Genetic Regulation of Fruit Shape in Horticultural Crops: A Review
Abstract
:1. Introduction
2. Genetic Regulation of Fruit Shape in Horticultural Crops
2.1. Tomato
2.1.1. Overview of Fruit Shape Diversity
2.1.2. QTL Mapping and GWAS Analysis
2.1.3. Key Genes Involved in Fruit Shape and Functional Analysis
2.1.4. Future Directions for Research
2.2. Chili Pepper
2.2.1. Overview of Fruit Shape Diversity
2.2.2. QTL Mapping and GWAS Analysis of Pepper Fruit Shape Genes
2.2.3. Key Genes Involved in Fruit Shape and Functional Analysis
2.2.4. Future Directions for Research
2.3. Cucumber
2.3.1. Overview of Fruit Shape Diversity
2.3.2. QTL Mapping and GWAS Analysis
2.3.3. Key Genes Involved in Fruit Shape and Functional Analysis
2.3.4. Future Directions for Research
2.4. Peach
2.4.1. Overview of Fruit Shape Diversity
2.4.2. QTL Mapping and GWAS Analysis
2.4.3. Key Genes Involved in Fruit Shape and Functional Analysis
2.4.4. Future Directions for Research
2.5. Grape
2.5.1. Overview of Fruit Shape Diversity
2.5.2. QTL Mapping and GWAS Analysis
2.5.3. Key Genes Involved in Fruit Shape and Functional Analysis
2.5.4. Future Directions for Research
3. Concluding Remarks and Future Perspectives
- (1)
- Elucidating gene function and regulatory networks: With the application of gene-editing technologies like CRISPR/Cas9, scientists will further explore the specific functions of genes such as OVATE, SUN, FAS, and LC, as well as how they interact with other genes to regulate fruit shape. CRISPR/Cas9 enables the generation of allelic variants and expression variants by either introducing targeted mutations or modifying gene regulatory elements, thus offering insights into gene dosage effects and gene regulation. For example, in tomatoes, CRISPR has been used to investigate how OVATE interacts with TONNEAU1 recruiting motif (TRM) proteins, modulating cell division patterns and ultimately influencing fruit elongation and shape. By creating specific allelic variants of OVATE, researchers can study how different mutations affect fruit morphology, from minor changes in cell division to dramatic shifts in fruit shape.
- (2)
- Comparative studies across species: Given that tomato and chili pepper belong to the Solanaceae family and share similar genetic backgrounds, future studies will compare homologous genes across these crops to uncover general rules governing fruit shape regulation. For instance, comparing the CaOvate gene in chili peppers with the OVATE gene in tomatoes in terms of regulatory mechanisms and exploring similarities between the CsSUN gene in cucumbers and the SUN gene in tomatoes.
- (3)
- Integrating multi-omics technologies: To gain a more comprehensive understanding of the genetic regulation of fruit shape, future research will combine transcriptomics, proteomics, and metabolomics, among other omics technologies, using systems biology approaches to decipher regulatory networks. For example, by analyzing transcriptome data from different developmental stages of fruits to reveal patterns of gene expression and their relationship with fruit shape.
- (4)
- Developing new breeding strategies: Based on a deep understanding of gene function and regulatory networks, scientists will develop new gene-editing tools and breeding methods to precisely improve crop varieties, cultivating new cultivars according to consumer request and market request and superior quality. For instance, using gene-editing techniques to precisely control the expression of genes related to fruit shape, enabling customized breeding of fruit shape.
- (5)
- In the study of fruit morphology across crops like tomatoes, peppers, cucumbers, grapes, and peaches, several key genes consistently emerge as crucial regulators. Genes such as OVATE, SUN, FAS, and LC are involved in the control of fruit shape, size, and development in tomatoes and other Solanaceae crops. For example, SUN modulates fruit elongation, while OVATE represses cell elongation and alters fruit shape in multiple crops. Additionally, genes related to meristem size control, like FAS (which regulates carpel number and fruit size), have broad applications for improving fruit traits across species. By targeting these common genes, significant advancements can be made in improving fruit size, shape, and overall yield in a variety of horticultural crops. CRISPR/Cas9 technologies will be instrumental in fine-tuning these genes, allowing for the development of crops with optimized fruit characteristics and improved market quality.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, S.; Wang, C.; Zhou, X.; Liu, D.; Liu, C.; Luan, J.; Qin, Z.; Xin, M. The Curvature of Cucumber Fruits Is Associated with Spatial Variation in Auxin Accumulation and Expression of a YUCCA Biosynthesis Gene. Hortic. Res. 2020, 7, 135. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Dong, Y.; Gao, S.; Zhou, Y.; Liu, D.; Wang, J.; Liu, Z.; Deng, Y.; Li, F. Identification of CaPCR1, an OFP Gene Likely Involved in Pointed versus Concave Fruit Tip Regulation in Pepper (Capsicum annuum L.) Using Recombinant Inbred Lines. Theor. Appl. Genet. 2024, 137, 161. [Google Scholar] [CrossRef] [PubMed]
- Dong, Y.; Huang, L.; Liu, J.; Nong, H.; Li, H.; Zhang, W.; Zheng, H.; Tao, J. Genome-Wide Identified VvOFP Genes Family and VvOFP4 Functional Characterization Provide Insight into Fruit Shape in Grape. Int. J. Biol. Macromol. 2024, 276, 133880. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Zhang, H.; Liu, J.; Chen, K.; Wang, Y.; Zhang, G.; Li, L.; Yue, H.; Weng, Y.; Li, Y.; et al. The Mutation of CsSUN, an IQD Family Protein, Is Responsible for the Short and Fat Fruit (Sff) in Cucumber (Cucumis sativus L.). Plant Sci. 2024, 346, 112177. [Google Scholar] [CrossRef]
- Zhang, B.; Li, Q.; Keyhaninejad, N.; Taitano, N.; Sapkota, M.; Snouffer, A.; Van Der Knaap, E. A Combinatorial TRM-OFP Module Bilaterally Fine-tunes Tomato Fruit Shape. New Phytol. 2023, 238, 2393–2409. [Google Scholar] [CrossRef]
- Li, X.; Wang, J.; Su, M.; Zhang, M.; Hu, Y.; Du, J.; Zhou, H.; Yang, X.; Zhang, X.; Jia, H.; et al. Multiple-Statistical Genome-Wide Association Analysis and Genomic Prediction of Fruit Aroma and Agronomic Traits in Peaches. Hortic. Res. 2023, 10, uhad117. [Google Scholar] [CrossRef]
- Wang, X.; Li, H.; Gao, Z.; Wang, L.; Ren, Z. Localization of Quantitative Trait Loci for Cucumber Fruit Shape by a Population of Chromosome Segment Substitution Lines. Sci. Rep. 2020, 10, 11030. [Google Scholar] [CrossRef]
- Martinez-Lüscher, J.; Brillante, L.; Kurtural, S.K. Flavonol profile and concentration can be modulated by light environment in grapevine: Developmental and varietal differences in Vitis vinifera. Front. Plant Sci. 2019, 10, 51. [Google Scholar]
- Fanwoua, J.; de V isser, P.H.B.; Heuvelink, E.; Yin, X.; Struik, P.C.; Marcelis, L.F.M. A dynamic model of tomato fruit growth integrating cell division, cell growth and endoreduplication. Funct. Plant Biol. 2013, 40, 1098–1114. [Google Scholar] [CrossRef]
- Xiao, H.; Jiang, N.; Schaffner, E.; Stockinger, E.J.; van der Knaap, E. A retrotransposon-mediated gene duplication underlies morphological variation of tomato fruit. Science 2008, 319, 1527–1530. [Google Scholar] [CrossRef]
- Liu, J.; Van Eck, J.; Cong, B.; Tanksley, S.D. A new class of regulatory genes underlying the cause of pear-shaped tomato fruit. Proc. Natl. Acad. Sci. USA 2002, 99, 13302–13306. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Zhang, B.; Keyhaninejad, N.; Rodríguez, G.R.; Kim, H.J.; Chakrabarti, M.; Illa-Berenguer, E.; Taitano, N.K.; Gonzalo, M.J.; Díaz, A.; et al. A common genetic mechanism underlies morphological diversity in fruits and other plant organs. Nat. Commun. 2018, 9, 4734. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.; Liang, X.; Gao, M.; Liu, H.; Meng, H.; Weng, Y.; Cheng, Z. Round fruit shape in WI7239 cucumber is controlled by two interacting quantitative trait loci with one putatively encoding a tomato SUN homolog. Theor. Appl. Genet. 2017, 130, 573–586. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez, G.R.; Muños, S.; Anderson, C.; Sim, S.-C.; Michel, A.; Causse, M.; Gardener, B.B.M.; Francis, D.; van der Knaap, E. Distribution of SUN, OVATE, LC, and FAS in the Tomato Germplasm and the Relationship to Fruit Shape Diversity. Plant Physiol. 2011, 156, 275–285. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Han, J.; Chen, L.; Han, N.; Hu, Y.; Ge, Q.; Ren, Z.; Wang, L. Ectopic Expression of CsSUN in Tomato Results in Elongated Fruit Shape via Regulation of Longitudinal Cell Division. Int. J. Mol. Sci. 2022, 23, 9973. [Google Scholar] [CrossRef]
- Kanayama, Y. Sugar metabolism and fruit development in the tomato. Hortic. J. 2017, 86, 417–425. [Google Scholar] [CrossRef]
- Quinet, M.; Angosto, T.; Yuste-Lisbona, F.J.; Blanchard-Gros, R.; Bigot, S.; Martinez, J.P.; Lutts, S. Tomato fruit development and metabolism. Front. Plant Sci. 2019, 10, 1554. [Google Scholar] [CrossRef]
- Grandillo, S.; Ku, H.M.; Tanksley, S.D. Characterization of fs8.1, a major QTL influencing fruit shape in tomato. Mol. Breed. 1996, 2, 251–260. [Google Scholar] [CrossRef]
- Sun, L.; Rodriguez, G.R.; Clevenger, J.P.; Illa-Berenguer, E.; Lin, J.; Blakeslee, J.J.; Liu, W.; Fei, Z.; Wijeratne, A.; Meulia, T.; et al. Candidate gene selection and detailed morphological evaluations of fs8.1, a quantitative trait locus controlling tomato fruit shape. J. Exp. Bot. 2015, 66, 6471–6482. [Google Scholar] [CrossRef]
- Muños, S.; Ranc, N.; Botton, E.; Bérard, A.; Rolland, S.; Duffé, P.; Carretero, Y.; Le Paslier, M.-C.; Delalande, C.; Bouzayen, M.; et al. Increase in Tomato Locule Number Is Controlled by Two Single-Nucleotide Polymorphisms Located near WUSCHEL. Plant Physiol 2011, 156, 2244–2254. [Google Scholar] [CrossRef]
- Xu, C.; Liberatore, K.L.; MacAlister, C.A.; Huang, Z.; Chu, Y.-H.; Jiang, K.; Brooks, C.; Ogawa-Ohnishi, M.; Xiong, G.; Pauly, M.; et al. A cascade of arabinosyltransferases controls shoot meristem size in tomato. Nat. Genet. 2015, 47, 784–792. [Google Scholar] [CrossRef] [PubMed]
- Sierra-Orozco, E.; Shekasteband, R.; Illa-Berenguer, E.; Snouffer, A.; van der Knaap, E.; Lee, T.G.; Hutton, S.F. Identification and Characterization of GLOBE, a Major Gene Controlling Fruit Shape and Impacting Fruit Size and Marketability in Tomato. Hortic. Res. 2021, 8, 138. [Google Scholar] [CrossRef] [PubMed]
- Van Der Knaap, E.; Chakrabarti, M.; Chu, Y.H.; Clevenger, J.P.; Illa-Berenguer, E.; Huang, Z.; Keyhaninejad, N.; Mu, Q.; Sun, L.; Wang, Y.; et al. What lies beyond the eye: The molecular mechanisms regulating tomato fruit weight and shape. Front. Plant Sci. 2014, 5, 227. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Clevenger, J.P.; Sun, L.; Visa, S.; Kamiya, Y.; Jikumaru, Y.; Blakeslee, J.; van der Knaap, E. The control of tomato fruit elongation orchestrated by sun, ovate and fs8.1 in a wild relative of tomato. Plant Sci. 2015, 238, 95–104. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Pan, B.; Li, Z.; Xu, Y.; Cao, X.; Jia, J.; Shen, H.; Sun, L. Fruit shape loci sun, ovate, fs8.1 and their interactions affect seed size and shape in tomato. Front. Plant Sci. 2023, 13, 1091639. [Google Scholar] [CrossRef]
- Wu, S.; Xiao, H.; Cabrera, A.; Meulia, T.; van der Knaap, E. SUN regulates vegetative and reproductive organ shape by changing cell division patterns. Plant Physiol. 2011, 157, 1175–1186. [Google Scholar] [CrossRef]
- Wang, Y.; Clevenger, J.P.; Illa-Berenguer, E.; Meulia, T.; van der Knaap, E.; Sun, L. A comparison of sun, ovate, fs8.1 and auxin application on tomato fruit shape and gene expression. Plant Cell Physiol. 2019, 60, 1067–1081. [Google Scholar] [CrossRef]
- Rodríguez-Leal, D.; Lemmon, Z.H.; Man, J.; Bartlett, M.E.; Lippman, Z.B. Engineering quantitative trait variation for crop improvement by genome editing. Cell 2017, 171, 470–480. [Google Scholar] [CrossRef]
- Chu, Y.; Jang, J.; Huang, Z.; van der Knaap, E. Tomato locule number and fruit size controlled by natural alleles of lc and fas. Plant Direct 2019, 3, e00142. [Google Scholar] [CrossRef]
- Aguirre, L.; Hendelman, A.; Hutton, S.F.; McCandlish, D.M.; Lippman, Z.B. Idiosyncratic and dose-dependent epistasis drives variation in tomato fruit size. Science 2023, 382, 315–320. [Google Scholar] [CrossRef]
- Vazquez, D.V.; Pereira Da Costa, J.H.; Godoy, F.N.I.; Cambiaso, V.; Rodríguez, G.R. Genetic basis of the lobedness degree in tomato fruit morphology. Plant Sci. 2022, 319, 111258. [Google Scholar] [CrossRef] [PubMed]
- Yin, Z.; Liu, J.; Zhao, H.; Chu, X.; Liu, H.; Ding, X.; Lu, C.; Wang, X.; Zhao, X.; Li, Y.; et al. SlMYB1 regulates the accumulation of lycopene, fruit shape, and resistance to Botrytis cinerea in tomato. Hortic. Res. 2023, 10, uhac282. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Q.; Takei-Hoshi, R.; Okumura, H.; Chu, X.; Liu, H.; Ding, X.; Lu, C.; Wang, X.; Zhao, X.; Li, Y.; et al. Genome editing of SlMYB3R3, a cell cycle transcription factor gene of tomato, induces elongated fruit shape. J. Exp. Bot. 2022, 73, 7312–7325. [Google Scholar] [CrossRef] [PubMed]
- Yuste-Lisbona, F.J.; Fernández-Lozano, A.; Pineda, B.; Bretones, S.; Ortíz-Atienza, A.; García-Sogo, B.; Müller, N.A.; Angosto, T.; Capel, J.; Moreno, V.; et al. ENO regulates tomato fruit size through the floral meristem development network. Proc. Natl. Acad. Sci. USA 2020, 117, 8187–8195. [Google Scholar] [CrossRef]
- Peng, Z.; Li, H.; Liu, G.; Jia, W.; Fu, D. NAC transcription factor NOR-like1 regulates tomato fruit size. Planta 2023, 258, 9. [Google Scholar] [CrossRef]
- Gan, L.; Song, M.; Wang, X.; Yang, N.; Li, H.; Liu, X.; Li, Y. Cytokinins is involved in regulation of tomato pericarp thickness and fruit size. Hortic. Res. 2022, 19, 9. [Google Scholar] [CrossRef]
- Mumtaz, M.A.; Li, F.; Zhang, X.; Tao, J.; Ge, P.; Wang, Y.; Wang, Y.; Gai, W.; Dong, H.; Zhang, Y. Altered brassinolide sensitivity1 regulates fruit size in association with phytohormones modulation in tomato. Horticulturae 2022, 8, 1008. [Google Scholar] [CrossRef]
- Tsaballa, A.; Pasentsis, K.; Darzentas, N.; Tsaftaris, A.S. Multiple Evidence for the Role of an Ovate-like Gene in Determining Fruit Shape in Pepper. BMC Plant Biol. 2011, 11, 46. [Google Scholar] [CrossRef]
- Paran, I.; van der Knaap, E. Genetic and molecular regulation of fruit and plant domestication traits in tomato and pepper. J. Exp. Bot. 2007, 58, 3841–3852. [Google Scholar] [CrossRef]
- Borovsky, Y.; Paran, I. Characterization of fs10.1, a major QTL controlling fruit elongation in Capsicum. Theor. Appl. Genet. 2011, 123, 657–665. [Google Scholar] [CrossRef]
- Cao, Y.; Zhang, K.; Yu, H.; Chen, S.; Xu, D.; Zhao, H.; Zhang, Z.; Yang, Y.; Gu, X.; Liu, X. Pepper variome reveals the history and key loci associated with fruit domestication and diversification. Mol. Plant 2022, 15, 1744–1758. [Google Scholar] [CrossRef] [PubMed]
- Ben Chaim, A.; Borovsky, Y.; Rao, G.U.; Tanyolac, B.; Paran, I. fs3.1: A major fruit shape QTL conserved in Capsicum. Genome 2003, 46, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Colonna, V.; D’Agostino, N.; Garrison, E.; Albrechtsen, A.; Meisner, J.; Facchiano, A.; Cardi, T.; Tripodi, P. Genomic Diversity and Novel Genome-Wide Association with Fruit Morphology in Capsicum, from 746k Polymorphic Sites. Sci. Rep. 2019, 9, 10067. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Qiao, Y.-M.; Li, Y.; Yu, Y.-N.; Gong, Z.-H. Identification of Fruit Traits Related QTLs and a Candidate Gene, CaBRX, Controlling Locule Number in Pepper (Capsicum annuum L.). Horticulturae 2022, 8, 146. [Google Scholar] [CrossRef]
- Liu, Z.; Yang, B.; Huang, R.; Suo, H.; Zhang, Z.; Chen, W.; Dai, X.; Zou, X.; Ou, L. Transcriptome and Proteome Wide Association of a Recombinant Inbred Line Population Revealed Twelve Core QTLs for Four Fruit Traits in Pepper (Capsicum annuum L.). Hortic. Res. 2022, 9, uhac015. [Google Scholar] [CrossRef]
- Razo-Mendivil, F.G.; Hernandez-Godínez, F.; Hayano-Kanashiro, C.; Martínez, O. Transcriptomic analysis of a wild and a cultivated varieties of Capsicum annuum over fruit development and ripening. PLoS ONE 2021, 16, e0256319. [Google Scholar] [CrossRef]
- Li, S.; Pan, Y.; Wen, C.; Li, Y.; Liu, X.; Zhang, X.; Behera, T.K.; Xing, G.; Weng, Y. Integrated Analysis in Bi-Parental and Natural Populations Reveals CsCLAVATA3 (CsCLV3) Underlying Carpel Number Variations in Cucumber. Theor. Appl. Genet. 2016, 129, 1007–1022. [Google Scholar] [CrossRef]
- Xin, T.; Zhang, Z.; Li, S.; Zhang, S.; Li, Q.; Zhang, Z.-H.; Huang, S.; Yang, X. Genetic Regulation of Ethylene Dosage for Cucumber Fruit Elongation. Plant Cell 2019, 31, 1063–1076. [Google Scholar] [CrossRef]
- Pan, Y.; Chen, B.; Qiao, L.; Chen, F.; Zhao, J.; Cheng, Z.; Weng, Y. Phenotypic characterization and fine mapping of a major-effect fruit shape QTL FS5.2 in Cucumber, Cucumis sativus L., with near-isogenic line-derived segregating populations. Int. J. Mol. Sci. 2022, 23, 13384. [Google Scholar] [CrossRef]
- Che, G.; Pan, Y.; Liu, X.; Li, M.; Zhao, J.; Yan, S.; He, Y.; Wang, Z.; Cheng, Z.; Song, W.; et al. Natural variation in CRABS CLAW contributes to fruit length divergence in cucumber. Plant Cell 2023, 35, 738–755. [Google Scholar] [CrossRef]
- Xie, Y.; Liu, X.; Sun, C.; Song, X.; Li, X.; Cui, H.; Guo, J.; Liu, L.; Ying, A.; Zhang, Z.; et al. CsTRM5 regulates fruit shape via mediating cell division direction and cell expansion in cucumber. Hortic. Res. 2023, 10, uhad007. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Yao, D.; Chen, Y.; Wen, H.; Pan, J.; Xiao, T.; Lv, D.; He, H.; Pan, J.; Cai, R.; et al. Mapping and identification of CsSF4, a gene encoding a UDP-N-acetyl glucosamine-peptide N-acetylglucosaminyltransferase required for fruit elongation in cucumber (Cucumis sativus L.). Theor. Appl. Genet. 2023, 136, 54. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Jiang, L.; Che, G.; Pan, Y.; Li, Y.; Hou, Y.; Zhao, W.; Zhong, Y.; Ding, L.; Yan, S.; et al. A Functional Allele of CsFUL1 Regulates Fruit Length through Repressing CsSUP and Inhibiting Auxin Transport in Cucumber. Plant Cell 2019, 31, 1289–1307. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Wang, B.; Wang, S.; Lin, T.; Yang, L.; Zhao, Z.; Zhang, Z.; Huang, S.; Yang, X. Genome-Wide Target Mapping Shows Histone Deacetylase Complex1 Regulates Cell Proliferation in Cucumber Fruit. Plant Physiol. 2020, 182, 167–184. [Google Scholar] [CrossRef] [PubMed]
- Che, G.; Gu, R.; Zhao, J.; Liu, X.; Song, X.; Zi, H.; Cheng, Z.; Shen, J.; Wang, Z.; Liu, R.; et al. Gene Regulatory Network Controlling Carpel Number Variation in Cucumber. Development 2020, 147, dev184788. [Google Scholar] [CrossRef]
- Shulaev, V.; Korban, S.S.; Sosinski, B.; Abbott, A.G.; Aldwinckle, H.S.; Folta, K.M.; Iezzoni, A.; Main, D.; Arús, P.; Dandekar, A.M.; et al. Multiple models for rosaceae genomics. Plant Physiol. 2008, 147, 985–1003. [Google Scholar] [CrossRef]
- Cirilli, M.; Rossini, L. Many Candidates for a Single Chair: A Critical Review of the Genetic Determinant of Flat Fruit Shape Trait in Peach (Prunus persica L. Batsch). Tree Genet. Genomes 2021, 17, 34. [Google Scholar] [CrossRef]
- Cao, K.; Zhou, Z.; Wang, Q.; Guo, J.; Zhao, P.; Zhu, G.; Fang, W.; Chen, C.; Wang, X.; Wang, X.; et al. Genome-wide association study of 12 agronomic traits in Peach. Nat. Commun. 2016, 7, 13246. [Google Scholar] [CrossRef]
- Guan, J.; Xu, Y.; Yu, Y.; Fu, J.; Ren, F.; Guo, J.; Zhao, J.; Jiang, Q.; Wei, J.; Xie, H. Genome Structure Variation Analyses of Peach Reveal Population Dynamics and a 1.67 Mb Causal Inversion for Fruit Shape. Genome Biol. 2021, 22, 13. [Google Scholar] [CrossRef]
- López-Girona, E.; Zhang, Y.; Eduardo, I.; Mora, J.R.H.; Alexiou, K.G.; Arús, P.; Aranzana, M.J. A Deletion Affecting an LRR-RLK Gene Co-Segregates with the Fruit Flat Shape Trait in Peach. Sci. Rep. 2017, 7, 6714. [Google Scholar] [CrossRef]
- Tan, Q.; Liu, X.; Gao, H.; Xiao, W.; Chen, X.; Fu, X.; Li, L.; Li, D.; Gao, D. Comparison Between Flat and Round Peaches, Genomic Evidences of Heterozygosity Events. Front. Plant Sci. 2019, 10, 592. [Google Scholar] [CrossRef]
- Cirilli, M.; Baccichet, I.; Chiozzotto, R.; Silvestri, C.; Rossini, L.; Bassi, D. Genetic and Phenotypic Analyses Reveal Major Quantitative Loci Associated to Fruit Size and Shape Traits in a Non-Flat Peach Collection (P. persica L. Batsch). Hortic. Res. 2021, 8, 232. [Google Scholar] [CrossRef]
- Zhou, H.; Ma, R.; Gao, L.; Zhang, J.; Zhang, A.; Zhang, X.; Ren, F.; Zhang, W.; Liao, L.; Yang, Q.; et al. A 1.7-Mb Chromosomal Inversion Downstream of a PpOFP1 Gene Is Responsible for Flat Fruit Shape in Peach. Plant Biotechnol. J. 2021, 19, 192–205. [Google Scholar] [CrossRef] [PubMed]
- Liang, Z.; Duan, S.; Sheng, J.; Zhu, S.; Ni, X.; Shao, J.; Liu, C.; Nick, P.; Du, F.; Fan, P.; et al. Whole-Genome Resequencing of 472 Vitis Accessions for Grapevine Diversity and Demographic History Analyses. Nat. Commun. 2019, 10, 1190. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Cui, L.; Fang, J. Genome-Wide Association Study of the Candidate Genes for Grape Berry Shape-Related Traits. BMC Plant Biol. 2022, 22, 42. [Google Scholar] [CrossRef]
- Zheng, H.; Dong, Y.; Nong, H.; Huang, L.; Liu, J.; Yu, X.; Zhang, Y.; Yang, L.; Hong, B.; Wang, W.; et al. VvSUN May Act in the Auxin Pathway to Regulate Fruit Shape in Grape. Hortic. Res. 2022, 9, uhac200. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, J.; Xu, Y.; Fang, P.; Guo, Q.; Huang, W.; Hou, J.; Wan, H.; Zhang, S. Genetic Regulation of Fruit Shape in Horticultural Crops: A Review. Horticulturae 2024, 10, 1151. https://doi.org/10.3390/horticulturae10111151
Liu J, Xu Y, Fang P, Guo Q, Huang W, Hou J, Wan H, Zhang S. Genetic Regulation of Fruit Shape in Horticultural Crops: A Review. Horticulturae. 2024; 10(11):1151. https://doi.org/10.3390/horticulturae10111151
Chicago/Turabian StyleLiu, Jia, Yang Xu, Pingping Fang, Qinwei Guo, Wenjuan Huang, Jiexi Hou, Hongjian Wan, and Sheng Zhang. 2024. "Genetic Regulation of Fruit Shape in Horticultural Crops: A Review" Horticulturae 10, no. 11: 1151. https://doi.org/10.3390/horticulturae10111151
APA StyleLiu, J., Xu, Y., Fang, P., Guo, Q., Huang, W., Hou, J., Wan, H., & Zhang, S. (2024). Genetic Regulation of Fruit Shape in Horticultural Crops: A Review. Horticulturae, 10(11), 1151. https://doi.org/10.3390/horticulturae10111151