Evaluation of Chlamydomonas reinhardtii Microalgae as a Sustainable Feed Supplement and Fishmeal Substitute in Aquaculture with a Positive Impact on Human Nutrition
Abstract
:1. Introduction
2. Materials and Methods
2.1. Diet Formulation and Preparation
2.2. Subjects and Husbandry
2.3. Experimental Procedures
2.3.1. Weighing the Fish
2.3.2. Growth Parameters, Calculations, and Assessment
2.3.3. Feeding, Sampling, and Preparation for Chemical Analysis
2.3.4. Zebrafish Spawning and Egg Collection
2.4. Ethical Issues
2.5. Total Lipid Extraction
2.6. Fatty Acids (FA) Analysis
2.7. Retinol Analysis
2.8. Analysis of Carotenoids in Zebrafish and Eggs
2.9. Statistical Analysis
3. Results and Discussion
3.1. Growth and Palatability Criteria
3.2. The Effect of C. reinhardtii as Fishmeal Replacement on the Protein Content of the Zebrafish
3.3. The Effect of C. reinhardtii as Fishmeal Replacement on the Fatty Acid Profile of the Zebrafish
3.4. The Effect of C. reinhardtii as Fishmeal Replacement on the Carotenoid Content in the Zebrafish
3.5. The Effect of C. reinhardtii as Fishmeal Replacement on the Carotenoid Content in the Fish Eggs
3.6. The Effect of C. reinhardtii as Fishmeal Replacement on the Retinol Content in the Zebrafish
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sarker, P.K.; Kapuscinski, A.R.; Bae, A.Y.; Donaldson, E.; Sitek, A.J.; Fitzgerald, D.S.; Edelson, O.F. Towards sustainable aquafeeds: Evaluating substitution of fishmeal with lipid-extracted microalgal co-product (Nannochloropsis oculata) in diets of juvenile nile tilapia (Oreochromis niloticus). PLoS ONE 2018, 13, e0201315. [Google Scholar] [CrossRef] [Green Version]
- Pradeepkiran, J.A. Aquaculture role in global food security with nutritional value: A review. Transl. Anim. Sci. 2019, 3, 903–910. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kok, B.; Malcorps, W.; Tlusty, M.F.; Eltholth, M.M.; Auchterlonie, N.A.; Little, D.C.; Harmsen, R.; Newton, R.W.; Davies, S.J. Fish as feed: Using economic allocation to quantify the fish in: Fish out ratio of major fed aquaculture species. Aquaculture 2020, 528, 735474. [Google Scholar] [CrossRef]
- Hua, K.; Cobcroft, J.M.; Cole, A.; Condon, K.; Jerry, D.R.; Mangott, A.; Praeger, C.; Vucko, M.J.; Zeng, C.; Zenger, K.; et al. The future of aquatic protein: Implications for protein sources in aquaculture diets. One Earth 2019, 1, 316–329. [Google Scholar] [CrossRef] [Green Version]
- Cashion, T.; Le Manach, F.; Zeller, D.; Pauly, D. Most fish destined for fishmeal production are food-grade fish. Fish Fish. 2017, 18, 837–844. [Google Scholar] [CrossRef]
- OECD/FAO. OECD-FAO Agricultural Outlook 2021–2030; OECD Publishing: Paris, France, 2021. [Google Scholar] [CrossRef]
- Black, K.; Hughes, A. Future of the Sea: Trends in Aquaculture; Government Office for Science: London, UK, 2017. Available online: https://www.gov.uk/government/publications/future-of-the-sea-trends-in-aquaculture (accessed on 6 July 2023).
- Duarte, C.M.; Marbá, N.; Holmer, M. Rapid domestication of marine species. Sci.-N. Y. Then Wash. 2007, 316, 382. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, U.K.; Dubey, V.K.; Jena, J.K. Retracted article: Freshwater fish biodiversity of India: Pattern, utilization, importance, threats and challenges. Rev. Fish Biol. Fish. 2013, 23, 555. [Google Scholar] [CrossRef] [Green Version]
- Norambuena, F.; Hermon, K.; Skrzypczyk, V.; Emery, J.A.; Sharon, Y.; Beard, A.; Turchini, G.M. Algae in fish feed: Performances and fatty acid metabolism in juvenile atlantic salmon. PLoS ONE 2015, 10, e0124042. [Google Scholar] [CrossRef] [Green Version]
- Turchini, G.M.; Torstensen, B.E.; Ng, W.K. Fish oil replacement in finfish nutrition. Rev. Aquac. 2009, 1, 10–57. [Google Scholar] [CrossRef]
- Wang, Y.; Tibbetts, S.M.; McGinn, P.J. Microalgae as sources of high-quality protein for human food and protein supplements. Foods 2021, 10, 3002. [Google Scholar] [CrossRef]
- Gorissen, S.H.M.; Crombag, J.J.R.; Senden, J.M.G.; Waterval, W.A.H.; Bierau, J.; Verdijk, L.B.; van Loon, L.J.C. Protein content and amino acid composition of commercially available plant-based protein isolates. Amino Acids 2018, 50, 1685–1695. [Google Scholar] [CrossRef] [Green Version]
- Soler-Vila, A.; Coughlan, S.; Guiry, M.D.; Kraan, S. The red alga Porphyra dioica as a fish-feed ingredient for rainbow trout (Oncorhynchus mykiss): Effects on growth, feed efficiency, and carcass composition. J. Appl. Phycol. 2009, 21, 617–624. [Google Scholar] [CrossRef]
- Oliveira, M.N.D.; Freitas, A.L.P.; Carvalho, A.F.U.; Sampaio, T.M.T.; Farias, D.F.; Teixeira, D.I.A.; Gouveia, S.T.; Pereira, J.G.; Sena, M.M.D.C.C.D. Nutritive and non-nutritive attributes of washed-up seaweeds from the coast of Ceará, Brazil. Food Chem. 2009, 115, 254–259. [Google Scholar] [CrossRef]
- Ansari, F.A.; Guldhe, A.; Gupta, S.K.; Rawat, I.; Bux, F. Improving the feasibility of aquaculture feed by using microalgae. Environ. Sci. Pollut. Res. 2021, 28, 43234–43257. [Google Scholar] [CrossRef] [PubMed]
- Scranton, M.A.; Ostrand, J.T.; Fields, F.J.; Mayfield, S.P. Chlamydomonas as a model for biofuels and bio-products production. Plant J. 2015, 82, 523–531. [Google Scholar] [CrossRef] [Green Version]
- Darwish, R.; Gedi, M.A.; Akepach, P.; Assaye, H.; Zaky, A.S.; Gray, D.A. Chlamydomonas reinhardtii is a potential food supplement with the capacity to outperform chlorella and spirulina. Appl. Sci. 2020, 10, 6736. [Google Scholar] [CrossRef]
- Wang, X. Green Algae as a Platform for Protein Production: Food, Feed, and Nutritional Supplements; Triton Algae Innovations: Montreal, QC, Canada, 2017. [Google Scholar]
- Spence, R.; Gerlach, G.; Lawrence, C.; Smith, C. The behaviour and ecology of the zebrafish, Danio rerio. Biol. Rev. Camb. Philos. Soc. 2008, 83, 13–34. [Google Scholar] [CrossRef]
- Bailone, R.L.; Fukushima, H.C.S.; Fernandes, B.H.V.; De Aguiar, L.K.; Corrêa, T.; Janke, H.; Setti, P.G.; Roça, R.D.O.; Borra, R.C. Zebrafish as an alternative animal model in human and animal vaccination research. Lab. Anim. Res. 2020, 36, 13. [Google Scholar] [CrossRef]
- Carneiro, W.F.; Castro, T.F.D.; Orlando, T.M.; Meurer, F.; Paula, D.A.D.J.; Virote, B.D.C.R.; Vianna, A.R.D.C.B.; Murgas, L.D.S. Replacing fish meal by Chlorella sp. Meal: Effects on zebrafish growth, reproductive performance, biochemical parameters and digestive enzymes. Aquaculture 2020, 528, 735612. [Google Scholar] [CrossRef]
- M Kent, L.; Harper, C.; Wolf, J.C. Documented and potential research impacts of subclinical diseases in zebrafish. ILAR J. 2012, 53, 126–134. [Google Scholar] [CrossRef] [Green Version]
- Howe, K.; Clark, M.D.; Torroja, C.F.; Torrance, J.; Berthelot, C.; Muffato, M.; Collins, J.E.; Humphray, S.; McLaren, K.; Matthews, L. The zebrafish reference genome sequence and its relationship to the human genome. Nature 2013, 496, 498–503. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zang, L.; Maddison, L.A.; Chen, W. Zebrafish as a model for obesity and diabetes. Front. Cell Dev. Biol. 2018, 6, 91. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kwon, K.-C.; Lamb, A.; Fox, D.; Jegathese, S.J.P. An evaluation of microalgae as a recombinant protein oral delivery platform for fish using green fluorescent protein (gfp). Fish Shellfish Immunol. 2019, 87, 414–420. [Google Scholar] [CrossRef]
- Gedi, M.A.; Magee, K.J.; Darwish, R.; Eakpetch, P.; Young, I.; Gray, D.A. Impact of the partial replacement of fish meal with a chloroplast rich fraction on the growth and selected nutrient profile of zebrafish (Danio rerio). Food Funct. 2019, 10, 733–745. [Google Scholar] [CrossRef] [PubMed]
- Watts, S.A.; Powell, M.; D’Abramo, L.R. Fundamental approaches to the study of zebrafish nutrition. Ilar J. 2012, 53, 144–160. [Google Scholar] [CrossRef]
- Kaushik, S.; Georga, I.; Koumoundouros, G. Growth and body composition of zebrafish (Danio rerio) larvae fed a compound feed from first feeding onward: Toward implications on nutrient requirements. Zebrafish 2011, 8, 87–95. [Google Scholar] [CrossRef]
- Boyd, C.E.; Tucker, C.; McNevin, A.; Bostick, K.; Clay, J. Indicators of resource use efficiency and environmental performance in fish and crustacean aquaculture. Rev. Fish. Sci. 2007, 15, 327–360. [Google Scholar] [CrossRef]
- Jackson, A. Fish in—Fish out ratios explained. Aquac. Eur. 2009, 34, 5–10. [Google Scholar]
- Folch, J.; Lees, M.; Sloane-Stanley, G.H. A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem. 1957, 226, 497–509. [Google Scholar] [CrossRef]
- Korkmaz, A.S.; Cakirogullari, G.C. Effects of partial replacement of fish meal by dried baker’s yeast (Saccharomyces cerevisiae) on growth performance, feed utilization and digestibility in koi carp (Cyprinus carpio L., 1758) fingerlings. J. Anim. Vet. Adv. 2011, 10, 346–351. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Tyndale, S.T.; Heath, D.D.; Letcher, R.J. Determination of carotenoids and all-trans-retinol in fish eggs by liquid chromatography–electrospray ionization–tandem mass spectrometry. J. Chromatogr. B 2005, 816, 49–56. [Google Scholar] [CrossRef] [PubMed]
- Kimura, M.; Rodriguez-Amaya, D.B. A scheme for obtaining standards and HPLC quantification of leafy vegetable carotenoids. Food Chem. 2002, 78, 389–398. [Google Scholar] [CrossRef]
- Ahmad, A.; Hassan, S.W.; Banat, F. An overview of microalgae biomass as a sustainable aquaculture feed ingredient: Food security and circular economy. Bioengineered 2022, 13, 9521–9547. [Google Scholar] [CrossRef] [PubMed]
- Valente, L.M.P.; Gouveia, A.; Rema, P.; Matos, J.; Gomes, E.F.; Pinto, I.S. Evaluation of three seaweeds Gracilaria bursa-pastoris, Ulva rigida and Gracilaria cornea as dietary ingredients in european sea bass (Dicentrarchus labrax) juveniles. Aquaculture 2006, 252, 85–91. [Google Scholar] [CrossRef]
- Guroy, D.; Guroy, B.; Merrifield, D.L.; Ergun, S.; Tekinay, A.A.; Yigit, M. Effect of dietary Ulva and Spirulina on weight loss and body composition of rainbow trout, Oncorhynchus mykiss (walbaum), during a starvation period. J. Anim. Physiol. Anim. Nutr. 2011, 95, 320–327. [Google Scholar] [CrossRef]
- Diler, I.; Tekinay, A.A.; Guroy, D.; Guroy, B.K.; Soyuturk, M. Effects of Ulva rigida on the growth, feed intake and body composition of common carp, Cyprinus carpio L. J. Biol. Sci. 2007, 7, 305–308. [Google Scholar] [CrossRef] [Green Version]
- Wassef, E.A.; El-Sayed, A.F.M.; Kandeel, K.M.; Sakr, E.M. Evaluation of pterocladia (Rhodophyta) and Ulva (Chlorophyta) meals as additives to gilthead seabream Sparus aurata diets. Egypt. J. Aquat. Res. 2005, 31, 321–332. [Google Scholar]
- Montgomery, W.L.; Gerking, S.D. Marine macroalgae as foods for fishes: An evaluation of potential food quality. Environ. Biol. Fishes 1980, 5, 143–153. [Google Scholar] [CrossRef]
- Tocher, D.R. Fatty acid requirements in ontogeny of marine and freshwater fish. Aquac. Res. 2010, 41, 717–732. [Google Scholar] [CrossRef]
- Watanabe, T.; Takeuchi, T.; Saito, M.; Nishimura, K. Effect of low protein-high calory or essential fatty acid deficiency diet on reproduction of rainbow trout [Salmo gairdnerii]. Bull. Jpn. Soc. Sci. Fish. 1984, 50, 1207–1215. [Google Scholar] [CrossRef]
- Nguyen, H.M.; Cuiné, S.; Beyly-Adriano, A.; Légeret, B.; Billon, E.; Auroy, P.; Beisson, F.; Peltier, G.; Li-Beisson, Y. The green microalga Chlamydomonas reinhardtii has a single ω-3 fatty acid desaturase that localizes to the chloroplast and impacts both plastidic and extraplastidic membrane lipids. Plant Physiol. 2013, 163, 914–928. [Google Scholar] [CrossRef] [PubMed]
- Zäuner, S.; Jochum, W.; Bigorowski, T.; Benning, C. A cytochrome b(5)-containing plastid-located fatty acid desaturase from Chlamydomonas reinhardtii. Eukaryot. Cell 2012, 11, 856–863. [Google Scholar] [CrossRef] [Green Version]
- Yuangsoi, B.; Jintasataporn, O.; Areechon, N.; Tabthipwon, P. The pigmenting effect of different carotenoids on fancy carp (Cyprinus carpio). Aquac. Nutr. 2011, 17, e306–e316. [Google Scholar] [CrossRef]
- de Carvalho, C.C.C.R.; Caramujo, M.J. Carotenoids in aquatic ecosystems and aquaculture: A colorful business with implications for human health. Front. Mar. Sci. 2017, 4, 93. [Google Scholar] [CrossRef] [Green Version]
- Stewart, G.F.; Schweigert, B.S.; Hawthorn, J.; Bauernfeind, J.C. Carotenoids as colorants and vitamin A precursors. In Technological and Nutritional Applications; Elsevier: Amsterdam, The Netherlands, 2012. [Google Scholar]
- Sommer, T.R.; Potts, W.T.; Morrissy, N.M. Utilization of microalgal astaxanthin by rainbow trout (Oncorhynchus mykiss). Aquaculture 1991, 94, 79–88. [Google Scholar] [CrossRef]
- Viera, I.; Pérez-Gálvez, A.; Roca, M. Bioaccessibility of marine carotenoids. Mar. Drugs 2018, 16, 397. [Google Scholar] [CrossRef] [Green Version]
- Lagocki, S. Evaluation of Haematococcus pluvialis as a Natural Dietary Source of the Carotenoid Astaxanthin for Rainbow Trout Flesh Pigmentation; University of Plymouth: Plymouth, UK, 2001. [Google Scholar]
- Goodwin, T.W. The Comparative Biochemistry of the Carotenoids; Chapman and Hall Ltd.: London, UK, 1952. [Google Scholar]
- Rawls, J.F.; Mellgren, E.M.; Johnson, S.L. How the zebrafish gets its stripes. Dev. Biol. 2001, 240, 301–314. [Google Scholar] [CrossRef] [Green Version]
- White, R.M.; Sessa, A.; Burke, C.; Bowman, T.; LeBlanc, J.; Ceol, C.; Bourque, C.; Dovey, M.; Goessling, W.; Burns, C.E.; et al. Transparent adult zebrafish as a tool for in vivo transplantation analysis. Cell Stem Cell 2008, 2, 183–189. [Google Scholar] [CrossRef] [Green Version]
- Bjerkeng, B. Carotenoids in aquaculture: Fish and crustaceans. In Carotenoids: Volume 4: Natural Functions; Britton, G., Liaaen-Jensen, S., Pfander, H., Eds.; Birkhäuser Basel: Basel, Switzerland, 2008; pp. 237–254. [Google Scholar]
- Nüsslein-Volhard, C.; Singh, A.P. How fish color their skin: A paradigm for development and evolution of adult patterns. BioEssays 2017, 39, 1600231. [Google Scholar] [CrossRef] [Green Version]
- Reboul, E. Absorption of vitamin A and carotenoids by the enterocyte: Focus on transport proteins. Nutrients 2013, 5, 3563–3581. [Google Scholar] [CrossRef] [Green Version]
- Green, A.S.; Fascetti, A.J. Meeting the vitamin A requirement: The efficacy and importance of β-carotene in animal species. Sci. World J. 2016, 2016, 7393620. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goodwin, T.W. Metabolism, nutrition, and function of carotenoids. Annu. Rev. Nutr. 1986, 6, 273–297. [Google Scholar] [CrossRef] [PubMed]
- von Lintig, J.; Vogt, K. Vitamin a formation in animals: Molecular identification and functional characterization of carotene cleaving enzymes. J. Nutr. 2004, 134, 251s–256s. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lampert, J.M.; Holzschuh, J.; Hessel, S.; Driever, W.; Vogt, K.; von Lintig, J. Provitamin a conversion to retinal via theβ, β-carotene-15, 15′-oxygenase (bcox) is essential for pattern formation and differentiation during zebrafish embryogenesis. Development 2003, 130, 2173–2186. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Ingredient | Control (C0) | 10% Reduction in FM (C10) | 20% Reduction in FM (C20) | 50% Reduction in FM (C50) | |
---|---|---|---|---|---|
A. Diet | |||||
Fishmeal | % Diet (DW) | 38.74 | 34.12 | 30.98 | 19.62 |
Rapeseed oil | 4.37 | - | - | - | |
Vitamin premix | 0.31 | 0.32 | 0.32 | 0.33 | |
Mineral premix | 0.42 | 0.43 | 0.43 | 0.44 | |
Wheat gluten | 22.91 | 21.64 | 24.29 | 32.98 | |
Corn starch | 31.82 | 22.62 | 21.89 | 19.41 | |
Binder (CMC powder) | 0.52 | 0.53 | 0.53 | 0.54 | |
C. reinhardtii | - | 19.43 | 20.50 | 25.12 | |
Arginine | - | - | 0.05 | 0.24 | |
Leucine | - | - | - | - | |
Lysine | 0.90 | 0.90 | 0.99 | 1.31 | |
B. Nutrient | |||||
Crude protein | % DW | 46.56 | 46.10 | 46.32 | 46.53 |
Crude lipid | 11.30 | 11.73 | 11.81 | 12.25 | |
Carbohydrate | 35.06 | 33.90 | 33.69 | 33.33 | |
Crude ash | 7.94 | 7.74 | 7.19 | 5.22 | |
Crude fibre | 0.13 | 0.01 | 0.01 | 0.01 | |
Oleic acid | mg/g DW | 30 | 29 | 28 | 25 |
LA | 20.20 | 18.23 | 16.23 | 10.24 | |
ALA | 12.63 | 17.15 | 16.21 | 13.8 | |
EPA | 3.29 | 2.95 | 2.55 | 1.68 | |
DHA | 9.60 | 8.62 | 7.68 | 4.80 | |
Lutein | µg/g DW Diet | 0 | 143 | 286 | 715 |
β-carotene | 0 | 1720 | 3440 | 8600 | |
Gross energy | MJ/kg DW | 21.28 | 19.46 | 19.39 | 19.08 |
Protein | Lipid | Carb | Ash | β-Carotene | Lutein | Astaxanthin | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
C.reinhardtii | 48.22 ± 0.57 | 24.65 ± 2.75 | 21.23 ± 0.03 | 4.77 ± 0.16 | 1.72 ± 0.15 | 0.14 ± 0.01 | ND | |||||||
Fatty Acid | C16:0 | C16:1 | C16:4 n-3 | C18:0 | C18:1 | C18:1 | C18:2 n-6 | C18:3 n-6 | C18:3 n-3 | C18:4 n-3 | ||||
g/100 g DW | 1.67 ± 0.08 | 0.19 ± 0.01 | 0.39 ± 0.01 | 0.16 ± 0.02 | 1.03 ± 0.11 | 0.27 ± 0.02 | 0.29 ± 0.02 | 0.29 ± 0.02 | 2.98 ± 0.19 | 0.06 ± 0.01 |
FA (mg/g DW) | Control | C10 | C20 | C50 |
---|---|---|---|---|
C14 | 2.00 ± 0.19 A | 1.49 ± 0.05 B | 1.41 ± 0.03 B | 1.38 ± 0.01 B |
C16 | 20.85 ± 0.48 B | 20.03 ± 0.36 B | 20.31 ± 0.39 B | 25.38 ± 0.17 A |
C16:1 | 2.84 ± 0.06 A | 2.44 ± 0.14 B | 2.43 ± 0.06 A | 2.78 ± 0.01 A |
C16:3-n-3 | 0.69 ± 0.30 A | 0.42 ± 0.02 A | 0.45 ± 0.02 A | 0.63 ± 0.01 A |
C16:4-n-3 (HTA) | 0.01 ± 0.00 B | 1.51 ± 0.08 A | 1.56 ± 0.02 A | 1.56 ± 0.01 A |
C18:0 | 5.37 ± 0.10 B | 5.75 ± 0.19 B | 6.16 ± 0.45 B | 8.18 ± 0.01 B |
C18:1-n-9 | 33.34 ± 0.69 A | 18.99 ± 0.17 C | 19.60 ± 0.50 C | 25.86 ± 0.35 B |
C18:2-n-6t | 14.98 ± 0.34 A | 9.91 ± 0.29 C | 10.27 ± 0.26 C | 13.58 ± 0.14 B |
C18:3-n-3 (ALA) | 2.98 ± 0.07 C | 4.37 ± 0.07 B | 4.39 ± 0.10 B | 5.46 ± 0.10 A |
C20:4-n-6 | 0.58 ± 0.07 A | 0.64 ± 0.03 A | 0.63 ± 0.04 A | 0.65 ± 0.00 A |
C20:5-n-3 (EPA) | 1.80 ± 0.33 A | 1.51 ± 0.10 A | 1.39 ± 0.07 A | 1.22 ± 0.02 A |
C22:6-n-3 (DHA) | 5.84 ± 0.13 BC | 6.25 ± 0.06 A | 6.09 ± 0.09 AB | 5.50 ± 0.00 C |
SFA | 28.22 | 27.27 | 27.88 | 34.94 |
MUFA | 36.18 | 21.44 | 22.03 | 28.64 |
PUFA | 26.90 | 24.60 | 24.77 | 28.60 |
n-6 FA | 6.43 | 6.88 | 6.72 | 6.16 |
n-3 FA | 11.33 | 14.06 | 13.87 | 14.37 |
n-6: n-3 | 0.57 | 0.49 | 0.48 | 0.43 |
Diet | Lutein (Whole Fish) | Lutein (Eggs) | Retinol (Whole Fish) |
---|---|---|---|
Control | 0.06 ± 0.03 C | 23.43 ± 2.3 D | 0.35 ± 0.03 D |
C10 | 3.81 ± 0.47 A | 43.89 ± 0.70 B | 1.86 ± 0.22 C |
C20 | 4.57 ± 0.05 AB | 52.87 ± 0.93 A | 3.52 ± 0.16 A |
C50 | 3.55 ± 0.43 B | 39.75 ± 1.06 C | 2.99 ± 0.37 D |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Darwish, R.M.; Magee, K.J.; Gedi, M.A.; Farmanfarmaian, A.; Zaky, A.S.; Young, I.; Gray, D.A. Evaluation of Chlamydomonas reinhardtii Microalgae as a Sustainable Feed Supplement and Fishmeal Substitute in Aquaculture with a Positive Impact on Human Nutrition. Fermentation 2023, 9, 682. https://doi.org/10.3390/fermentation9070682
Darwish RM, Magee KJ, Gedi MA, Farmanfarmaian A, Zaky AS, Young I, Gray DA. Evaluation of Chlamydomonas reinhardtii Microalgae as a Sustainable Feed Supplement and Fishmeal Substitute in Aquaculture with a Positive Impact on Human Nutrition. Fermentation. 2023; 9(7):682. https://doi.org/10.3390/fermentation9070682
Chicago/Turabian StyleDarwish, Randa M., Kieran James Magee, Mohamed A. Gedi, Ardeshir Farmanfarmaian, Abdelrahman S. Zaky, Iain Young, and David A. Gray. 2023. "Evaluation of Chlamydomonas reinhardtii Microalgae as a Sustainable Feed Supplement and Fishmeal Substitute in Aquaculture with a Positive Impact on Human Nutrition" Fermentation 9, no. 7: 682. https://doi.org/10.3390/fermentation9070682
APA StyleDarwish, R. M., Magee, K. J., Gedi, M. A., Farmanfarmaian, A., Zaky, A. S., Young, I., & Gray, D. A. (2023). Evaluation of Chlamydomonas reinhardtii Microalgae as a Sustainable Feed Supplement and Fishmeal Substitute in Aquaculture with a Positive Impact on Human Nutrition. Fermentation, 9(7), 682. https://doi.org/10.3390/fermentation9070682