Biomethane Potential in Anaerobic Biodegradation of Commercial Bioplastic Materials
Abstract
:1. Introduction
Characteristics | Conventional Plastics | Bioplastics |
---|---|---|
Materials | Produced from non-renewable resources such as fossil fuel and natural gas. | Commonly produced from renewable biomass resources or biodegradable fossil-based resources. |
Greenhouse gas emissions | High greenhouse gases emissions such as carbon dioxide (CO2). Plastics account for 3.4% of global greenhouse gas emissions. | Significantly lower greenhouse gas emissions than traditional plastics over their lifetime [16]. |
Biodegradability | Most conventional plastics are not biodegradable, such as polyethylene, polypropylene, polystyrene, poly(vinyl chloride), and poly(ethylene terephthalate). | Most of the bioplastics are biodegradable depending on their chemical and physical structure. |
End-of-life options |
|
|
Circularity | Circularity is not guaranteed. | Organic recycling involves closing the loop by creating a new resource (compost, biogas) that can be utilized to grow additional plants. |
2. Materials and Methods
2.1. Biodegradable Biopolymers
2.2. Inoculum
2.3. Chemical Analysis
2.4. Rate of Biodegradation
2.5. Biomethane Potential (BMP) Test
2.6. Statistical Analysis
3. Results and Discussion
3.1. Chemical Analysis
3.2. Statistical Analysis of the Results of the Elemental Analysis
3.3. Theoretical Methane (ThBMP) Production and Biomethane Potential (BMP) Test
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- European Bioplastics. Available online: https://www.european-bioplastics.org (accessed on 15 January 2023).
- European Environment Agency (EEA). Plastics, the Circular Economy and Europe′s Environment; EEA: Copenhagen, Denmark, 2021; Available online: https://www.eea.europa.eu/publications/plastics-the-circular-economy-and (accessed on 15 January 2023).
- Lee, A.; Liew, M.S. Ecologically derived waste management of conventional plastics. J. Mater. Cycles Waste Manag. 2019, 22, 1–10. [Google Scholar] [CrossRef]
- Cazaudehore, G.; Guyoneaud, R.; Evon, P.; Martin-Closas, L.; Pelacho, A.M.; Raynaud, C.; Monlau, F. Can anaerobic digestion be a suitable end-of-life scenario for biodegradable plastics? A critical review of the current situation, hurdles, and challenges. Biotechnol. Adv. 2022, 56, 107916. [Google Scholar] [CrossRef] [PubMed]
- Folino, A.; Karageorgiou, A.; Calabrò, P.S.; Komilis, D. Biodegradation of wasted bioplastics in natural and industrial environments: A review. Sustainability 2020, 12, 6030. [Google Scholar] [CrossRef]
- Abraham, A.; Park, H.; Choi, O.; Sang, B.I. Anaerobic co-digestion of bioplastics as a sustainable mode of waste management with improved energy production—A review. Bioresour. Technol. 2021, 322, 124537. [Google Scholar] [CrossRef]
- Ahmed, T.; Shahid, M.; Azeem, F.; Rasul, I.; Shah, A.A.; Noman, M.; Hameed, A.; Manzoor, N.; Manzoor, I.; Muhammad, S. Biodegradation of plastics: Current scenario and future prospects for environmental safety. Environ. Sci. Pollut. Res. 2018, 25, 7287–7298. [Google Scholar] [CrossRef]
- Polman, E.M.N.; Gruter, G.J.M.; Parsons, J.R.; Tietema, A. Comparison of the aerobic biodegradation of biopolymers and the corresponding bioplastics: A review. Sci. Total Environ. 2021, 753, 141953. [Google Scholar] [CrossRef]
- Ali, S.S.; Elsamahy, T.; Abdelkarim, E.A.; Al-Tohamy, R.; Kornaros, M.; Ruiz, H.A.; Zhao, T.; Li, F.; Sun, J. Biowastes for biodegradable bioplastics production and end-of-life scenarios in circular bioeconomy and biorefinery concept. Bioresour. Technol. 2022, 363, 127869. [Google Scholar] [CrossRef]
- Rabii, A.; Aldin, S.; Dahman, Y.; Elbeshbishy, E. A review on anaerobic co-digestion with a focus on the microbial populations and the effect of multi-stage digester configuration. Energies 2019, 12, 1106. [Google Scholar] [CrossRef] [Green Version]
- Cazaudehore, G.; Monlau, F.; Gassie, C.; Lallement, A.; Guyoneaud, R. Methane production and active microbial communities during anaerobic digestion of three commercial biodegradable coffee capsules under mesophilic and thermophilic conditions. Sci. Total Environ. 2021, 784, 146972. [Google Scholar] [CrossRef]
- Uveges, Z.S.; Ragoncza, Á.; Varga, Z.S.; Aleksza, L. Methane potential and respiration intensity of wastes and agricultural byproducts. Appl. Ecol. Environ. Res. 2020, 18, 6425–6441. [Google Scholar] [CrossRef]
- Lü, F.; Wang, Z.; Zhang, H.; Shao, L.; He, P. Anaerobic digestion of organic waste: Recovery of value-added and inhibitory compounds from liquid fraction of digestate. Bioresour. Technol. 2021, 333, 125196. [Google Scholar] [CrossRef]
- Cheng, J.J. (Ed.) Anaerobic digestion for biogas production. In Biomass to Renewable Energy Processes, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2010; pp. 143–194. [Google Scholar]
- Nguyen, L.N.; Nguyen, A.Q.; Nghiem, L.D. Microbial community in anaerobic digestion system: Progression in microbial ecology. In Water and Wastewater Treatment Technologies. Energy, Environment, and Sustainability; Bui, X.T., Chiemchaisri, C., Fujioka, T., Varjani, S., Eds.; Springer Nature: Singapore, 2019; pp. 331–355. [Google Scholar] [CrossRef]
- Sahota, S.; Shah, G.; Ghosh, P.; Kapoor, R.; Sengupta, S.; Singh, P.; Vijay, V.; Sahay, A.; Vijay, V.K.; Thakur, I.S. Review of trends in biogas upgradation technologies and future perspectives. Bioresour. Technol. Rep. 2018, 1, 79–88. [Google Scholar] [CrossRef]
- Kapoor, R.; Ghosh, P.; Tyagi, B.; Vijay, V.K.; Vijay, V.; Thakur, I.S.; Kamyab, H.; Nguyen, D.D.; Kumar, A. Advances in biogas valorization and utilization systems: A comprehensive review. J. Clean. Prod. 2020, 273, 123052. [Google Scholar] [CrossRef]
- Alengebawy, A.; Mohamed, B.A.; Ghimire, N.; Jin, K.; Liu, T.; Samer, M.; Ai, P. Understanding the environmental impacts of biogas utilization for energy production through Life Cycle Assessment: An action towards reducing emissions. Environ. Res. 2022, 213, 113632. [Google Scholar] [CrossRef]
- Adnan, A.I.; Ong, M.Y.; Nomanbhay, S.; Chew, K.W.; Show, P.L. Technologies for biogas upgrading to biomethane: A review. Bioengineering 2019, 6, 92. [Google Scholar] [CrossRef] [Green Version]
- Samoraj, M.; Mironiuk, M.; Izydorczyk, G.; Witek-Krowiak, A.; Szopa, D.; Moustakas, K.; Chojnacka, K. The challenges and perspectives for anaerobic digestion of animal waste and fertilizer application of the digestate. Chemosphere 2022, 295, 133799. [Google Scholar] [CrossRef]
- O’Connor, J.; Mickan, B.S.; Rinklebe, J.; Song, H.; Siddique, K.H.M.; Wang, H.; Kirkham, M.B.; Bolan, N.S. Environmental implications, potential value, and future of food-waste anaerobic digestate management: A review. J. Environ. Manag. 2022, 318, 115519. [Google Scholar] [CrossRef]
- EN 13432; Packaging—Requirements for Packaging Recoverable through Composting and Biodegradation—Test Scheme and Evaluation Criteria for the Final Acceptance of Packaging. European Committee for Standardization: Brussels, Belgium, 2000.
- ISO 11734; Water Quality—Evaluation of the “Ultimate” Anaerobic Biodegradability of Organic Compounds in Digested Sludge—Methods by Measurement of the Biogas Production. International Organization for Standardization: Geneva, Switzerland, 1995.
- ISO 14853; Plastics—Determination of the Ultimate Anaerobic Biodegradation of Plastic Materials in an Aqueous System—Method by Measurement of Biogas Production. International Organization for Standardization: Geneva, Switzerland, 2016.
- ISO 15985; Plastics—Determination of the Ultimate Anaerobic Biodegradation and Disintegration under High-Solids Anaerobic-Digestion Conditions—Method by Analysis of Released Biogas. International Organization for Standardization: Geneva, Switzerland, 2004.
- ASTM D5210-92; Standard Test Method of Determining the Anaerobic Biodegradation of Plastic Materials in the Presence of Municipal sewage sludge. ASTM International: West Conshohocken, PA, USA, 2007.
- ASTM D5511-11; Determining Anaerobic Biodegradation of Plastic Materials under High-Solids Anaerobic-Digestion Conditions. ASTM International: West Conshohocken, PA, USA, 2012.
- ASTM D5526-94D; Determining Anaerobic Biodegradation of Plastic Materials under Accelerated Landfill Condition. ASTM International: West Conshohocken, PA, USA, 2018.
- Ruggero, F.; Gori, R.; Lubello, C. Methodologies to assess biodegradation of bioplastics during aerobic composting and anaerobic digestion: A review. Waste Manag. Res. 2019, 37, 959–975. [Google Scholar] [CrossRef] [Green Version]
- Calabrò, P.S.; Folino, A.; Fazzino, F.; Komilis, D. Preliminary evaluation of the anaerobic biodegradability of three biobased materials used for the production of disposable plastics. J. Hazard. Mater. 2020, 390, 121653. [Google Scholar] [CrossRef]
- Calabrò, P.S.; Folino, A.; Maesano, M.; Pangallo, D.; Zema, D.A. Exploring the possibility to shorten the duration and reduce the number of replicates in biomethane potential tests (BMP). Waste Biomass Valorization, 2022; online first. [Google Scholar] [CrossRef]
- MSZ EN 13040:2008; Mass Determination. Hungarian Standards Institution: Budapest, Hungary, 2008. (In Hungarian)
- American Public Health Association (APHA). Standard Methods for the Examination of Water and Wastewater, 21st ed.; APHA: Washington, DC, USA, 2005. [Google Scholar]
- MSZ EN 15935:2013; Determination of Loss on Ignition. Hungarian Standards Institution: Budapest, Hungary, 2013. (In Hungarian)
- MSZ 13037:2012; Determination of pH. Potentiometry. Hungarian Standards Institution: Budapest, Hungary, 2012. (In Hungarian)
- MSZ EN ISO 16948:2015; Determination of Total Carbon, Hydrogen and Nitrogen Content. Hungarian Standards Institution: Budapest, Hungary, 2015. (In Hungarian)
- MSZ EN ISO 16994:2017; Determination of Total Sulfur and Chlorine Content. Hungarian Standards Institution: Budapest, Hungary, 2017. (In Hungarian)
- MSZ 21470-50:2006; Determination of Total and Soluble Toxic Element Content. Hungarian Standards Institution: Budapest, Hungary, 2006. (In Hungarian)
- Boyle, W.C. Energy recovery from sanitary landfills—A review. In Microbial Energy Conversion; Schlegel, H.G., Barnea, J., Eds.; Pergamon Press: Oxford, UK, 1977; pp. 119–138. [Google Scholar] [CrossRef]
- Raposo, F.; Fernández-Cegrí, V.; De La Rubia, M.A.; Borja, R.; Béline, F.; Cavinato, C.; Demirer, G.; Fernández, B.; Fernández-Polanco, M.; Frigon, J.-C.; et al. Biochemical methane potential (BMP) of solid organic substrates: Evaluation of anaerobic biodegradability using data from an international interlaboratory study. J. Chem. Technol. Biotechnol. 2011, 86, 1088–1098. [Google Scholar] [CrossRef]
- Bioprocess Control Sweden. AMPTS II & AMPTS II Light Automatic Methane Potential Test System, version 3.0; Bioprocess Control Sweden AB: Lund, Sweden, 2016. [Google Scholar]
- The Association of German Engineers. VDI 4630: Fermentation of Organic Materials—Characterisation of the Substrate, Sampling, Collection of Material Data, Fermentation Tests; VDI Gesellschaft Energietechnik: Düsseldorf, Germany, 2006. [Google Scholar]
- Krishania, M.; Vijay, V.K.; Chandra, R. Methane fermentation and kinetics of wheat straw pretreated substrates co-digested with cattle manure in batch assay. Energy 2013, 57, 359–367. [Google Scholar] [CrossRef]
- Tjorve, K.M.C.; Tjorve, E. The use of Gompertz models in growth analyses, and new Gompertz-model approach: An addition to the Unified-Richards Family. PLoS ONE 2017, 12, e0178691. [Google Scholar] [CrossRef] [PubMed]
- Ware, A.; Power, N. Modelling methane production kinetics of complex poultry slaughterhouse wastes using sigmoidal growth functions. Renew. Energy 2017, 104, 50–59. [Google Scholar] [CrossRef]
- Pramanik, S.K.; Suja, F.B.; Porhemmat, M.; Pramanik, B.K. Performance and kinetic model of a single-stage anaerobic digestion system operated at different successive operating stages for the treatment of food waste. Processes 2019, 7, 600. [Google Scholar] [CrossRef] [Green Version]
- Khedher, N.B.; Lattieff, F.A.; Mahdi, J.M.; Ghanim, M.S.; Majdi, H.S.; Jweeg, M.J.; Baazaoui, N. Modeling of biogas production and biodegradability of date palm fruit wastes with different moisture contents. J. Clean. Prod. 2022, 375, 134103. [Google Scholar] [CrossRef]
- Buffington, D.E.; Jordan, K.A.; Boyd, L.L.; Junnila, W.A. Mathematical models of growth data of male and female Wrolstad white turkeys. Poult. Sci. 1973, 52, 1694–1700. [Google Scholar] [CrossRef]
- Gomes, C.S.; Strangfeld, M.; Meyer, M. Diauxie studies in biogas production from gelatin and adaptation of the modified Gompertz Model: Two-phase Gompertz model. Appl. Sci. 2021, 11, 1067. [Google Scholar] [CrossRef]
- Abderrahim, B.; Abderrahman, E.; Mohamed, A.; Fatima, T.; Abdesselam, T.; Krim, O. Kinetic thermal degradation of cellulose, polybutylene succinate and a green composite: Comparative study. World J. Environ. Eng. 2015, 3, 95–110. [Google Scholar] [CrossRef]
- Chen, W.; He, H.; Zhu, H.; Cheng, M.; Li, Y.; Wang, S. Thermo-responsive cellulose-based material with switchable wettability for controllable oil/water separation. Polymers 2018, 10, 592. [Google Scholar] [CrossRef] [Green Version]
- Ma, M.G.; Fu, L.H.; Li, S.M.; Zhang, X.M.; Sun, R.C.; Dai, Y.D. Hydrothermal synthesis and characterization of wood powder/CaCO3 composites. Carbohydr. Polym. 2012, 88, 1470–1475. [Google Scholar] [CrossRef]
- He, Q.; Huang, Z.; Liu, Y.; Chen, W.; Xu, T. Template-directed one-step synthesis of flowerlike porous carbonated hydroxyapatite spheres. Mater. Lett. 2007, 61, 141–143. [Google Scholar] [CrossRef]
- Weng, Y.X.; Jin, Y.J.; Meng, Q.Y.; Wang, L.; Zhang, M.; Wang, Y.Z. Biodegradation behavior of poly(butylene adipate-co-terephthalate) (PBAT), poly(lactic acid) (PLA), and their blend under soil conditions. Polym. Test. 2013, 32, 918–926. [Google Scholar] [CrossRef]
- França, D.C.; Almeida, T.G.; Abels, G.; Canedo, E.L.; Carvalho, L.H.; Wellen, R.M.R.; Haag, K.; Koschek, K. Tailoring PBAT/PLA/Babassu films for suitability of agriculture mulch application. J. Nat. Fibers 2018, 16, 933–943. [Google Scholar] [CrossRef]
- Parameswaran, P.; Rittmann, E. Feasibility of anaerobic co-digestion of pig waste and paper sludge. Bioresour. Technol. 2012, 124, 163–168. [Google Scholar] [CrossRef]
- Scaffaro, R.; Maio, A.; Gammino, M.; La Mantia, F.P. Effect of an organoclay on the photochemical transformations of a PBAT/PLA blend and morpho-chemical features of crosslinked networks. Polym. Degrad. Stab. 2021, 187, 109549. [Google Scholar] [CrossRef]
- Tironi, A.; Trezza, M.; Irassar, E.; Scian, A. Thermal treatment of kaolin: Effect on the pozzolanic activity. Procedia Mater. Sci. 2012, 1, 343–350. [Google Scholar] [CrossRef] [Green Version]
- El-Mashad, M.H.; Ruihong Zhang, R.; Greene, J.P. Anaerobic biodegradability of selected biodegradable plastics and biobased products. J. Environ. Sci. Eng. A 2012, 1, 108–114. [Google Scholar]
- Kobayashi, T.; Xu, K.Q.; Li, Y.Y.; Inamori, Y. Evaluation of hydrogen and methane production from municipal solid wastes with different compositions of fat, protein, cellulosic materials, and the other carbohydrates. Int. J. Hydrogen Energy 2012, 37, 15711–15718. [Google Scholar] [CrossRef]
- Dolci, G.; Catenacci, A.; Malpei, F.; Grosso, M. Effect of paper vs. bioplastic bags on food waste collection and processing. Waste Biomass Valorization 2021, 12, 6293–6307. [Google Scholar] [CrossRef]
- Bernat, K.; Kulikowska, D.; Wojnowska-Baryła, I.; Zaborowska, M.; Pasieczna-Patkowska, S. Thermophilic and mesophilic biogas production from PLA-based materials: Possibilities and limitations. Waste Manag. 2021, 119, 295–305. [Google Scholar] [CrossRef] [PubMed]
- Vasmara, C.; Marchetti, R. Biogas production from biodegradable bioplastics. Environ. Eng. Manag. J. 2016, 15, 2041–2048. [Google Scholar] [CrossRef]
- Cazaudehore, G.; Guyoneaud, R.; Vasmara, C.; Greuet, P.; Gastaldi, E.; Marchetti, R.; Leonardi, F.; Turon, R.; Monlau, F. Impact of mechanical and thermo-chemical pretreatments to enhance anaerobic digestion of poly(lactic acid). Chemosphere 2022, 297, 133986. [Google Scholar] [CrossRef] [PubMed]
- Peng, W.; Wang, Z.; Shu, Y.; Lü, F.; Zhang, H.; Shao, L.; He, P. Fate of a biobased polymer via high-solid anaerobic co-digestion with food waste and following aerobic treatment: Insights on changes of polymer physicochemical properties and the role of microbial and fungal communities. Bioresour. Technol. 2022, 343, 126079. [Google Scholar] [CrossRef]
- Ren, Y.; Hu, J.; Yang, M.; Weng, Y. Biodegradation behavior of poly(lactic acid) (PLA), poly(butylene adipate-co-terephthalate) (PBAT), and their blends under digested sludge conditions. J. Polym. Environ. 2019, 27, 2784–2792. [Google Scholar] [CrossRef]
- Fernandes, T.M.; De Almeida, J.F.; Escócio, V.A.; Da Silva, A.L.; De Sousa, A.M.; Visconte, L.L.; Leite, M.C. Evaluation of rheological behavior, anaerobic and thermal degradation, and lifetime prediction of polylactide/poly(butylene adipate-co-terephthalate)/powdered nitrile rubber blends. Polym. Bull. 2018, 76, 2899–2913. [Google Scholar] [CrossRef]
- Arruda, L.C.; Magaton, M.; Bretas, R.E.S.; Ueki, M.M. Influence of chain extender on mechanical, thermal and morphological properties of blown films of PLA/PBAT blends. Polym. Test. 2015, 43, 27–37. [Google Scholar] [CrossRef]
- Jiang, L.; Wolcott, M.P.; Zhang, J. Study of biodegradable polylactide/poly(butylene adipate-co-terephthalate) blends. Biomacromolecules 2005, 7, 199–207. [Google Scholar] [CrossRef]
- Shrestha, A.; van-Eerten Jansen, M.C.; Acharya, B. Biodegradation of bioplastic using anaerobic digestion at retention time as per industrial biogas plant and international norms. Sustainability 2020, 12, 4231. [Google Scholar] [CrossRef]
Parameter Measured | Description | Test Method |
---|---|---|
TS | Total solids | Mass measurement, MSZ EN 13040:2008 [32] |
VS | Volatile solids | Standard measurement for examination of water and wastewater (APHA, 2005) [33] |
OM | Organic matter | Loss on ignition (MSZ EN 15935:2013) [34]. |
pH | Acidity | Potentiometric determination of H+ ion concentration, MSZ EN 13037:2012 [35] |
CHNS | Carbon (C), hydrogen (H), nitrogen (N), and sulfur (S) content | Elemental analysis to measure the conversion of carbon (C) to methane (CH4) (biodegradability%) MSZ EN ISO 16948:2015 [36] MSZ EN ISO 16994:2017 [37] |
Ca | Calcium [HNO3/H2O2] | Inductively coupled plasma–optical emission spectrometry (ICP-OES) MSZ 21470-50:2006 [38] |
Mg | Magnesium [HNO3/H2O2] | Inductively coupled plasma–optical emission spectrometry (ICP-OES) MSZ 21470-50:2006 [38] |
Plastics | Chemical Composition a | TS a,b | VS a,b | OM a,b | pH |
---|---|---|---|---|---|
(% wm) | |||||
Product 1 | Cellulose or derivative(s) | 92.81 ± 0.23 AB | 92.01 ± 0.22 A | 99.14 ± 0.20 A | 7.3 |
Product 2 | Cellulose or derivative(s) with CaCO3 | 93.30 ± 0.22 A | 88.32 ± 0.22 B | 64.66 ± 0.18 B | 7.2 |
Product 3 | Cellulose or derivative(s) with CaCO3 | 95.15 ± 0.28 C | 73.86 ± 0.22 C | 77.63 ± 0.20 C | 7.0 |
Product 4 | A blend of PLA and PBAT | 99.16 ± 0.23 D | 99.14 ± 0.17 D | 99.98 ± 0.19 D | 6.9 |
Product 5 | The outer side contains cellulose or derivatives(s) and CaCO3, the inner side is a blend of PLA and PBAT | 95.92 ± 0.13 E | 95.74 ± 0.26 E | 99.82 ± 0.25 D | 7.2 |
Product 6 | Cellulose or derivative(s) with CaCO3 | 94.45 ± 0.22 F | 64.57 ± 0.25 F | 68.37 ± 0.26 E | 7.0 |
Product 7 | Cellulose or derivative(s) with CaCO3 and, kaolinite | 92.54 ± 0.19 B | 89.01 ± 0.23 G | 96.19 ± 0.15 F | 7.3 |
Product 8 | Pure PLA | 85.00 ± 0.26 G | 82.73 ± 0.20 H | 97.33 ± 0.20 G | 6.8 |
Inoculum | Mesophilic inoculum | 5.87 ± 0.24 | 4.73 ± 0.39 | 80.5 ± 8.1 | 7.9 |
Plastic | C a,b | H | N | S | O | Ca | Mg | ThBMP | BMP | BD30 |
---|---|---|---|---|---|---|---|---|---|---|
(% dm) | (NmL/gVS) | (NmL/gVS) | (%) | |||||||
Product 1 | 45.5 ± 0.2 A | 4.98 ± 0.23 A | 0.013 ± 0.008 A | 0.130 ± 0.005 A | 41.6 ± 0.2 A | 0.041 ± 0.001 A | 0.137 ± 0.007 A | 453.2 ± 9.6 A | 432.6 ± 1.1 A | 95 ± 12 A |
Product 2 | 43.2 ± 0.3 B | 4.86 ± 0.16 AB | 0.073 ± 0.007 B | 0.022 ± 0.006 B | 42.3 ± 0.1 B | 0.053 ± 0.001 B | 2.262 ± 0.006 B | 431.8 ± 6.1 A | 437.1 ± 1.0 A | 101 ± 6 A |
Product 3 | 37.4 ± 0.2 C | 4.24 ± 0.21 BC | 0.024 ± 0.008 AC | 0.041 ± 0.005 CD | 35.5 ± 0.1 C | 0.079 ± 0.002 C | 3.191 ± 0.006 C | 444.0 ± 12.3 A | 327.2 ± 0.6 B | 74 ± 6 B |
Product 4 | 56.1 ± 0.2 D | 5.27 ± 0.21 A | 0.059 ± 0.006 D | 0.004 ± 0.001 E | 38.2 ± 0.2 D | 0.018 ± 0.002 D | 0.055 ± 0.004 D | 538.6 ± 8.7 B | 114.1 ± 0.9 C | 23 ± 6 C |
Product 5 | 45.9 ± 0.2 A | 4.90 ± 0.27 A | 0.056 ± 0.003 DE | 0.055 ± 0.001 C | 37.8 ± 0.2 DE | 0.029 ± 0.002 E | 1.086 ± 0.004 E | 487.2 ± 10.3 C | 266.2 ± 3.3 D | 55 ± 3 D |
Product 6 | 45.8 ± 0.2 A | 4.84 ± 0.24 AB | 0.028 ± 0.005 AC | 0.053 ± 0.001 CD | 37.4 ± 0.2 E | 0.033 ± 0.001 E | 1.474 ± 0.009 F | 489.8 ± 10.6 C | 310.9 ± 0.3 E | 63 ± 3 BD |
Product 7 | 36.1 ± 0.2 E | 4.15 ± 0.26 C | 0.036 ± 0.007 CD | 0.044 ± 0.001 D | 33.9 ± 0.3 F | 0.053 ± 0.002 B | 5.694 ± 0.006 G | 450.2 ± 13.2 A | 266.4 ± 0.1 D | 59 ± 4 BD |
Product 8 | 49.7 ± 0.3 F | 4.79 ± 0.22 ABC | 0.010 ± 0.002 A | 0.002 ± 0.001 E | 45.1 ± 0.1 G | 0.014 ± 0.002 F | 0.048 ± 0.006 D | 441.6 ± 8.3 A | 50.4 ± 2.1 F | 12 ± 2 C |
Plastic | Slope | Y Intercept | R2 | p Value |
---|---|---|---|---|
Product 1 | 9.51 | −1.46 | 0.920 | <0.001 |
Product 2 | 9.10 | −1.16 | 0.936 | <0.001 |
Product 3 | 17.4 | −8.86 | 0.956 | <0.001 |
Product 4 | 0.907 | 0.114 | 0.964 | <0.001 |
Product 5 | 30.7 | −17.8 | 0.950 | <0.001 |
Product 6 | 32.4 | −22.4 | 0.915 | <0.001 |
Product 7 | 24.4 | −18.0 | 0.899 | <0.001 |
Product 8 | 2.61 | −1.65 | 0.908 | <0.001 |
Plastic | Order 1 | Order 2 | Order 3 | ||||||
p Value | R2 | AIC | p Value | R2 | AIC | p Value | R2 | AIC | |
Product 1 | <0.001 | 0.917 | 974.5 | <0.001 | 0.920 | 971.9 | <0.001 | 0.924 | 967.4 |
Product 2 | <0.001 | 0.932 | 937.7 | <0.001 | 0.973 | 854.7 | <0.001 | 0.972 | 856.5 |
Product 3 | <0.001 | 0.975 | 805.5 | <0.001 | 0.976 | 805.1 | <0.001 | 0.981 | 781.6 |
Product 4 | <0.001 | 0.902 | 754.1 | <0.001 | 0.901 | 755.4 | <0.001 | 0.908 | 750.0 |
Product 5 | <0.001 | 0.899 | 858.0 | <0.001 | 0.958 | 777.4 | <0.001 | 0.968 | 752.2 |
Product 6 | <0.001 | 0.900 | 917.2 | <0.001 | 0.962 | 829.0 | <0.001 | 0.961 | 830.6 |
Product 7 | <0.001 | 0.909 | 883.1 | <0.001 | 0.953 | 821.0 | <0.001 | 0.954 | 819.7 |
Product 8 | <0.001 | 0.881 | 572.6 | <0.001 | 0.894 | 562.7 | <0.001 | 0.893 | 564.0 |
Plastic | BMP | Gompertz Model | Modified Gompertz Model | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Exp. a,b | Coef. a c | Coef. b d | Coef. c e | R2 | % Dev f | A g | μm h | λ i | R2 | % Dev | |
(NmL/gVS) | (NmL/gVS/day) | (NmL/gVS) | (NmL/gVS/day) | (day) | |||||||
Product 1 | 432.6 ± 1.1 A | 436.0 | 1.762 | 126.7 | 0.998 | 0.8 | 435.2 | 46.86 | 5.442 | 0.998 | 0.6 |
Product 2 | 437.1 ± 1.0 A | 437.4 | 1.182 | 169.2 | 0.998 | 0.0 | 436.8 | 62.68 | 4.023 | 0.997 | 0.2 |
Product 3 | 327.2 ± 0.6 B | 332.3 | 1.860 | 88.76 | 0.995 | 1.5 | 331.7 | 32.85 | 5.837 | 0.995 | 1.4 |
Product 4 | 114.1 ± 0.9 C | – j | – | – | – | – | – | – | – | – | – |
Product 5 | 266.2 ± 3.3 D | – | – | – | – | – | – | – | – | – | – |
Product 6 | 310.9 ± 0.3 E | 313.6 | 2.287 | 164.3 | 0.999 | 0.9 | 313.8 | 60.07 | 4.097 | 0.999 | 0.9 |
Product 7 | 266.4 ± 0.1 D | 266.8 | 2.413 | 128.0 | 0.999 | 0.1 | 266.9 | 46.90 | 4.423 | 0.999 | 0.2 |
Product 8 | 50.4 ± 2.1 F | – | – | – | – | – | – | – | – | – | – |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Üveges, Z.; Damak, M.; Klátyik, S.; Ramay, M.W.; Fekete, G.; Varga, Z.; Gyuricza, C.; Székács, A.; Aleksza, L. Biomethane Potential in Anaerobic Biodegradation of Commercial Bioplastic Materials. Fermentation 2023, 9, 261. https://doi.org/10.3390/fermentation9030261
Üveges Z, Damak M, Klátyik S, Ramay MW, Fekete G, Varga Z, Gyuricza C, Székács A, Aleksza L. Biomethane Potential in Anaerobic Biodegradation of Commercial Bioplastic Materials. Fermentation. 2023; 9(3):261. https://doi.org/10.3390/fermentation9030261
Chicago/Turabian StyleÜveges, Zsuzsanna, Mariem Damak, Szandra Klátyik, Muhammad Wajahat Ramay, György Fekete, Zsolt Varga, Csaba Gyuricza, András Székács, and László Aleksza. 2023. "Biomethane Potential in Anaerobic Biodegradation of Commercial Bioplastic Materials" Fermentation 9, no. 3: 261. https://doi.org/10.3390/fermentation9030261
APA StyleÜveges, Z., Damak, M., Klátyik, S., Ramay, M. W., Fekete, G., Varga, Z., Gyuricza, C., Székács, A., & Aleksza, L. (2023). Biomethane Potential in Anaerobic Biodegradation of Commercial Bioplastic Materials. Fermentation, 9(3), 261. https://doi.org/10.3390/fermentation9030261