Alcohol-Induced Headache with Neuroinflammation: Recent Progress
Abstract
:1. Introduction
2. Hypotheses on the Causes of AIHs
2.1. Direct Inflammation in the Trigeminal System
2.2. Indirect Inflammation in the Trigeminal System
2.3. Induction of CSD
2.4. Induction of Vascular Changes
3. Ethanol, AIH, and Neuroinflammation
3.1. Ethanol and Its Metabolism In Vivo
3.1.1. TRPV1
3.1.2. TLR4
Compound | Animal Model | Animal Type | Triggering Site | Molecules Involved | References |
---|---|---|---|---|---|
Ethanol | Wild | Rat, tissues | Lowers TRPV1 thermal threshold | Ca2+↑ CGRP↑ SP↑ | [67] |
Ethanol | Wild | Guinea pig, Dunkin Hartley | Lowers TRPV1 thermal threshold | Ca2+↑ CGRP↑ SP↑ | [67] |
Ethanol | Wild | White rabbit, New Zealand | Lowers TRPV1 thermal threshold | ND | [36] |
Ethanol | Wild | Guinea pig, Dunkin Hartley | Lowers TRPV1 thermal threshold | Ca2+↑ CGRP↑ SP↑ | [37] |
Ethanol | Wild | Guinea pig, Dunkin Hartley | Lowers TRPV1 thermal threshold; vasodilation of meningeal vessels; enhancement of blood flow | CGRP↑ SP↑ | [9] |
Ethanol | Wild | Rat, Sprague Dawley | Enhances cell apoptosis | CGRP↑ TNF-α↑ | [68] |
Ethanol | Wild, TRPV1−/− | Mouse, C57BL/6 | More ethanol consumption; weaker withdrawal severity | TRPV1−/− | [32] |
Ethanol | Human | Oral epithelial cells | TRPV1↑ | mRNA↑ | [44] |
Acetate | Wild | Rat, Sprague Dawley | Enhances AIH severity | Adenosine↑ | [46] |
Ethanol | TLR4−/− | Rat, Wistar | Activates TLR4 | COX-2↓ iNOS↓ | [58] |
Ethanol | Wild, TLR4−/− | Mouse, C57BL/6 | Upregulates cytokine | TLR4↑ IL-1β↑ | [63] |
Ethanol | Wild | Rat, Wistar | Activates TLR4 | TLR4↑ iNOS↑ COX-2↑ IL-1β↑ | [53] |
Ethanol | Wild | Brain tissue, Mouse, C57BL/6 | Activates TLR4 | TNF-α↑ MCP-1↑ | [54] |
Ethanol | Wild | Mouse, C57BL/6 | Activates TLR4 | CCL2↑ MCP-1↑ IL-6↑ | [56] |
Ethanol | Wild | Mouse, B6C3F1 | Activates TLR4 | IL-6↑ IL-10↑ IL-12↑ | [57] |
Ethanol | Wild | Rat, Wistar | Activates TLR4 in lipid raft | TLR4↑ TRIF↑ IRF3↑ | [52] |
Ethanol | Wild, TLR4−/− | Mouse, C57BL/6 | Upregulates TLR4 and TRPV1 | miR-125b↑ miR-200s↑ miR-183↑ mRNA↑ | [43] |
Ethanol | Wild, TLR4−/− | Rat, Wistar, Mouse, C57BL/6 | Upregulated TLR4 and cytokine | TLR4↑ iNOS↑ | [51] |
Ethanol | Wild, TLR4−/− | Rat, Wistar, Mouse, C57BL/6 | Upregulation of cytokine | iNOS↑ COX-2↑ TNF-α↑ IL-1β↑ | [55] |
Ethanol | Wild | Rat, Wistar | Blocks TLR4 | TLR4↓ MyD88↓ CD40↓ TRIF↓ | [59] |
Ethanol and EtG | Wild | Rat, Sprague Dawley | Enhanced AIH | TLR4↑ SEAP↑ | [66] |
Ethanol | Wild | Rat, Sprague Dawley | Blocks NF-κB; attenuates AIH | NF-κB↓ COX-2↓ | [44] |
Ethanol | Wild, TRPV1−/− | Mouse, C57BL/6 | Reduces sensation | TRPV1−/− | [31] |
Ethanol | Wild, TRPV−/− | Mouse, C57BL/6 | Reduces inflammation | TRPV1−/− and Ca2+ removal | [69] |
Ethanol | Wild, TLR4−/− | Mouse, C57BL/6 | Reduces ethanol-induced neuroinflammatory damage | TRPV1−/− | [50] |
3.2. Effects of Ethanol and Its Metabolites In Vitro
3.2.1. TRPV1
Compound | Origin | Cells Tested | Triggering Site | Molecules Involved | References |
---|---|---|---|---|---|
Ethanol | Rat | HEK293 DRG TGN | Lowers TRPV1 thermal threshold | Ca2+↑ CGRP↑ SP↑ | [67] |
Ethanol | Human | BMVEC | Upregulates TRPV2 | mRNA↑ | [70] |
Ethanol | Human, rat | HEK293 | Upregulates TRPV1 | PIP2↑ | [45] |
Ethanol | Rat | HEK293F | Lowers TRPV1 thermal threshold | Ca2+↑ | [74] |
Acetaldehyde | Human, rat | HEK293 | Lowers TRPV1 thermal threshold | PKA↑ PKC↑ | [75] |
Ethanol | Rat | Brain slice | Upregulates PC | HMGB1↑ TLR2↑ TLR3↑ TLR4↑ | [76] |
Ethanol | Rat, mouse | Microglial cells | Upregulates cytokine | TLR4↑ NF-κB↑ MAPK↑ IRF3↑ TNF-α↑ IL-1β↑ | [55] |
Ethanol | Human | Peripheral blood monocyte | Upregulates PC | TLR4↑ LPS↑ IkBα↑ NIK↑ MCP-1↑ TNF-α↑ NF-κB↑ | [77] |
Ethanol | Rat | Primary cultures of rat cortical astrocytes | Upregulates cytokine | TLR4↑ IL-1RI↑ IL-1β↑ | [61] |
Ethanol | Rat | Primary cultures of rat cortical astrocytes | Upregulates PC and cytokine | TLR4↑ MAPK↑ NF-κB↑ AP-1↑ IRAK↑ COX2↑ iNOS↑ IL-1RI↑ IL-1β↑ | [62] |
Ethanol and EtG | Human | HEK293 | Induces tactile allodynia | TRL4↑ SEAP↑ NF-κB↑ | [66] |
3.2.2. TLR4
4. Effects of Congeners and Their Metabolites on AIHs and Neuroinflammation
4.1. Phenol
4.1.1. Stimulation of 5-HT
4.1.2. Stimulation of Primary Enzymes
Effects on MAO
Effects on Metabolic Enzymes
4.1.3. Stimulation of TRPV1 and TLR4
Compound | Origin and Materials | Triggering Site | Molecules Involved | References |
---|---|---|---|---|
Flavonoids | Human, PRP | Upregulates 5-HT | Flavonoids↑ | [4] |
Ketanse and pizotifen | Human, patients with headaches | Blocks headache with 5-HT antagonists | 5-HT↓ | [102] |
Red wines | Human, patients with headaches | Upregulates 5-HT | ND | [6] |
Resveratrol | Rats, Sprague Dawley and brain tissue | Lowers 5-HT expression | Enzyme activity of MAO↓ | [90] |
Flavonoids | Human, PRP | Upregulates 5-HT | Flavonoids (greater than 500 Da)↑ | [89] |
Quercetin | Mouse | Lowers 5-HT expression | Enzyme activity of MAO↓ | [93] |
Quercetin | Human | Lowers 5-HT expression | Enzyme activity of MAO↓ | [92] |
Nonvolatile fractions (caffeic acid, vanillin, syringaldehyde, Ellagic acid) | Mouse | Lowers blood acetaldehyde level and depresses ethanol metabolism | ADH↓ | [95] |
Nonvolatile fraction | Mouse | Lowers blood acetaldehyde and acetate levels; depresses ethanol metabolism; prolongs drunkenness | ADH↓ LORR↑ | [96] |
GFM and linoleic acid | Mouse, BALA/c; HepG2 cells | Promotes ethanol metabolism | ADH↑ ALDH↑ CYP2E1↑ Catalase↑ | [103] |
Flavonoids and 5-HT | Mouse, C57BL/6 HT-29, cells | Neuron Inflammation | TLR4↑ IL-8↑ IL-1β↑ TNF-α↑ | [98] |
Flavonoids and 5-HT | Rat, Sprague Dawley TG cells | Neuron Inflammation | Ca2+↑ CGRP↑ | [99] |
Eriodictyol | Mouse, Swiss Rat, Wistar | Attenuates allodynia | Ca2+↓ | [100] |
Eugenol | C2D7 cells TG/DRG neurons | Attenuates pain | Ca2+↓ | [101] |
4.2. Histamine
Compound | Origin and Materials | Triggering Site | Molecules Involved | References |
---|---|---|---|---|
Histamine | ||||
High-histamine wines | Human | Increased AIH | ND | [107] |
Histamine | Mouse, inflammation model | Sensitized TRPV1 and increased pain | Ca2+↑ PKC↑ | [113] |
Histamine | Human, patients | Reduced headache | Increased DAO; unchanged histamine values | [106] |
Histamine | Human, patients | Reduced headache | Increased DAO; unchanged histamine values | [105] |
Histamine | Human, endothelial cells | Enhanced sensitivity | TLR4↑ | [115] |
Histamine | Human, gingival fibroblasts cells | Enhanced sensitivity | TLR4↑ | [114] |
Histamine | Mouse, Wild, KO-TLR4 DRG neurons HEK293 | TLR4 expression Promoted histamine-mediated sensitivity by increasing the TRPV1 channel | TLR4↓ Ca2+↓ | [80] |
Methanol | ||||
Methanol | Human | Increased headache | ND | [116] |
Methanol | Human | Increased hangover | Slower metabolism of methanol | [117] |
Methanol | Human | Increased MCS | ND | [118] |
4.3. Methanol
4.4. Fusel Oil
4.5. Linoleic Acid
5. Conclusions and Perspective
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Krymchantowski, A.V.; Cunha Jevoux, C.D. Wine and Headache. Headache 2014, 54, 967–975. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Panconesi, A.; Franchini, M.; Bartolozzi, M.L.; Mugnai, S.; Guidi, L. Alcoholic drinks as triggers in primary headaches. Pain Med. 2013, 14, 1254–1259. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olesen, J. Problem Areas in the International Classification of Headache Disorders, 3rd edition (beta). Cephalalgia 2014, 34, 1193–1199. [Google Scholar] [CrossRef] [PubMed]
- Pattichis, K.; Louca, L.L.; Jarman, J.; Sandler, M.; Glover, V. 5-Hydroxytryptamine release from platelets by different red wines: Implications for migraine. Eur. J. Pharmacol. 1995, 292, 173–177. [Google Scholar] [CrossRef] [PubMed]
- Onderwater, G.L.J.; van Oosterhout, W.P.J.; Schoonman, G.G.; Ferrari, M.D.; Terwindt, G.M. Alcoholic beverages as trigger factor and the effect on alcohol consumption behavior in patients with migraine. Eur. J. Neurol. 2019, 26, 588–595. [Google Scholar] [CrossRef] [PubMed]
- Jarman, J.; Glover, V.; Sandler, M. Release of (14C) 5-hydroxytryptamine from human platelets by red wine. Life Sci. 1991, 48, 2297–2300. [Google Scholar] [CrossRef]
- Chapman, L.F. Experimental induction of hangover. Q. J. Stud. Alcohol 1970, 31, 67–86. [Google Scholar] [CrossRef]
- Panconesi, A. Alcohol and Migraine:Trigger Factor, Consumption, Mechanisms. A Review. J. Headache Pain 2008, 9, 19–27. [Google Scholar] [CrossRef] [Green Version]
- Nicoletti, P.; Trevisani, M.; Manconi, M.; Zagli, G.; Benemei, S.; Capone, J.; Pini, L.; Geppetti, P. Ethanol causes neurogenic inflammation and vasodilalation by TRPV1 activation and CGRP release in the trigeminovascular system of the guinea pig. Cephalalgia 2008, 28, 9–17. [Google Scholar] [CrossRef]
- Chabriat, H.; Danchot, J.; Michel, P. Precipitating factors of headache. A prospective study in a national control-matched survey in migraineurs and nonmigraineurs. Headache 1999, 39, 335–338. [Google Scholar] [CrossRef]
- Schnedla, W.J.; Queissner, R. Migraines appear more likely to be caused by histamine rather than ethanol. Eur. Acad. Neurol. 2019, 26, e79. [Google Scholar] [CrossRef]
- Rohsenow, D.J.; Howland, J. The Role of Beverage Congeners in Hangover and Other Residual Effects of Alcohol Intoxication: A Review. Curr. Drug Abus. Rev. 2010, 3, 509–517. [Google Scholar] [CrossRef] [PubMed]
- Geppetti, P.; Materazzi, S.; Nicoletti, P.; Trevisani, M. Models of Neurogenic Inflammation. In In Vivo Models of Inflammation. Progress in Inflammation Research; Stevenson, C.S., Marshall, L.A., Morgan, D.W., Eds.; Birkhäuser: Basel, Switzerland, 2006. [Google Scholar] [CrossRef]
- Rezek, Ö.; Boldogkői, Z.; Tombácz, D.; Kővágó, C.; Gerendai, I.; Palkovits, M.; Tóth, I.E. Location of parotid preganglionic neurons in the inferior salivatory nucleus and their relation to the superior salivatory nucleus of rat. Neurosci. Lett. 2008, 440, 265–269. [Google Scholar] [CrossRef] [PubMed]
- Rea, W.J.; Patel, K.D. Reversibility of Chronic Disease and Hypersensitivit: The Effects of Environmental Pollutants on the Organ System; CRC Press LLC: Boca Raton, FL, USA, 2014; Volume 2, p. 723. [Google Scholar]
- Burstein, R.; Jakubowski, M. Unitary Hypothesis for Multiple Triggers of the Pain and Strain of Migraine. J. Comp. Neurol. 2005, 493, 9–14. [Google Scholar] [CrossRef] [PubMed]
- Choi, H.D.; Kang, H.E.; Yang, S.H.; Lee, M.G.; Shin, W.G. Pharmacokinetics and first-pass metabolism of astaxanthin in rats. Br. J. Nutr. 2011, 105, 220–227. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Monteiro, H.M.C.; Barreto-Silva, N.L.; Santos, G.E.D.; Santos, A.D.S.; Sousa, M.S.B.; Amâncio-dos-Santos, Â. Physical exercise versus fluoxetine: Antagonistic effects on cortical spreading depression in Wistar rats. Eur. J. Pharmacol. 2015, 762, 49–54. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bowyer, S. Cortical spreading depression (CSD) and migraine. Cephalalgia 1999, 19, 542–542. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Summ, O.; Holland, P.R.; Akerman, S.; Goadsby, P.J. TRPV1 receptor blockade is ineffective in different in vivo models of migraine. Cephalalgia 2011, 31, 172–180. [Google Scholar] [CrossRef]
- Sonn, J.; Mayevsky, A. The effect of ethanol on metabolic, hemodynamic and electrical responses to cortical spreading depression. Brain Res. 2001, 908, 174–186. [Google Scholar] [CrossRef]
- Abadie-Guedes, R.; Guedes, R.C.A.; Bezerra, R.S. The impairing effect of acute ethanol on spreading depression is antagonized by astaxanthin in rats of 2 young-adult ages. Alcohol. Clin. Exp. Res. 2012, 36, 1563–1567. [Google Scholar] [CrossRef]
- Rimm, E.B.; Klatsky, A.; Grobbee, D.; Stampfer, M. Review Of Moderate Alcohol Consumption And Reduced Risk Of Coronary Heart Disease: Is The Effect Due To Beer, Wine, Or Spirits? Br. Med. J. 1996, 312, 731–736. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barbour, R.L.; Gebrewold, A.; Altura, B.M. Optical spectroscopy and cerebral vascular effects of alcohol in the intact brain: Effects on tissue deoxyhemoglobin, blood content, and reduced cytochrome oxidase. Alcohol. Clin. Exp. Res. 1993, 17, 1319–1324. [Google Scholar] [CrossRef] [PubMed]
- Barbour, R.L.; Gebrewold, A.; Altura, B.T. Optical spectroscopy and prevention of deleterious cerebral vascular effects of ethanol by magnesium ions. Eur. J. Pharmacol. 2002, 447, 79–86. [Google Scholar] [CrossRef] [PubMed]
- Kudo, R.; Yuui, K.; Kasuda, S.; Hatake, K. Effect of alcohol on vascular function. Jpn. J. Alcohol Stud. Drug Depend. 2015, 50, 123–134. [Google Scholar]
- Panconesi, A.; Bartolozzi, M.L.; Mugnai, S.; Guidi, L. Alcohol as a dietary trigger of primary headaches: What triggering site could be compatible? Neurol. Sci. 2012, 33, 203–205. [Google Scholar] [CrossRef] [PubMed]
- Eriksson, C.J. The role of acetaldehyde in the actions of alcohol (update 2000). Alcohol. Clin. Exp. Res. 2010, 25, 15S–32S. [Google Scholar] [CrossRef]
- Akbar, A.; Yiangou, Y.; Facer, P.; Walters, J.R.; Anand, P.; Ghosh, S. Increased capsaicin receptor TRPV1-expressing sensory fibres in irritable bowel syndrome and their correlation with abdominal pain. Gut 2008, 57, 923–929. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gopinath, P.; Wan, E.; Holdcroft, A.; Facer, P.; Davis, J.B.; Smith, G.D.; Bountra, C.; Anand, P.J. Increased capsaicin receptor TRPV1 in skin nerve fibres and related vanilloid receptors TRPV3 and TRPV4 in keratinocytes in human breast pain. BMC Women’s Health 2005, 5, 2. [Google Scholar] [CrossRef] [Green Version]
- Ellingson, J.M.; Silbaugh, B.C.; Brasser, S.M. Reduced Oral Ethanol Avoidance in Mice Lacking Transient Receptor Potential Channel Vanilloid Receptor 1. Behav. Genet. 2009, 39, 62–72. [Google Scholar] [CrossRef] [Green Version]
- Blednov, Y.A.; Harris, R.A. Deletion of vanilloid receptor (TRPV1) in mice alters behavioral effects of ethanol. Neuropharmacology 2009, 56, 814–820. [Google Scholar] [CrossRef] [Green Version]
- Karai, L.; Brown, D.C.; Mannes, A.J.; Connelly, S.T.; Brown, J.; Gandal, M.; Wellisch, O.M.; Neubert, J.K.; Olah, Z.; Iadarola, M.J. Deletion of vanilloid receptor 1_expressing primary afferent neurons for pain control. J. Clin. Investig. 2004, 113, 1344–1352. [Google Scholar] [CrossRef] [PubMed]
- Davis, J.B.; Gray, J.; Gunthorpe, M.J.; Hatcher, J.P.; Davey, P.T.; Overend, P.; Harries, M.H.; Latcham, J.; Clapham, C.; Atkinson, K.; et al. Vanilloid receptor-1 is essential for inflammatory thermal hyperalgesia. Nature 2000, 405, 183–187. [Google Scholar] [CrossRef] [PubMed]
- Gunthorpe, M.J.; Rami, H.K.; Jerman, J.C.; Smart, D.; Gill, C.H.; Soffin, E.M.; Luis, H.S.; Lappin, S.C.; Egerton, J.; Smith, G.D.; et al. Identification and characterisation of SB-366791, a potent and selective vanilloid receptor (VR1/TRPV1) antagonist. Neuropharmacology 2004, 46, 133–149. [Google Scholar] [CrossRef] [PubMed]
- Mustafa, S.; Ismael, H.N. Ethanol Potentiates Heat Response in the Carotid Artery via TRPV1. Life Sci. 2017, 188, 83–86. [Google Scholar] [CrossRef] [PubMed]
- Gazzieri, D.; Trevisani, M.; Tarantini, F.; Bechi, P.; Masotti, G.; Gensini, G.F.; Castellani, S.; Marchionni, N.; Geppetti, P.; Harrison, S. Ethanol dilates coronary arteries and increases coronary flow via transient receptor potential vanilloid 1 and calcitonin gene-related peptide. Cardiovasc. Res. 2006, 70, 589–599. [Google Scholar] [CrossRef] [PubMed]
- Hong, K.W.; Yoo, S.E.; Yu, S.S.; Lee, J.Y.; Rhim, B.Y. Pharmacological coupling and functional role for CGRP receptors in the vasodilation of rat pial arterioles. Am. J. Physiol. 1996, 270, 317–323. [Google Scholar] [CrossRef] [PubMed]
- Assas, B.M.; Pennock, J.I.; Miyan, J.A. Calcitonin gene-related peptide is a key neurotransmitter in the neuro-immune axis. Front. Neurosci. 2014, 8, 23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhave, G.; Hu, H.J.; Glauner, K.S.; Zhu, W.; Wang, H.; Brasier, D.J.; Oxford, G.S.; Robert, W.; Gereau, I.V. Protein kinase C phosphorylation sensitizes but does not activate the capsaicin receptor transient receptor potential vanilloid 1 (TRPV1). PNAS 2003, 100, 12480–12485. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Cang, C.L.; Kawasaki, Y.; Liang, L.L.; Zhang, Y.Q.; Ji, R.R.; Zhao, Z.Q. Neurokinin-1 receptor enhances TRPV1 activity in primary sensory neurons via PKCepsilon: A novel pathway for heat hyperalgesia. J. Neurosci. 2007, 27, 12067. [Google Scholar] [CrossRef] [Green Version]
- Koda, K.; Hyakkoku, K.; Ogawa, K.; Takasu, K.; Imai, S.; Sakurai, Y.; Fujita, M.; Ono, H.; Yamamoto, M.; Fukuda, I.; et al. Sensitization of TRPV1 by protein kinase C in rats with mono-iodoacetate-induced joint pain. Osteoarthr. Cartil. 2016, 24, 1254–1262. [Google Scholar] [CrossRef] [Green Version]
- Ureña-Peralta, J.R.; Alfonso-Loeches, S.; Cuesta-Diaz, C.M.; García-García, F.; Guerri, C. Deep sequencing and miRNA profiles in alcohol-induced neuroinflammation and the TLR4 response in mice cerebral cortex. Sci. Rep. 2018, 8, 15913. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sakakibara, A.; Sakakibara, S.; Kusumoto, J.; Takeda, D.; Hasegawa, T.; Akashi, M.; Minamikawa, T.; Hashikawa, K.; Terashi, H.; Komori, T. Upregulated Expression of Transient Receptor Potential Cation Channel Subfamily V Receptors in Mucosae of Patients with Oral Squamous Cell Carcinoma and Patients with a History of Alcohol Consumption or Smoking. PLoS ONE 2017, 12, e0169723. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vetter, I.; Wyse, B. Mechanisms involved in potentiation of transient receptor potential vanilloid 1 responses by ethanol. Eur. J. Pain 2008, 12, 441–454. [Google Scholar] [CrossRef] [PubMed]
- Maxwell, C.R.; Spangenberg, R.J.; Hoek, J.B.; Silberstein, S.D.; Oshinsky, M.L. Acetate Causes Alcohol Hangover Headache in Rats. PLoS ONE 2010, 5, e15963. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saloman, J.L.; Chung, M.K.; Ro, J.Y. P2X 3 and TRPV1 functionally interact and mediate sensitization of trigeminal sensory neurons. Neuroscience 2013, 232, 226–238. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kwon, S.G.; Roh, D.H.; Yoon, S.Y.; Moon, J.Y.; Choi, S.R.; Choi, H.S.; Kang, S.Y.; Han, H.J.; Beitz, A.J.; Lee, J.H. Blockade of peripheral P2Y1 receptors prevents the induction of thermal hyperalgesia via modulation of TRPV1 expression in carrageenan-induced inflammatory pain rats: Involvement of p38 MAPK phosphorylation in drugs. Neuropharmacology 2014, 79, 368–379. [Google Scholar] [CrossRef] [PubMed]
- Hutchinson, M.R.; Zhang, Y.; Brown, K.; Coats, B.D.; Shridhar, M.; Sholar, P.W.; Patel, S.J.; Crysdale, N.Y.; Harrison, J.A.; Maier, S.F.; et al. Non-stereoselective reversal of neuropathic pain by naloxone and naltrexone: Involvement of toll-like receptor 4 (TLR4). Eur. J. Neurosci. 2008, 28, 20–29. [Google Scholar] [CrossRef] [Green Version]
- Pascual, M.; Baliño, P.; Alfonso-Loeches, S.; Aragón, C.M.; Guerri, C. Impact of TLR4 on behavioral and cognitive dysfunctions associated with alcohol-induced neuroinflammatory damage. Brain Behav. Immun. 2011, 25, s80–s91. [Google Scholar] [CrossRef]
- Fernandez-Lizarbe, S.; Montesinos, J.; Guerri, C. Ethanol induces TLR4/TLR2 association, triggering an inflammatory response in microglial cells. J. Neurochem. 2013, 126, 261–273. [Google Scholar] [CrossRef]
- Pascuallucas, M.; Fernandezlizarbe, S.; Montesinos, J.; Guerri, C. LPS or ethanol triggers clathrin- and rafts/caveolae-dependent endocytosis of TLR4 in cortical astrocytes. J. Neurochem. 2014, 129, 448–462. [Google Scholar] [CrossRef]
- Vallés, S.L.; Blanco, A.M.; Pascual, M.; Guerri, C. Chronic ethanol treatment enhances inflammatory mediators and cell death in the brain and in astrocytes. Brain Pathol. 2004, 14, 365–371. [Google Scholar] [CrossRef] [PubMed]
- Qin, L.; He, J.; Hanes, R.N.; Pluzarev, O.; Hong, J.S.; Crews, F.T. Increased systemic and brain cytokine production and neuroinflammation by endotoxin following ethanol treatment. J. Neuroinflammation 2008, 5, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fernandez-lizarbe, S.; Pascual, M.; Guerri, C. Critical Role of TLR4 Response in the Activation of Microglia Induced by Ethanol. J. Immunol. 2009, 183, 4733–4744. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kane, C.J.; Phelan, K.D.; Douglas, J.C.; Wagoner, G.; Johnson, J.W.; Xu, J.; Phelan, P.S.; Drew, P.D. Effects of ethanol on immune response in the brain: Region-specific changes in adolescent versus adult mice. Alcohol. Clin. Exp. Res. 2014, 38, 384–391. [Google Scholar] [CrossRef] [Green Version]
- Pruett, S.B.; Zheng, Q.; Fan, R.; Matthews, K.; Schwab, C. Ethanol suppresses cytokine responses induced through Toll-like receptors as well as innate resistance to Escherichia coli in a mouse model for binge drinking. Alcohol 2004, 33, 147–155. [Google Scholar] [CrossRef] [PubMed]
- Alfonso-Loeches, S.; Pascual-Lucas, M.; Blanco, A.M.; Sanchez-Vera, I.; Guerri, C. Pivotal Role of TLR4 Receptors in Alcohol-Induced Neuroinflammation and Brain Damage. J. Neurosci. 2010, 30, 8285–8295. [Google Scholar] [CrossRef] [Green Version]
- Jurga, A.M.; Rojewska, E.; Piotrowska, A.; Makuch, W.; Pilat, D.; Przewlocka, B.; Mika, J. Blockade of Toll-Like Receptors (TLR2, TLR4) Attenuates Pain and Potentiates Buprenorphine Analgesia in a Rat Neuropathic Pain Model. Neural Plast. 2016, 2016, 5238730. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Romsing, J.; Moiniche, S. A systematic review of COX-2 inhibitors compared with traditional NSAIDs, or different COX-2 inhibitors for post-operative pain. Acta Anaesthesiol. Scand. 2004, 48, 525–546. [Google Scholar] [CrossRef]
- Blanco, A.M.; Perez-Arago, A.; Fernandez-Lizarbe, S.; Guerri, C. Ethanol mimics ligand-mediated activation and endocytosis of IL-1RITLR4 receptors via lipid rafts caveolae in astroglial cells. J. Neurochem. 2008, 106, 625–639. [Google Scholar] [CrossRef] [PubMed]
- Blanco, A.M.; Vallés, S.L.; Pascual, M.; Guerri, C. Involvement of TLR4/type I IL-1 receptor signaling in the induction of inflammatory mediators and cell death induced by ethanol in cultured astrocytes. J. Immunol. 2005, 175, 6893–6899. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alfonso-Loeches, S.; Ureña-Peralta, J.; Morillo-Bargues, M.J.; Gómez-Pinedo, U.; Guerri, C. Ethanol-Induced TLR4/NLRP3 Neuroinflammatory Response in Microglial Cells Promotes Leukocyte Infiltration Across the BBB. Neurochem. Res. 2016, 41, 193–209. [Google Scholar] [CrossRef] [PubMed]
- Goll, M.; Schmitt, G.; Ganssmann, B.; Aderjan, R.E. Excretion profiles of ethyl glucuronide in human urine after internal dilution. J. Anal. Toxicol. 2002, 26, 262–266. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lewis, S.S.; Hutchinson, M.R.; Rezvani, N.; Loram, L.C.; Zhang, Y.; Maier, S.F.; Rice, K.C.; Watkins, L.R.J.N. Evidence that intrathecal morphine-3-glucuronide may cause pain enhancement via toll-like receptor 4/MD-2 and interleukin-1β. Neuroscience 2010, 165, 569–583. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lewis, S.S.; Hutchinson, M.R.; Zhang, Y.; Hund, D.K.; Maier, S.F.; Rice, K.C.; Watkins, L.R. Glucuronic acid and the ethanol metabolite ethyl-glucuronide cause toll-like receptor 4 activation and enhanced pain. Brain Behav. Immun. 2013, 30, 24–32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trevisani, M.; Smart, D.; Gunthorpe, M.J.; Tognetto, M.; Barbieri, M.; Campi, B.; Amadesi, S.; Gray, J.; Jerman, J.C.; Brough, S.J.; et al. Ethanol elicits and potentiates nociceptor responses via the vanilloid receptor-1. Nat. Neurosci. 2002, 5, 546–551. [Google Scholar] [CrossRef] [PubMed]
- Trevisani, M.; Gazzieri, D.; Benvenuti, F.; Campi, B.; Dinh, Q.T.; Groneberg, D.A.; Rigoni, M.; Emonds-Alt, X.; Creminon, C.; Fischer, A.; et al. Ethanol Causes Inflammation in the Airways by a Neurogenic and TRPV1-Dependent Mechanism. J. Pharmacol. Exp. Ther. 2004, 309, 1167–1173. [Google Scholar] [CrossRef] [Green Version]
- Luo, X.J.; Li, N.S.; Zhang, Y.S.; Liu, B.; Yang, Z.C.; Li, Y.J.; Dong, X.R.; Peng, J. Vanillyl nonanoate protects rat gastric mucosa from ethanol-induced injury through a mechanism involving calcitonin gene-related peptide. Eur. J. Pharmacol. 2011, 666, 211–217. [Google Scholar] [CrossRef]
- Vigna, S.R.; Shahid, R.A.; Liddle, R.A. Ethanol contributes to neurogenic pancreatitis by activation of TRPV1. Faseb J. 2014, 28, 891–896. [Google Scholar] [CrossRef] [Green Version]
- Chang, S.L.; Huang, W.; Mao, X.; Mack, M.L. Ethanol’s Effects on Transient Receptor Potential Channel Expression in Brain Microvascular Endothelial Cells. J. Neuroimmune Pharmacol. 2018, 13, 498–508. [Google Scholar] [CrossRef]
- Vellani, V.; Mapplebeck, S.; Moriondo, A.; Davis, J.B.; McNaughton, P.A. Protein kinase C activation potentiates gating of the vanilloid receptor VR1 by capsaicin, protons, heat and anandamide. J. Physiol. 2001, 534, 813–825. [Google Scholar] [CrossRef]
- Zhou, Y.; Li, G.D.; Zhao, Z.Q. State-dependent phosphorylation of ε-isozyme of protein kinase C in adult rat dorsal root ganglia after inflammation and nerve injury. J. Neurochem. 2003, 85, 571–580. [Google Scholar] [CrossRef] [PubMed]
- Gatti, R.; Andre, E.; Barbara, C.; Dinh, T.Q.; Fontana, G.; Fischer, A.; Geppetti, P.; Trevisani, M. Ethanol potentiates the TRPV1-mediated cough in the guinea pig. Pulm. Pharmacol. Ther. 2009, 22, 33–36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lam, P.M.W.; McDonald, J.; Lambert, D.G. Characterization and comparison of recombinant human and rat TRPV1 receptors: Effects of exo- and endocannabinoids. Br. J. Anaesth. 2005, 94, 649–656. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moriyama, T.; Higashi, T.; Togashi, K.; Iida, T.; Segi, E.; Sugimoto, Y.; Tominaga, T.; Narumiya, S.; Tominaga, M. Sensitization of TRPV1 by EP 1 and IP reveals peripheral nociceptive mechanism of prostaglandins. Mol. Pain 2005, 1, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crews, F.T.; Qin, L.; Sheedy, D.; Vetreno, R.P.; Zou, J. High Mobility Group Box 1/Toll-like Receptor Danger Signaling Increases Brain Neuroimmune Activation in Alcohol Dependence. Biol. Psychiatry 2013, 73, 602–612. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Szabo, G.; Mandrekar, P.; Oak, S.; Mayerle, J. Effect of ethanol on inflammatory responses. Implications for pancreatitis. Pancreatology 2007, 7, 115–123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Assas, B.M.; Miyan, J.A.; Pennock, J.I. Cross-talk between neural and immune receptors provides a potential mechanism of homeostatic regulation in the gut mucosa. Mucosal Immunol. 2014, 7, 1283–1289. [Google Scholar] [CrossRef]
- Diogenes, A.; Ferraz, C.C.R.; Akopian, A.N.; Henry, M.A.; Hargreaves, K.M. LPS sensitizes TRPV1 via activation of TLR4 in trigeminal sensory neurons. J. Dent. Res. 2011, 90, 759–764. [Google Scholar] [CrossRef]
- Min, H.; Lee, H.; Lim, H.; Jang, Y.H.; Chung, S.J.; Lee, C.J.; Lee, S.J. TLR4 enhances histamine-mediated pruritus by potentiating TRPV1 activity. Mol. Brain 2014, 7, 59. [Google Scholar] [CrossRef]
- Wu, Y.; Wang, Y.; Wang, J.; Fan, Q.; Zhu, J.; Yang, L.; Rong, W. TLR4 mediates upregulation and sensitization of TRPV1 in primary afferent neurons in 2,4,6-trinitrobenzene sulfate--induced colitis. Mol. Pain 2019, 15, 1744806919830018. [Google Scholar] [CrossRef] [Green Version]
- Backes, T.M.; Rössler, O.G.; Hui, X.; Grötzinger, C.; Lipp, P.; Thiel, G. Stimulation of TRPV1 channels activates the AP-1 transcription factor. Biochem. Pharmacol. 2018, 150, 160–169. [Google Scholar] [CrossRef] [PubMed]
- Loisy, C.; Beorchia, S.; Centonze, V.; Fozard, J.R.; Schechter, P.J.; Tell, G.P. Effects on migraine headache of MDL 72,222, an antagonist at neuronal 5-HT receptors. Double-blind, placebo-controlled study. AN Int. J. Headache 1985, 5, 79–82. [Google Scholar] [CrossRef] [PubMed]
- Alexi, T.; Azmitia, E.C. Ethanol stimulates [3H]5-HT high-affinity uptake by rat forebrain synaptosomes: Role of 5-HT receptors and voltage channel blockers. Brain Res. 1991, 554, 243–247. [Google Scholar] [CrossRef] [PubMed]
- Mansvelt, E.P.; van Velden, D.P.; Fourie, E.; Rossouw, M.; van Rensburg, S.J.; Smuts, C.M. The in vivo antithrombotic effect of wine consumption on human blood platelets and hemostatic factors. Ann. N. Y. Acad. Sci. 2002, 957, 329–332. [Google Scholar] [CrossRef] [PubMed]
- Arranz, S.; Chiva-Blanch, G.; Valderas-Martinez, P.; Medina-Remon, A.; Lamuela-Raventós, R.M.; Estruch, R. Wine, beer, alcohol and polyphenols on cardiovascular disease and cancer. Nutrients 2012, 4, 759–781. [Google Scholar] [CrossRef] [Green Version]
- Littlewood, J.T.; Glover, V.; Sandler, M. Red wine contains a potent inhibitory of phenolsulphotransferase. Br. J. Clin. Pharmacol. 1985, 17, 303–304. [Google Scholar] [CrossRef]
- Alam, Z.; Coombes, N.; Waring, R.H.; Williams, A.C.; Steventon, G.B. Platelet sulphotransferase activity, plasma sulphate levels and sulphation capacity in patients with migraine and tension headache. Cephalalgia 1997, 17, 761–764. [Google Scholar] [CrossRef]
- Sandler, M.; Li, N.Y.; Jarrett, N.; Glover, V. Dietary migraine: Recent progress in the red (and white) wine story. Cephalalgia 1995, 15, 101–103. [Google Scholar] [CrossRef]
- Yáñez, M.; Fraiz, N.; Cano, E.; Orallo, F. Inhibitory effects of cis- and trans-resveratrol on noradrenaline and 5-hydroxytryptamine uptake and on monoamine oxidase activity. Biochem. Biophys. Res. Commun. 2006, 344, 688–695. [Google Scholar] [CrossRef]
- Dhiman, P.; Malik, N.; Sobarzo-Sánchez, E.; Uriarte, E.; Khatkar, A. Quercetin and Related Chromenone Derivatives as Monoamine Oxidase Inhibitors: Targeting Neurological and Mental Disorders. Molecules 2019, 24, 418. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.; Kim, Y.J.; Jeong, H.Y.; Kim, J.Y.; Choi, E.-K.; Chae, S.W.; Kwon, O. A standardized extract of the fruit of Hovenia dulcis alleviated alcohol-induced hangover in healthy subjects with heterozygous ALDH2: A randomized, controlled, crossover trial. J. Ethnopharmacol. 2017, 209, 167–174. [Google Scholar] [CrossRef] [PubMed]
- Hwang, J.S.; Lee, S.A.; Hong, S.S.; Lee, K.S.; Lee, M.K.; Bang, Y.H.; Ro, J.S. Monoamine oxidase inhibitory components from the roots ofSophora flavescens. Arch. Pharmacal Res. 2005, 28, 190–194. [Google Scholar] [CrossRef] [PubMed]
- Park, J.Y.; Moon, J.Y.; Park, S.-D.; Park, W.H.; Kim, H.; Kim, J.E. Fruits extracts of Hovenia dulcis Thunb. suppresses lipopolysaccharide-stimulated inflammatory responses through nuclear factor-kappaB pathway in RAW264.7 cells. Asian Pac. J. Trop. Med. 2016, 9, 357–365. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haseba, T.; Mashimo, K.; Sugimoto, J.; Sato, S.; Ohno, Y. Maturation of whisky changes ethanol elimination kinetics and neural effects by increasing nonvolatile congeners. Alcohol. Clin. Exp. Res. 2007, 31, S77–S82. [Google Scholar] [CrossRef] [PubMed]
- Haseba, T.; Sugimoto, J.; Sato, S.; Abe, Y.; Ohno, Y. Phytophenols in whisky lower blood acetaldehyde level by depressing alcohol metabolism through inhibition of alcohol dehydrogenase 1 (class I) in mice. Metab.-Clin. Exp. 2008, 57, 1753–1759. [Google Scholar] [CrossRef]
- Edvinsson, L.; Degueurce, A.; Duverger, D.; Mackenzie, E.T.; Scatton, B. Central serotonergic nerves project to the pial vessels of the brain. Nature 1983, 306, 55–57. [Google Scholar] [CrossRef]
- Banskota, S.; Regmi, S.C.; Gautam, J.; Gurung, P.; Lee, Y.J.; Ku, S.K.; Lee, J.H.; Lee, J.; Chang, H.W.; Park, S.J.; et al. Serotonin disturbs colon epithelial tolerance of commensal E. coli by increasing NOX2-derived superoxide. Free. Radic. Biol. Med. 2017, 106, 196–207. [Google Scholar] [CrossRef]
- Loyd, D.R.; Weiss, G.; Henry, M.A.; Hargreaves, K.M. Serotonin increases the functional activity of capsaicin-sensitive rat trigeminal nociceptors via peripheral serotonin receptors. Pain 2011, 152, 2267–2276. [Google Scholar] [CrossRef] [Green Version]
- Rossato, M.F.; Trevisan, G.; Walker, C.I.; Klafke, J.Z.; de Oliveira, A.P.; Villarinho, J.G.; Zanon, R.B.; Royes, L.F.; Athayde, M.L.; Gomez, M.V.; et al. Eriodictyol: A flavonoid antagonist of the TRPV1 receptor with antioxidant activity. Biochem. Pharmacol. 2011, 81, 544–551. [Google Scholar] [CrossRef] [Green Version]
- Lee, M.H.; Yeon, K.-Y.; Park, C.-K.; Li, H.-Y.; Fang, Z.; Kim, M.S.; Choi, S.-Y.; Lee, S.J.; Lee, S.; Park, K. Eugenol Inhibits Calcium Currents in Dental Afferent Neurons. J. Dent. Res. 2005, 84, 848–851. [Google Scholar] [CrossRef]
- Peatfield, R.C.; Fletcher, G.; Rhodes, K.; Gardiner, I.M.; Belleroche, J.D. Pharmacological analysis of red-wine-induced migrainous headaches. J. Headache Pain 2003, 4, 18–23. [Google Scholar] [CrossRef] [Green Version]
- 104. Lee, D.I.; Kim, S.T.; Lee, D.H.; Yu, J.M.; Jang, S.K.; Joo, S.S. Ginsenoside-Free Molecules from Steam-Dried Ginseng Berry Promote Ethanol Metabolism: An Alternative Choice for an Alcohol Hangover. J. Food Sci. 1994, 79, C1323–C1330. [Google Scholar] [CrossRef]
- Nout, M.J.R. Fermented foods and food safety. Food Res. Int. 1994, 27, 291–298. [Google Scholar] [CrossRef]
- Izquierdo-Casas, J.; Comas-Basté, O.; Latorre-Moratalla, M.L.; Lorente-Gascón, M.; Duelo, A.; Soler-Singla, L.; Vidal-Carou, M.C. Diamine oxidase (DAO) supplement reduces headache in episodic migraine patients with DAO deficiency: A randomized double-blind trial. Clin. Nutr. 2019, 38, 152–158. [Google Scholar] [CrossRef]
- Schnedl, W.J.; Schenk, M.; Lackner, S.; Enko, D.; Mangge, H.; Forster, F. Diamine oxidase supplementation improves symptoms in patients with histamine intolerance. Food Sci. Biotechnol. 2019, 28, 1779–1784. [Google Scholar] [CrossRef] [Green Version]
- Wantke, F.; Götz, M.; Jarisch, R. Histamine-free diet: Treatment of choice for histamine-induced food intolerance and supporting treatment for chronic headaches. Clin. Exp. Allergy 1993, 23, 982–985. [Google Scholar] [CrossRef] [PubMed]
- Kanny, G.; Gerbaux, V.; Olszewski, A.; Frémont, S.; Empereur, F.; Nabet, F.; Cabanis, J.C.; Moneret-Vautrin, D.A. No correlation between wine intolerance and histamine content of wine. J. Allergy Clin. Immunol. 2001, 107, 375–378. [Google Scholar] [CrossRef]
- Wantke, F.; Götz, M.; Jarisch, R. The red wine provocation test: Intolerance to histamine as a model for food intolerance. Allergy Asthma Proc. 1994, 15, 27–32. [Google Scholar] [CrossRef]
- Intorre, L.; Bertini, S.; Luchetti, E.; Mengozzi, G.; Crema, F.; Soldani, G. The effect of ethanol, beer, and wine on histamine release from the dog stomach. Alcohol 1996, 13, 547–551. [Google Scholar] [CrossRef]
- Sohrabvandi, S.; Mortazavian, A.M.; Rezaei, K. Health-Related Aspects of Beer: A Review. Int. J. Food Prop. 2012, 15, 350–373. [Google Scholar] [CrossRef]
- Karatzi, K.; Papamichael, C.; Aznaouridis, K.; Karatzis, E.; Lekakis, J.; Matsouka, C.; Boskou, G.; Chiou, A.; Sitara, M.; Feliou, G.; et al. Constituents of red wine other than alcohol improve endothelial function in patients with coronary artery disease. Coron. Artery Dis. 2004, 15, 485–490. [Google Scholar] [CrossRef] [PubMed]
- Kajihara, Y.; Murakami, M.; Imagawa, T.; Otsuguro, K.; Ito, S.; Ohta, T. Histamine potentiates acid-induced responses mediating transient receptor potential V1 in mouse primary sensory neurons. Neuroscience 2010, 166, 292–304. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez-Venegas, G.; Cruz-Arrieta, S.; Villeda-Navarro, M.; Méndez-Mejía, J.A. Histamine promotes the expression of receptors TLR2 and TLR4 and amplifies sensitivity to lipopolysaccharide and lipoteichoic acid treatment in human gingival fibroblasts. Cell Biol. Int. 2011, 35, 1009–1017. [Google Scholar] [CrossRef] [PubMed]
- Talreja, J.; Kabir, M.H.; Filla, M.B.; Stechschulte, D.J.; Dileepan, K.N. Histamine induces Toll-like receptor 2 and 4 expression in endothelial cells and enhances sensitivity to Gram-positive and Gram-negative bacterial cell wall components. Immunology 2010, 113, 224–233. [Google Scholar] [CrossRef] [PubMed]
- Woo, Y.S.; Yoon, S.J.; Lee, H.K.; Lee, C.U.; Chae, J.H.; Lee, C.T.; Kim, D.J. Concentration changes of methanol in blood samples during an experimentally induced alcohol hangover state. Addict. Biol. 2005, 10, 351–355. [Google Scholar] [CrossRef]
- Jones, A.W. Elimination half-life of methanol during hangover. Pharm. Toxicol 1987, 60, 217–220. [Google Scholar] [CrossRef] [PubMed]
- Gilg, T. Methanol and congeners as markers of alcohol use and abuse. In New and Upcoming Markers of Alcohol Consumption; Wurst, F.M., Ed.; Springer: Berlin/Heidelberg, Germany, 2001; pp. 35–52. [Google Scholar] [CrossRef]
- Bienkowski, P.; Danysz, W.; Kostowski, W. Study on the role of glycine, strychnine-insensitive receptors (glycineB sites) in the discriminative stimulus effects of ethanol in the rat. Alcohol 1998, 15, 87–91. [Google Scholar] [CrossRef] [PubMed]
- Hori, H.; Fuji, W.; Hatanaka, Y.; Suwa, Y. Effects of fusel oil on animal hangover models. Alcohol. Clin. Exp. Res. 2003, 27, 37S–41S. [Google Scholar] [CrossRef]
- Watts, V.A.; Butzke, C.E. Analysis of microvolatiles in brandy: Relationship between methylketone concentration and Cognac age. J. Sci. Food Agric. 2003, 83, 1143–1149. [Google Scholar] [CrossRef]
- Okeke, E.S.; Ita, R.E.; Egong, E.J.; Udofia, L.E.; Mgbechidinma, C.L.; Akan, O.D. Metaproteomics insights into fermented fish and vegetable products and associated microbes. Food Chem. Mol. Sci. 2021, 3, 100045. [Google Scholar] [CrossRef]
- Xing, Y.; Huang, M.; Olovo, C.V.; Mgbechidinma, C.L.; Yang, Y.; Liu, J.; Li, B.; Zhu, M.; Yu, K.; Zhu, H.; et al. Traditional Fermented Foods: Challenges, Sources, and Health Benefits of Fatty Acids. Fermentation 2023, 9, 110. [Google Scholar] [CrossRef]
- Dueland, A.N. Headache and Alcohol. Headache J. Head Face Pain 2015, 55, 1045–1049. [Google Scholar] [CrossRef] [PubMed]
- Rozen, T.D.; Fishman, R.S. Cluster Headache in the United States of America: Demographics, Clinical Characteristics, Triggers, Suicidality, and Personal Burden. Headache J. Head Face Pain 2012, 52, 99–113. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, H.; Xing, Y.; Akan, O.D.; Yang, T. Alcohol-Induced Headache with Neuroinflammation: Recent Progress. Fermentation 2023, 9, 184. https://doi.org/10.3390/fermentation9020184
Zhu H, Xing Y, Akan OD, Yang T. Alcohol-Induced Headache with Neuroinflammation: Recent Progress. Fermentation. 2023; 9(2):184. https://doi.org/10.3390/fermentation9020184
Chicago/Turabian StyleZhu, He, Yanxia Xing, Otobong D. Akan, and Tao Yang. 2023. "Alcohol-Induced Headache with Neuroinflammation: Recent Progress" Fermentation 9, no. 2: 184. https://doi.org/10.3390/fermentation9020184
APA StyleZhu, H., Xing, Y., Akan, O. D., & Yang, T. (2023). Alcohol-Induced Headache with Neuroinflammation: Recent Progress. Fermentation, 9(2), 184. https://doi.org/10.3390/fermentation9020184