A Study on the Fruiting and Correlation between the Chemical Indicators and Antimicrobial Properties of Hippophae rhamnoides L.
Abstract
:1. Introduction
2. Materials and Methods
2.1. Biological Materials
Characteristics of the Cultivars Studied
2.2. Chemical Materials
2.3. Physicochemical Analysis
2.4. Content of Biologically Active Substances
2.5. Antimicrobial Activity
2.6. Statistical Analysis
3. Results
3.1. Productivity of Sea Buckthorn Varieties Analysis
3.2. Physicochemical Analysis
3.3. Content of Biologically Active Substances
3.4. Antimicrobial Activity Analysis
4. Discussion
4.1. Physicochemical Analysis
4.2. Content of Biologically Active Substances
4.3. Antimicrobial Activity of Sea Buckthorn Fruits and Purees
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Small, E.; Catling, P.; Li, T. Blossoming treasures of biodiversity: 5. Sea Buckthorn (Hippophae rhamnoides)—An ancient crop with modern virtues. Biodiversity 2002, 3, 25–27. [Google Scholar] [CrossRef]
- Dong, R.; Su, J.; Nian, H.; Shen, H.; Zhai, X.; Xin, H.; Qin, L.; Han, T. Chemical Fingerprint and Quantitative Analysis of Flavonoids for Quality Control of Sea Buckthorn Leaves by HPLC and UHPLC-ESI-QTOF-MS. J. Funct. Foods 2017, 37, 513–522. [Google Scholar] [CrossRef]
- Tian, Y.; Liimatainen, J.; Alanne, A.-L.; Lindstedt, A.; Liu, P.; Sinkkonen, J.; Kallio, H.; Yang, B. Phenolic Compounds Extracted by Acidic Aqueous Ethanol from Berries and Leaves of Different Berry Plants. Food Chem. 2017, 220, 266–281. [Google Scholar] [CrossRef]
- Sharma, U.; Sharma, K.; Sharma, N.; Sharma, A.; Singh, H.; Sinha, A.K. Microwave-Assisted Efficient Extraction of Different Parts of Hippophae rhamnoides for the Comparative Evaluation of Antioxidant Activity and Quantification of Its Phenolic Constituents by Reverse-Phase High-Performance Liquid Chromatography (RP-HPLC). J. Agric. Food Chem. 2008, 56, 374–379. [Google Scholar] [CrossRef]
- Beveridge, T.; Li, T.; Oomah, B.; Smith, A. Sea Buckthorn Products: Manufacture and Composition. J. Agric. Food Chem. 1999, 47, 3480–3488. [Google Scholar] [CrossRef] [PubMed]
- Jaśniewska, A.; Diowksz, A. Wide Spectrum of Active Compounds in Sea Buckthorn (Hippophae rhamnoides) for Disease Prevention and Food Production. Antioxidants 2021, 10, 1279. [Google Scholar] [CrossRef] [PubMed]
- Tudor, C.; Bohn, T.; Iddir, M.; Dulf, F.V.; Focşan, M.; Rugină, D.O.; Pintea, A. Sea Buckthorn Oil as a Valuable Source of Bioaccessible Xanthophylls. Nutrients 2019, 12, 76. [Google Scholar] [CrossRef] [PubMed]
- Ercisli, S.; Orhan, E.; Ozdemir, O.; Sengul, M. The Genotypic Effects on the Chemical Composition and Antioxidant Activity of Sea Buckthorn (Hippophae rhamnoides L.) Berries Grown in Turkey. Sci. Hortic. 2007, 115, 27–33. [Google Scholar] [CrossRef]
- Zhang, W.; Yan, J.; Duo, J.; Ren, B.; Guo, J. Preliminary study of biochemical constitutions of berry of sea buckthorn growing in Shanxi province and their changing trend. In Proceedings of the International Symposium on Sea Buckthorn (H. rhamnoides L.), Xi’an, China, 19–23 October 1989; pp. 96–105. [Google Scholar]
- Solà Marsiñach, M.; Cuenca, A.P. The Impact of Sea Buckthorn Oil Fatty Acids on Human Health. Lipids Health Dis. 2019, 18, 145. [Google Scholar] [CrossRef]
- Sandulachi, E.; Bulgaru, V.; Ghendov-Mosanu, A.; Sturza, R. Controlling the Risk of Bacillus in Food Using Berries. Food Nutr. Sci. 2021, 12, 557–577. [Google Scholar] [CrossRef]
- Sandulachi, E.; Cojocari, D.; Balan, G.; Popescu, L.; Ghendov-Moșanu, A.; Sturza, R. Antimicrobial Effects of Berries on Listeria monocytogenes. Food Nutr. Sci. 2020, 11, 873–886. [Google Scholar] [CrossRef]
- Sturza, R.; Sandulachi, E.; Cojocari, D.; Balan, G.; Popescu, L.; Ghendov-Mosanu, A. Antimicrobial properties of berry powders in cream cheese. J. Eng. Sci. 2019, 26, 125–136. [Google Scholar]
- Cojocari, D.; Sturza, R.; Sandulachi, E.; Macari, A.; Balan, G.; Ghendov-Mosanu, A. Inhibiting of accidental pathogenic microbiota in meat products with berry powders. J. Eng. Sci. 2019, 26, 114–122. [Google Scholar]
- Tyagi, N.; Singh, A.; Kohli, K. New Insights towards Implications of Sea Buckthorn Oil in Human Health: A Review. Int. J. Pharmacogn. Chin. Med. 2018, 4, 1204–1208. [Google Scholar]
- Mohan Gupta, S.; Gupta, A.K.; Ahmed, Z. Antibacterial and Antifungal Activity in Leaf, Seed Extract and Seed Oil of Seabuckthorn (Hippophae Salicifolia D. Don) Plant. J. Plant Pathol. Microbiol. 2011, 2, 1–4. [Google Scholar] [CrossRef]
- Schubertová, S.; Krepsová, Z.; Janotková, L.; Potočňáková, M.; Kreps, F. Exploitation of Sea Buckthorn Fruit for Novel Fermented Foods Production: A Review. Processes 2021, 9, 749. [Google Scholar] [CrossRef]
- Kallio, H.; Yang, W.; Liu, P.; Yang, B. Proanthocyanidins in Wild Sea Buckthorn (Hippophaë rhamnoides) Berries Analyzed by Reversed-Phase, Normal-Phase, and Hydrophilic Interaction Liquid Chromatography with UV and MS Detection. J. Agric. Food Chem. 2014, 62, 7721–7729. [Google Scholar] [CrossRef]
- Teleszko, M.; Wojdyło, A.; Rudzińska, M.; Oszmiański, J.; Golis, T. Analysis of Lipophilic and Hydrophilic Bioactive Compounds Content in Sea Buckthorn (Hippophaë rhamnoides L.) Berries. J. Agric. Food Chem. 2015, 63, 4120–4129. [Google Scholar] [CrossRef]
- Criste, A.; Urcan, A.C.; Bunea, A.; Pripon Furtuna, F.R.; Olah, N.K.; Madden, R.H.; Corcionivoschi, N. Phytochemical Composition and Biological Activity of Berries and Leaves from Four Romanian Sea Buckthorn (Hippophae rhamnoides L.) Varieties. Molecules 2020, 25, 1170. [Google Scholar] [CrossRef]
- Gatlan, A.-M.; Gutt, G. Sea Buckthorn in Plant Based Diets. An Analytical Approach of Sea Buckthorn Fruits Composition: Nutritional Value, Applications, and Health Benefits. Int. J. Environ. Res. Public Health 2021, 18, 8986. [Google Scholar] [CrossRef]
- Terechuk, L.; Starovoytova, K.; Ivanova, S.; Sergeeva, I. Obtaining Functional Products from Sea Buckthorn Berries. In Proceedings of the 2nd International Conference on Education Science and Social Development (ESSD 2019), Changsha, China, 20–21 July 2019; Atlantis Press: Changsha, China, 2019. [Google Scholar]
- Yang, B.; Kallio, H.P. Fatty Acid Composition of Lipids in Sea Buckthorn (Hippophaë rhamnoides L.) Berries of Different Origins. J. Agric. Food Chem. 2001, 49, 1939–1947. [Google Scholar] [CrossRef]
- Yue, X.-F.; Shang, X.; Zhang, Z.-J.; Zhang, Y.-N. Phytochemical Composition and Antibacterial Activity of the Essential Oils from Different Parts of Sea Buckthorn (Hippophae rhamnoides L.). J. Food Drug Anal. 2017, 25, 327–332. [Google Scholar] [CrossRef]
- Catalog of Plant Varieties for Year 2023. Available online: https://cstsp.md/uploads/files/Registrul_2023_Tipar_Gray.pdf (accessed on 5 January 2024).
- Latimer, G.W. (Ed.) Official Methods of Analysis of AOAC International, 22nd ed.; Oxford University Press: New York, NY, USA, 2023. [Google Scholar]
- Siriangkhawut, W. Electrochemical Analysis of Ascorbic Acid in Commercial Fruit Juices and Drinks. Asian J. Chem. 2014, 26, 6487–6491. [Google Scholar] [CrossRef]
- Ferey, L.; Delaunay, N. Food Analysis on Electrophoretic Microchips. Sep. Purif. Rev. 2016, 45, 193–226. [Google Scholar] [CrossRef]
- Wang, M.; Qu, F.; Shan, X.-Q.; Lin, J.-M. Development and Optimization of a Method for the Analysis of Low-Molecular-Mass Organic Acids in Plants by Capillary Electrophoresis with Indirect UV Detection. J. Chromatogr. A 2003, 989, 285–292. [Google Scholar] [CrossRef] [PubMed]
- Rovio, S.; Sirén, K.; Sirén, H. Application of Capillary Electrophoresis to Determine Metal Cations, Anions, Organic Acids, and Carbohydrates in Some Pinot Noir Red Wines. Food Chem. 2011, 124, 1194–1200. [Google Scholar] [CrossRef]
- Ghendov-Mosanu, A.; Netreba, N.; Balan, G.; Cojocari, D.; Boestean, O.; Bulgaru, V.; Gurev, A.; Popescu, L.; Deseatnicova, O.; Resitca, V.; et al. Effect of Bioactive Compounds from Pumpkin Powder on the Quality and Textural Properties of Shortbread Cookies. Foods 2023, 12, 3907. [Google Scholar] [CrossRef] [PubMed]
- Beveridge, T.; Harrison, J.E.; Drover, J. Processing Effects on the Composition of Sea Buckthorn Juice from Hippophae rhamnoides L. Cv. Indian Summer. J. Agric. Food Chem. 2002, 50, 113–116. [Google Scholar] [CrossRef] [PubMed]
- Hudzicki, J. Kirby-Bauer Disk Diffusion Susceptibility Test Protocol. Am. Soc. Microbiol. 2016, 15, 55–63. [Google Scholar]
- Valgas, C.; De Souza, S.; Smânia, E. Screening methods to determine antibacterial activity of natural products. Braz. J. Microbiol. 2007, 38, 369–380. [Google Scholar] [CrossRef]
- Clewer, A.; Scarisbrick, D. Practical Statistics and Experimental Design for Plant and Crop Science; John Wiley & Sons Ltd.: Chichester, UK, 2001. [Google Scholar]
- Babeanu, N.; Cimpoies, D.; Lica, D.; Racul, A. Biometrie; Ed. UASM: Chisinau, Moldova, 2012. [Google Scholar]
- Michel, T.; Destandau, E.; Le Floch, G.; Lucchesi, M.E.; Elfakir, C. Antimicrobial, Antioxidant and Phytochemical Investigations of Sea Buckthorn (Hippophaë rhamnoides L.) Leaf, Stem, Root and Seed. Food Chem. 2012, 131, 754–760. [Google Scholar] [CrossRef]
- Gao, X.; Ohlander, M.; Jeppsson, N.; Björk, L.; Trajkovski, V. Changes in Antioxidant Effects and Their Relationship to Phytonutrients in Fruits of Sea Buckthorn (Hippophae rhamnoides L.) during Maturation. J. Agric. Food Chem. 2000, 48, 1485–1490. [Google Scholar] [CrossRef] [PubMed]
- Bal, L.; Meda, V.; Naik, S.; Satya, S. Sea buckthorn berries: A potential source of valuable nutrients for nutraceuticals and cosmoceuticals. Food Res. Int. 2011, 44, 1718–1727. [Google Scholar] [CrossRef]
- Classification of Food on Basis of Acidity. Available online: https://foodtechnotes.com/2020/10/27/classification-of-food-on-basis-of-acidity/ (accessed on 30 December 2023).
- Munkhbayar, D.; Ariuntungalag, J.; Delgersuuri, G.; Badamkhand, D. Enzymatic Technology for Sea Buckthorn Oil Extraction and Its Biochemical Analysis. Mong. J. Chem. 2014, 15, 62–65. [Google Scholar] [CrossRef]
- Upadhyay, N.; Yogendra Kumar, M.; Gupta, A. Antioxidant, Cytoprotective and Antibacterial Effects of Sea Buckthorn (Hippophae rhamnoides L.) Leaves. Food Chem. Toxicol. 2010, 48, 3443–3448. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.H.; Jang, H.J.; Park, K.H.; Kim, S.H.; Kim, J.K.; Kim, J.C.; Jang, T.S.; Kim, K.H. Phytochemical Analysis of the Fruits of Sea Buckthorn (Hippophae rhamnoides): Identification of Organic Acid Derivatives. Plants 2021, 10, 860. [Google Scholar] [CrossRef]
- Famiani, F.; Bonghi, C.; Chen, Z.-H.; Drincovich, M.; Farinelli, D.; Lara, M.; Proietti, S.; Rosati, A.; Vizzotto, G.; Walker, R. Stone Fruits: Growth and Nitrogen and Organic Acid Metabolism in the Fruits and Seeds—A Review. Front. Plant Sci. 2020, 11, 572–601. [Google Scholar] [CrossRef]
- Famiani, F.; Battistelli, A.; Moscatello, S.; Cruz-Castillo, J.; Walker, R. The Organic Acids That Are Accumulated in the Flesh of Fruits: Occurrence, Metabolism and Factors Affecting Their Contents—A Review. Rev. Chapingo Ser. Hortic. 2015, 21, 97–128. [Google Scholar] [CrossRef]
- Ma, Z.; Cui, Y.; Feng, G. Studies on the fruit character and biochemical compositions of some forms within Chinese sea buckthorn (Hippophae rhamnoids subsp. sinensis). In Proceedings of the International Symposium on Sea Buckthorn (H. rhamnoides L.), Xi’an, China, 19–23 October 1989; pp. 106–113. [Google Scholar]
- Kallio, K.; Yang, B.; Tahvonen, R.; Hakala, M. Composition of sea buckthorn berries of various origins. In Proceedings of the International Symposium on Sea Buckthorn (Hippophae rhamnoids L.), Beijing, China, 29 August 1999. [Google Scholar]
- Michalak, M.; Paradowska, K.; Zielińska, A. Selected plant oils as a source of carotenoids for the applications in cosmetology. Postępy Fitoter. 2018, 1, 10–17. [Google Scholar]
- Mendelová, A.; Mendel, Ľ.; Czako, P.; Mareček, J. Evaluation of Carotenoids, Polyphenols Content and Antioxidant Activity in the Sea Buckthorn Fruit. Potravin. Slovak J. Food Sci. 2016, 10, 59–64. [Google Scholar] [CrossRef]
- Beveridge, T. Chemical composition and some physical properties. In Sea Buckthorn (Hippophaë rhamnoides L.): Production and Utilization; NRC Research Press: Ottawa, ON, Canada, 2003; pp. 79–88. [Google Scholar]
- Yakimishen, R.; Cenkowski, S.; Muir, W. Oil Recoveries from Sea Buckthorn Seeds and Pulp. Appl. Eng. Agric. 2005, 21, 1047–1055. [Google Scholar] [CrossRef]
- Ivanišová, E.; Blašková, M.; Terentjeva, M.; Grygorieva, O.; Vergun, O.; Brindza, J.; Kačániová, M. Biological Properties of Sea Buckthorn (Hippophae rhamnoides L.) Derived Products. Acta Sci. Pol. Technol. Aliment. 2020, 19, 195–205. [Google Scholar] [PubMed]
- Lõugas, T. Study on Physico-Chemical Properties and Some Bioactive Compounds of Sea Buckthorn (Hippophae rhamnoides L.); Thesis on Natural and Exact Sciences; TUT Press: Tallinn, Estonia, 2006. [Google Scholar]
- Kumar, R.; Kumar, G.P.; Chaurasia, O.; Bala Singh, S. Phytochemical and Pharmacological Profile of Seabuckthorn Oil: A Review. Res. J. Med. Plant 2011, 5, 491–499. [Google Scholar] [CrossRef]
- Qadir, M.; Abbas, K.; Younus, A.; Shaikh, R. Report—Antibacterial Activity of Sea Buckthorn (Hippophae rhamnoides L.) against Methicillin Resistant Staphylococcus Aureus (MRSA). Pak. J. Pharm. Sci. 2016, 29, 1711–1713. [Google Scholar] [PubMed]
- Smida, I.; Pentelescu, C.; Pentelescu, O.; Sweidan, A.; Oliviero, N.; Meuric, V.; Martin, B.; Colceriu, L.; Bonnaure-Mallet, M.; Tamanai-Shacoori, Z. Benefits of Sea Buckthorn (Hippophae rhamnoides) Pulp Oil-based Mouthwash on Oral Health. J. Appl. Microbiol. 2019, 126, 1594–1605. [Google Scholar] [CrossRef] [PubMed]
- Jeong, J.H. Antioxidant and Antimicrobial Activities of Extracts from a Medicinal Plant, Sea Buckthorn. J. Korean Soc. Appl. Biol. Chem. 2009, 53, 33–38. [Google Scholar]
- Richa, A. Antimicrobial Activity of Seed, Pomace and Leaf Extracts of Sea Buckthorn (Hippophae rhamnoides L.) against Foodborne and Food Spoilage Pathogens. Afr. J. Biotechnol. 2012, 11, 10424–10430. [Google Scholar] [CrossRef]
- Kasparaviciene, G.; Briedis, V.; Ivanauskas, L. Influence of sea buckthorn oil production technology on its antioxidant activity. Medicina 2004, 40, 753–757. [Google Scholar]
- Sandulachi, E.; Macari, A.; Cojocari, D.; Balan, G.; Popa, S.; Turculet, N.; Ghendov-Mosanu, A.; Sturza, R. Antimicrobial properties of sea buckthorn grownin the republic of moldova. J. Eng. Sci. 2022, 29, 164–175. [Google Scholar] [CrossRef]
- Stahl, W.; Sies, H. Antioxidant Activity of Carotenoids. Mol. Asp. Med. 2003, 24, 345–351. [Google Scholar] [CrossRef]
- Shah, R.K.; Idate, A.; Sharma, P. Review on Antimicrobial Properties of Sea Buckthorn Hippophae rhamnoides L. Int. J. All Res. Educ. Sci. Methods 2020, 8, 1590–1599. [Google Scholar]
- Merhan, O. The Biochemistry and Antioxidant Properties of Carotenoids. In Carotenoids; Cvetkovic, D.J., Nikolic, G.S., Eds.; InTech: Atyrau, Kazakhstan, 2017. [Google Scholar]
- Kopsell, D. Accumulation and Bioavailability of Dietary Carotenoids in Vegetable Crops. Trends Plant Sci. 2006, 11, 499–507. [Google Scholar] [CrossRef] [PubMed]
- Gammone, M.; Riccioni, G.; D’Orazio, N. Marine Carotenoids against Oxidative Stress: Effects on Human Health. Mar. Drugs 2015, 13, 6226–6246. [Google Scholar] [CrossRef]
- Clark, S. xPharm: The Comprehensive Pharmacology Reference; Elsevier: Amsterdam, The Netherlands, 2007. [Google Scholar]
- Šnē, E.; Galoburda, R.; Segliņa, D. Sea Buckthorn Vegetative Parts—A Good Source of Bioactive Compounds. Proc. Latv. Acad. Sci. Sect. B Nat. Exact Appl. Sci. 2013, 67, 101–108. [Google Scholar] [CrossRef]
Sea Buckthorn Cultivars | Cross-Sectional Area of the Trunk (CSAT), cm2 | Productivity (kg/Plant) | Fruit Production Relative to CSAT, kg/cm2 | Productivity (t/ha) |
---|---|---|---|---|
Clara | 25.3 ± 4.7 a | 10.8 ± 2.0 a | 0.44 ± 0.15 a | 17.8 ± 3.3 a |
Cora | 30.1 ± 5.6 b | 10.7 ± 2.0 a | 0.385 ± 0.062 b | 17.6 ± 3.3 a |
Dora | 14.5 ± 2.7 c | 2.51 ± 0.47 b | 0.20 ± 0.023 c | 4.1 ± 0.76 b |
Mara | 25.5 ± 4.7 a | 9.4 ± 1.7 c | 0.423 ± 0.063 b | 15.4 ± 2.8 c |
LSD | 3.496 | 1.292 | 0.0394 | 2.109 |
Sea Buckthorn Cultivars | Indicator Tested | ||
---|---|---|---|
Total Dry Matter (TDM), % | Titratable Acidity (TA), % | pH | |
Clara | 17.3 ± 1.3 a | 3.25 ± 0.87 a | 2.882 ± 0.070 a |
Dora | 16.7 ± 1.9 a | 3.2 ± 1.6 a | 2.928 ± 0.034 a |
Cora | 19.1 ± 2.3 a | 4.9 ± 1.6 b | 2.760 ± 0.059 b |
Mara | 18.7 ± 2.3 a | 5.9 ± 1.0 b | 2.734 ± 0.084 b |
LSD | 2.404 | 1.473 | 0.0775 |
Sea Buckthorn Cultivars | Chemical Indicators, mg/100 gDW (Number of Samples, n = 42) | ||||
---|---|---|---|---|---|
Ascorbic Acid Content (AAC) | Organic Acids (OA) | Carotenoid Content (CC) | |||
Malic | Citric | Succinic | |||
Clara | 151 ± 32 a | 11.90 ± 0.23 a | 0.202 ± 0.023 a | 1.101 ± 0.043 a | 7.65 ± 0.81 a |
Dora | 254 ± 43 b | 5.80 ± 0.34 b | 0.081 ± 0.013 b | 0.360 ± 0.041 b | 39.8 ± 5.1 b |
Cora | 113 ± 57 a | 9.60 ± 0.11 c | 0.090 ± 0.016 b | 0.720 ± 0.056 c | 4.1 ± 1.1 c |
Mara | 279 ± 41 b | 13.40 ± 0.81 d | 0.320 ± 0.002 c | 0.031 ± 0.017 a | 14.1 ± 3.4 d |
LSD | 53.22 | 0.2041 | 0.011 | 0.034 | 3.744 |
Sea Buckthorn Cultivars | Mass, g | Pearson Coefficient | ||||
---|---|---|---|---|---|---|
Pc = f(AABacillus pumilus and PCI) | ||||||
TDM | CC | AAC | TA | pH | ||
Whole Sea Buckthorn Fruits | ||||||
Clara | 0.28–0.30 | |||||
0.10 * | 0.8520 | 0.8488 | 0.5738 | 0.9762 | −0.9524 | |
0.25 * | 0.8525 | 0.8473 | 0.5727 | 0.9766 | −0.9534 | |
Dora | 0.16–0.19 | |||||
0.10 * | 0.9791 | 0.9791 | 0.9791 | 1.0000 | −0.9628 | |
0.25 * | 0.9758 | 0.9758 | 0.9758 | 1.0000 | −0.9758 | |
Cora | 0.16–0.19 | |||||
0.10 * | 0.7154 | 0.7179 | 0.9689 | 0.9689 | −0.9952 | |
0.25 * | 0.8417 | 0.8443 | 0.9766 | 0.9927 | −0.8429 | |
Mara | 0.16–0.20 | |||||
0.10 * | 0.9261 | 0.9209 | 0.8714 | 0.9706 | −0.9280 | |
0.25 * | 0.9254 | 0.9202 | 0.8704 | 0.9704 | −0.9273 | |
Sea Buckthorn Purees | ||||||
Clara | - | 0.8232 | 0.8526 | 0.5174 | 0.9883 | −0.9588 |
Dora | 0.9577 | 0.9577 | 0.9577 | 1.000 | −0.9582 | |
Cora | 0.7174 | 0.7552 | 0.7178 | 0.7061 | −0.7720 | |
Mara | 0.9035 | 0.9940 | 0.9035 | 0.7780 | −0.9047 |
Whole Sea Buckthorn Fruits | |||
Intercept | Slope | ||
Clara | 0.093144 | −0.01583 | |
Dora | 0.096479 | −0.21127 | |
Cora | 0.097657 | 0.039655 | |
Mara | 0.159398 | −0.1807 | |
Sea Buckthorn Purees | |||
Constant | Time | ×1 | |
Clara | 18.2303 | −1.44478 | 38.7097 |
Dora | 18.5423 | −1.15536 | 19.8787 |
Cora | 17.601 | −0.49881 | 53.2813 |
Mara | 19.7681 | −1.79464 | 42.7038 |
Properties | Investigation Method | Target Microorganisms | Source |
---|---|---|---|
Antibacterial activity | Standard disc diffusion method | Staphylococcus aureus | Muhammad Imran Qadir et al. [55] |
Antimicrobial | Streptococcus gordonii, Porphyromonas gingivalis, Actinomyces viscosus and Candida albicans. | Smida et al. [56] | |
Antimicrobial activity | Candida albicans, Pichia jadinii, Bacillus subtilis and Staphilococcus aureus | Jeong, J.H et al. [57] | |
Antiviral, antibacterial activity, fungal strains | Inhibition zone diameter, IS (50) | Staphilococcus aureus, Haemophilus influenzae, Streptococcus agalactiae, Streptococcus pyogenes, Streptococcus pneumoniae | Heikki Kallio [18] |
Antibacterial property | Diffusion method, Minim inhibition concentration (MIC) | Escherichia coli, Salmonella enterica. Yersinia enterocolitica, Bacillus thuringiensis, Listeria monocytogenes, Stapylococcus aureus | Ivanišová, E. et al. [52] |
Antibacterial property and fungal strains | Gram-positive bacteria (Bacillus cereus, Enterococcus durans, Enterococcus faecalis, Staphilococcus aureus), Gram-negative bacteria (Aeromonas hydrophila, Bacillus subtilus, Escherichia coli, Pseudomonas aeruginosa, Pseudomonas fluorescens, Pichia jadinii, Salmonella enterica, Salmonella typhimurium, Yersinia enterolitica) and yeast (Candida albicans) | Jeong, J.H et al. [57]; Michel et al. [37]; Upadhyay et al. [42]; Richa Arora [58] | |
Antimicrobial activity | Escherichia coli | Giedre Kasparaviciene [59] | |
Antimicrobial activity | Inhibition zone, minimum inhibition concentration (MIC) | Staphylococcus aureus, Bacillus subtilis, Salmonella Typhimurium, Escherichia coli, Candida albicans | Sandulachi et al. [60] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Netreba, N.; Sandulachi, E.; Macari, A.; Popa, S.; Ribintev, I.; Sandu, I.; Boestean, O.; Dianu, I. A Study on the Fruiting and Correlation between the Chemical Indicators and Antimicrobial Properties of Hippophae rhamnoides L. Horticulturae 2024, 10, 137. https://doi.org/10.3390/horticulturae10020137
Netreba N, Sandulachi E, Macari A, Popa S, Ribintev I, Sandu I, Boestean O, Dianu I. A Study on the Fruiting and Correlation between the Chemical Indicators and Antimicrobial Properties of Hippophae rhamnoides L. Horticulturae. 2024; 10(2):137. https://doi.org/10.3390/horticulturae10020137
Chicago/Turabian StyleNetreba, Natalia, Elisaveta Sandulachi, Artur Macari, Sergiu Popa, Ion Ribintev, Iuliana Sandu, Olga Boestean, and Irina Dianu. 2024. "A Study on the Fruiting and Correlation between the Chemical Indicators and Antimicrobial Properties of Hippophae rhamnoides L." Horticulturae 10, no. 2: 137. https://doi.org/10.3390/horticulturae10020137
APA StyleNetreba, N., Sandulachi, E., Macari, A., Popa, S., Ribintev, I., Sandu, I., Boestean, O., & Dianu, I. (2024). A Study on the Fruiting and Correlation between the Chemical Indicators and Antimicrobial Properties of Hippophae rhamnoides L. Horticulturae, 10(2), 137. https://doi.org/10.3390/horticulturae10020137