaminopimelate decarboxylase | 283.63 mg·L−1 | [49] |
Corynebacterium glutamicum | Cell surface display technique using PorH anchor protein, introducing xylose assimilation pathway | 11.6 mM | [50] | |
Escherichia coli | Rational engineering, Protein-directed evolution | 418 g·L−1 | [51] | |
E. coli | Combining directed evolution and computation-guided virtual screening | 160.7 g·L−1 | [52] | |
E. coli | genomic analysis, constructing 67 genes-repressing sRNAs | 13.7 g·L−1 | [53] | |
E. coli | Introducing zwitterionic peptides into lysine decarboxylase to promote correct folding, | Doubled enzymatic activity | [54] | |
E. coli | In situ CO2 recapture technology, modifying bioreactor to recapture the CO2 | 0.99 mol·mol−1 lysine | [55] | |
Adipic acid | Pseudomonas taiwanensis | Enzyme mining, cascade reaction design, metabolic optimization | 10.2 g·L−1 | [56] |
E. coli | Chemical solvent treatment and physical crushing methods | 0.39 g·g−1 glucose | [57] | |
Saccharomyces cerevisiae | Three-stage fermentation process optimization, screening heterologous enzymes | Directly produce adipic acid using glucose | [58] | |
E. coli | Establish an oxygen-dependent dynamic regulation system | increase adipic acid titer by 41.62-fold | [59] | |
S. cerevisiae | Overexpressing specific multidrug resistance transporters | Reducing toxic side effects of adipic acid on S. cerevisiae cells | [60] | |
Medium-chain α, ω-dicarboxylic acids | E. coli | Modularizing the β-oxidation pathway and ω-oxidation pathway, adaptive evolution | 15.26 g·L−1 | [61] |
Malate | E. coli | Integrating synthetic CO2 fixation and CO2 mitigation modules | 1.48 mol·mol−1 glucose | [62] |
E. coli | Overexpressing the ATP-generating phosphoenolpyruvate carboxykinase combined with the CO2 fixation pathway | CO2 fixation efficiency was increased by 110% | [63] | |
1,3-PDO | E. coli | Protein engineering and the expression of native alcohol dehydrogenase | directly produce 1,3-PDO from the sugar | [64] |
E. coli | Endogenous glycerol assimilation pathway was eliminated, and mannitol was fed as a co-substrate | 0.76 mol·mol−1 glycerol | [65] | |
E. coli | Cell surface display technique | Direct production of 1,3-PDO from starch | [66] | |
Clostridium butyricum | Optimizing the culture conditions | 70.1 g·L−1 | [67] | |
Klebsiella pneumoniae | Knocking out glucose transporter Crr | 78 g·L−1, glycerol conversion rate reaching 59.5% | [68] | |
E. coli | Fine-tune hybrid pathways, match the energy demand, carbon coordination | 22.66 g·L−1 | [69] | |
Vibrio natriegens | Deleting the global transcriptional regulators, transcriptomics analysis | 0.50 mol·mol−1 glycerol | [70] | |
C. butyricum | Combinational chemical (NTG) and plasma-based mutagenesis (ARTP) process | 37 g·L−1, it was 29.48% higher than that of the wild strain | [15] | |
Lactobacillus reuteri | Electron beam irradiation mutagenesis irrelevant | 93.2 g·L−1, it was 34.6% higher than that of the wild strain | [71] | |
cis, cis-muconic acid | E. coli | Parallel metabolic pathway engineering | 4.09 g·L−1, 0.31 g·g−1 glucose | [72] |
E. coli | Sensor-regulator and RNAi-based bifunctional dynamic switch | 1.8 g·L−1 | [73] | |
Lactic acid | Trichoderma reesei and Rhizopus delemar | Co-culture strategy | Producing lactate from microcrystalline cellulose | [74] |
Pseudomonas putida and Bacillus coagulans | Developing a synthetic consortium | 35.8 g·L−1 | [75] | |
E. coli | Screening xylose catabolic operon | a 50% increase in titer than that of the wild strain | [76] | |
Lacobacillus manihotivorans | Recruited for simultaneous saccharification and fermentation of the substrate | 18.69 g·L−1 | [77] | |
Lactococcus lactis | The mutation of key proteins and hosts, screening the hetero-molecular chaperone protein Dnak mutant | Stress tolerance and lactic acid production can be greatly improved | [78] | |
L. lactis | Introduce protective agents, add antioxidants | improve the intracellular pH of L. lactis, improving acid stress resistance | [79] | |
S. cerevisiae and E. coli | Improve proton conversion in cell metabolism or engineer some acid-tolerance genes | Exhibited good cell growth and productivity under high concentrations of lactic acid | [80,81] | |
2,5-Furandicarboxylic acid | Synechococcus elongatus and P. putida | Co-culturing engineered, surface engineering | The FDCA yield is elevated to almost 100% | [82] |
Terephthalic acid | E. coli | Oleyl alcohol was recruited as an organic phase for biphasic microbial transformation | 6.9 g·L−1 | [83] |
2-pyrone-4,6-dicarboxylic acid | E. coli | Chemo–microbial hybrid process, microwave-assisted, whole-cell conversion strategy | A yield of up to 96% | [84] |
Medium-chain polyhydroxyalkanoate | P. putida and E. coli | Developing a synthetic consortium | 1.02 g·L−1 | [85] |
Succinic acid | Actinobacillus succinogenes | Cell immobilization based on biofilm, biofilm-based cell-immobilized fermentation technology | 18% increased titer compared with that of free cell fermentation | [86] |
E. coli | Using promoters to co-expression of CO2 transport and fixation genes | 89.4 g·L−1 | [87] | |
Mannheimia | Building glycerol and glucose substrate utilization pathways | The reducing equivalents mole generated was doubled | [88] | |
E. coli | ATP-generating phosphoenolpyruvate carboxykinase co-expressed with the xylose utilization pathway | 11.13 g·L−1 | [89] | |
Mannheimia succiniciproducens | Malate dehydrogenase from different sources was screened and characterized | 134.25 g·L−1 | [88] | |
E. coli | Replacement of high energy consumption pathway | Increase titer by 282% | [90] | |
E. coli | Adaptive laboratory evolution | 27.33 g·L−1 | [91] | |
E. coli | Identifying Cus copper efflux system to activate CusCFBA expression to transport Cu(I) out of cells | a 36% increase in biomass | [92] | |
E. coli | Introducing mutations in DNA-dependent RNA polymerase RpoB | 40% increase in cell growth and succinic acid production | [93] | |
E. coli | Global regulation, overexpressing E. coli global regulator IrrE | 24.5 g·L−1 | [94] | |
A. succinogenes | Add protective agents | Increase the titer by 22% | [95] | |
E. coli | A digital pH-sensing system RiDE was designed for the autonomous control of strain evolution | Rapidly obtaining the desired phenotypes | [96] | |
Propionibacterium acidipropionici | In situ product separation, developing membrane separation coupled fermentation technology | Increase the titer by 48.54% | [97] | |
M. succiniciproducens | Change the fluidity of the cell membrane, membrane engineering | 84.21 g·L−1, 1.27 mol·mol−1 glucose | [98] | |
Yarrowia lipolytica | overexpressing glycerol kinase GUT1 | Increased cell growth and product synthesis | [99] | |
Glutaric acid | E. coli | Introducing the malonic acid utilization pathway | 6.3 g·L−1 | [100] |
E. coli | Stronger promoters and high-copy plasmids, bi-directional cadaverine transporter | 54.5 g·L−1 | [101] | |
E. coli | Colloidal chitin cell immobilization strategies | 73.2 g·L−1 | [102] | |
E. coli | Plasmid optimization, promoter engineering, and ribosome binding site engineering | 77.62 g·L−1 | [103] | |
C. glutamicum | Increasing precursor concentrations by overexpressing key enzymes in a synthetic pathway | 22.7 g·L−1 | [40] | |
E. coli | Autonomous circuit targeting byproduct synthetic pathways | Decreased accumulation of acetic acid, lactic acid, and formic acid | [104] | |
C. glutamicum | Genomic analysis, combinational engineering | 105.3 g·L−1 | [105] | |
E. coli | Coupling the regeneration and consumption of cofactors or precursors | 54.5 g·L−1 | [101] | |
1,2,4-butanetriol | E. coli | Trigger factor, GroEL-GroES, and DnaK-DnaJ-GrpE, introducing trigger factor | 1.01 g·L−1 | [106] |
Malonic acid | Saccharomyces cerevisiae | Overexpressing key enzymes in a synthetic pathway | 1.62 g·L−1 | [107] |
glucaric acid | E. coli | Synthetic protein scaffold to shorten the spatial distance, constructing a substrate channel | Exhibited a 5-fold improvement | [108] |
E. coli | Designing protein abundance bifunctional molecular switch | 1.16 g·L−1 | [109] | |
Itaconic acid | Aspergillus niger | Various dynamic switches design, a low-pH-induced promoter Pgas | 4.92 g·L−1 | [110] |
2,3-butanediol | E. coli | Enforced ATP wasting was introduced to consume ATP | Increase the titer by 10-fold | [111] |
NM | E. coli | Global regulation, random mutagenesis | Increase growth ability by nearly 50% | [112] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, C.; Chen, X.; Liu, L.; Wu, J.; Gao, C. Engineering Microorganisms to Produce Bio-Based Monomers: Progress and Challenges. Fermentation 2023, 9, 137. https://doi.org/10.3390/fermentation9020137
Chen C, Chen X, Liu L, Wu J, Gao C. Engineering Microorganisms to Produce Bio-Based Monomers: Progress and Challenges. Fermentation. 2023; 9(2):137. https://doi.org/10.3390/fermentation9020137
Chicago/Turabian StyleChen, Chenghu, Xiulai Chen, Liming Liu, Jing Wu, and Cong Gao. 2023. "Engineering Microorganisms to Produce Bio-Based Monomers: Progress and Challenges" Fermentation 9, no. 2: 137. https://doi.org/10.3390/fermentation9020137
APA StyleChen, C., Chen, X., Liu, L., Wu, J., & Gao, C. (2023). Engineering Microorganisms to Produce Bio-Based Monomers: Progress and Challenges. Fermentation, 9(2), 137. https://doi.org/10.3390/fermentation9020137