Effects of 1-MCP on the Physiological Attributes, Volatile Components and Ester-Biosynthesis-Related Gene Expression during Storage of ‘Jinyan’ Kiwifruit
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials, Treatments and Sampling
2.2. Determination of Fruit Physiological Indexes
2.3. Fruit Volatile Analysis
2.4. RNA Extraction and cDNA Synthesis
2.5. RT-qPCR
2.6. Statistical Analysis
3. Results
3.1. Effect of 1-MCP Treatment on Respiration Rate, Fruit Firmness and Soluble Solid Content
3.2. Effect of 1-MCP Treatment on Volatile Production
3.3. Effect of 1-MCP Treatment on Transcription Levels of Volatile Biosynthesis-Related Genes
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhong, C.H.; Wang, S.M.; Jiang, Z.W. ‘Jinyan’, an interspecific hybrid kiwifruit with brilliant yellow flesh and good storage quality. Hortscience 2012, 47, 1187–1190. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.P.; Mo, X.Q.; Tang, D.M.; Ma, Y.H.; Xie, Y.X.; Yang, H.B.; Shi, M.Y.; Li, L.; Li, W.Y.; Yan, F.H.; et al. Comparative analysis of volatile and carotenoid metabolites and mineral elements in the flesh of 17 kiwifruit. J. Food Sci. 2021, 86, 3023–3032. [Google Scholar] [CrossRef]
- Asiche, W.O.; Mitalo, O.W.; Kasahara, Y.; Tosa, Y.; Mworia, E.G.; Owino, W.O. Comparative transcriptome analysis reveals distinct ethylene-independent regulation of ripening in response to low temperature in kiwifruit. BMC Plant Biol. 2018, 18, 47. [Google Scholar] [CrossRef]
- Wang, F.; Yang, Q.Z.; Zhao, Q.F.; Zhang, X.P. Roles of antioxidant capacity and energy metabolism in the maturity-dependent chilling tolerance of postharvest kiwifruit. Postharvest Biol. Technol. 2020, 168, 111281. [Google Scholar] [CrossRef]
- Ali, M.; Raza, M.A.; Li, S.G.; Huan, C.; Zheng, X.L. 1-Methylcyclopropene treatment controls ethanol accumulation associated with regulation of mitochondrial energy metabolism in kiwifruit (Actinidia deliciosa) cv. ‘Bruno’during storage at room temperature. J. Food Biochem. 2020, 44, e13273. [Google Scholar] [CrossRef] [PubMed]
- Lim, S.; Han, S.H.; Kim, J.; Lee, H.J.; Lee, J.G.; Lee, E.J. Inhibition of hardy kiwifruit (Actinidia aruguta) ripening by 1-methylcyclopropene during cold storage and anticancer properties of the fruit extract. Food Chem. 2016, 190, 150–157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feng, S.; Huang, M.; Crane, J.H.; Wang, Y. Characterization of key aroma-active compounds in lychee (Litchi chinensis Sonn.). J. Food Drug. Anal. 2018, 26, 497–503. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.D.; Zhang, Y.Y.; Liu, X.C.; Xiao, Y.W.; Zhang, Z.Y.; Shi, Y.N.; Kong, W.B.; Yang, X.F.; Jiang, G.H.; Zhang, B.; et al. Cultivation conditions change aroma volatiles of strawberry fruit. Horticulturae 2021, 7, 81. [Google Scholar] [CrossRef]
- Mayuoni-Kirshinbaum, L.; Porat, R. The flavor of pomegranate fruit: A review. J. Sci. Food Agric. 2014, 94, 21–27. [Google Scholar] [CrossRef]
- Baietto, M.; Wilson, A.D. Electronic-nose applications for fruit identification, ripeness and quality grading. Sensors 2015, 15, 899–931. [Google Scholar] [CrossRef]
- Cai, H.F.; An, X.J.; Han, S.; Jiang, L.; Yu, M.L.; Ma, R.J.; Yu, Z.F. Effect of 1-MCP on the production of volatiles and biosynthesis-related gene expression in peach fruit during cold storage. Postharvest Biol. Technol. 2018, 141, 50–57. [Google Scholar] [CrossRef]
- El Hadi, M.A.; Zhang, F.J.; Wu, F.F.; Zhou, C.H.; Tao, J. Advances in fruit aroma volatile research. Molecules 2013, 18, 8200–8229. [Google Scholar] [CrossRef] [PubMed]
- Dou, T.X.; Shi, J.F.; Li, Y.; Bi, F.C.; Gao, H.J.; Hu, C.H.; Li, C.Y.; Yang, Q.S.; Deng, G.M.; Sheng, O.; et al. Influence of harvest season on volatile aroma constituents of two banana cultivars by electronic nose and HS-SPME coupled with GC-MS. Sci. Hortic. 2020, 265, 109214. [Google Scholar] [CrossRef]
- Lv, Y.H.; Chen, G.G.; Ouyang, H.; Sang, Y.Y.; Jiang, Y.; Cheng, S.B. Effects of 1-MCP treatment on volatile compounds and quality in Xiaobai apricot during storage at low temperature. J. Food Process. Preserv. 2021, 45, e15452. [Google Scholar] [CrossRef]
- Yuan, F.; Yan, J.; Yan, X.X.; Liu, H.B.; Pan, S.Y. Comparative transcriptome analysis of genes involved in volatile compound synthesis in blueberries (Vaccinium virgatum) during postharvest storage. Postharvest Biol. Technol. 2020, 170, 111327. [Google Scholar] [CrossRef]
- Schwab, W.; Davidovich-Rikanati, R.; Lewinsohn, E. Biosynthesis of plant-derived flavor compounds. Plant J. 2008, 54, 712–732. [Google Scholar] [CrossRef]
- Peng, B.; Yu, M.L.; Zhang, B.B.; Xu, J.L.; Ma, R.J. Differences in PpAAT1 activity in high- and low-aroma peach varieties affect γ-decalactone production. Plant Physiol. 2020, 182, 2065–2080. [Google Scholar] [CrossRef]
- Zlatić, E.; Zadnik, V.; Fellman, J.; Demšar, L.; Hribar, J.; Čejić, Ž.; Vidrih, R. Comparative analysis of aroma compounds in ‘Bartlett’ pear in relation to harvest date, storage conditions, and shelf-life. Postharvest Biol. Technol. 2016, 117, 71–80. [Google Scholar] [CrossRef]
- Zhang, B.; Yin, X.R.; Li, X.; Yang, S.L.; Ferguson, I.B.; Chen, K.S. Lipoxygenase gene expression in ripening kiwifruit in relation to ethylene and aroma production. J. Agric. Food Chem. 2009, 57, 2875–2881. [Google Scholar] [CrossRef]
- Bai, J.; Baldwin, E.A.; Imahori, Y.; Kostenyuk, I.; Burns, J.; Brecht, J.K. Chilling and heating may regulate C6 volatile aroma production by different mechanisms in tomato (Solanum lycopersicum) fruit. Postharvest Biol. Technol. 2011, 60, 111–120. [Google Scholar] [CrossRef]
- Shu, P.; Min, D.D.; Zhou, J.X.; Ai, W.; Li, J.Z.; Li, Z.L.; Zhang, X.H.; Shi, Z.D.; Sun, Y.J.; Li, F.J.; et al. The synergism of 1-methylcyclopropene and ethephon preserves quality of “Laiyang” pears with recovery of aroma formation after long-term cold storage. Front. Plant Sci. 2020, 11, 490. [Google Scholar] [CrossRef]
- Win, N.M.; Yoo, J.; Naing, A.H.; Kwon, J.G.; Kang, I. 1-Methylcyclopropene (1-MCP) treatment delays modification of cell wall pectin and fruit softening in “Hwangok” and “Picnic” apples during cold storage. Postharvest Biol. Technol. 2021, 180, 111599. [Google Scholar] [CrossRef]
- Shi, T.; Sun, J.; Wu, X.X.; Weng, J.Y.; Wang, P.K.; Qie, H.L.; Huang, Y.H.; Wang, H.K.; Gao, Z.H. Transcriptome analysis of Chinese bayberry (Myrica rubra Sieb. et Zucc.) fruit treated with heat and 1-MCP. Plant Physiol. Biochem. 2018, 133, 40–49. [Google Scholar] [CrossRef] [PubMed]
- Kou, J.J.; Wei, C.Q.; Zhao, Z.H.; Guan, J.F.; Wang, W.J. Effects of ethylene and 1-methylcyclopropene treatments on physiological changes and ripening-related gene expression of ‘Mopan’ persimmon fruit during storage. Postharvest Biol. Technol. 2020, 166, 111185. [Google Scholar] [CrossRef]
- Park, Y.S.; Im, M.H.; Gorinstein, S. Shelf life extension and antioxidant activity of ‘Hayward’ kiwifruit as a result of prestorage conditioning and 1-methylcyclopropene treatment. J. Food Sci. Technol. 2015, 52, 2711–2720. [Google Scholar] [CrossRef] [Green Version]
- Chai, J.X.; Wang, Y.T.; Liu, Y.F.; Yong, K.; Liu, Z.D. 1-MCP extends the shelf life of ready-to-eat ‘Hayward’ and ‘Qihong’ kiwifruit stored at room temperature. Sci. Hortic. 2021, 289, 110437. [Google Scholar] [CrossRef]
- Thewes, F.R.; Anese, R.O.; Thewes, F.R.; Ludwig, V.; Klein, B.; Wagner, R.; Nora, F.R.; Rombaldi, C.V.; Brackmann, A. Dynamic controlled atmosphere (DCA) and 1-MCP: Impact on volatile esters synthesis and overall quality of ’galaxy’ apples. Food Packag. Shelf Life 2020, 26, 100563. [Google Scholar] [CrossRef]
- Zhu, X.Y.; Song, Z.Y.; Li, Q.M.; Li, J.; Chen, W.X.; Li, X.P. Physiological and transcriptomic analysis reveals the roles of 1-MCP in the ripening and fruit aroma quality of banana fruit (Fenjiao). Food Res. Int. 2020, 130, 108968. [Google Scholar] [CrossRef]
- Cai, H.F.; Han, S.; Jiang, L.; Yu, M.L.; Ma, R.J.; Yu, Z.F. 1-MCP treatment affects peach fruit aroma metabolism as revealed by transcriptomics and metabolite analyses. Food Res. Int. 2019, 122, 573–584. [Google Scholar] [CrossRef]
- Huan, C.; Zhang, J.; Jia, Y.; Li, S.E.; Jiang, T.J.; Shen, S.L.; Zheng, X.L. Effect of 1-methylcyclopropene treatment on quality, volatile production and ethanol metabolism in kiwifruit during storage at room temperature. Sci Hortic. 2020, 265, 109266. [Google Scholar] [CrossRef]
- Pan, L.Y.; Zhao, X.Y.; Chen, M.; Fu, Y.Q.; Xiang, M.L.; Chen, J.Y. Effect of exogenous methyl jasmonate treatment on disease resistance of postharvest kiwifruit. Food Chem. 2020, 305, 125483. [Google Scholar] [CrossRef]
- Mitalo, O.W.; Tokiwa, S.; Kondo, Y.; Otsuki, T.; Galis, I.; Suezawa, K.; Kataoka, I.; Doan, A.T.; Nakano, R.; Ushijima, K.; et al. Low temperature storage stimulates fruit softening and sugar accumulation without ethylene and aroma volatile production in kiwifruit. Front. Plant Sci. 2019, 10, 888. [Google Scholar] [CrossRef]
- Chen, M.; Jiang, Q.; Yin, X.R.; Lin, Q.; Chen, J.Y.; Allan, A.C.; Xu, C.J.; Chen, K.S. Effect of hot air treatment on organic acid- and sugar- metabolism in ponkan (Citrus reticulata) fruit. Sci. Hortic. 2012, 147, 118–125. [Google Scholar] [CrossRef]
- Yang, X.Y.; Zhang, X.H.; Fu, M.R.; Chen, Q.M.; Muzammil, J.M. Chlorine dioxide fumigation generated by a solid releasing agent enhanced the efficiency of 1-MCP treatment on the storage quality of strawberry. J. Food Sci. Technol. 2018, 55, 2003–2010. [Google Scholar] [CrossRef] [PubMed]
- Lia, M.; Zhi, H.H.; Dong, Y. The influence of pre- and postharvest 1-MCP application and oxygen regimes on textural properties, cell wall metabolism, and physiological disorders of late-harvest ‘Bartlett’ pears. Postharvest Biol. Technol. 2021, 173, 111429. [Google Scholar] [CrossRef]
- Ali, M.; Raza, M.A.; Li, S.E.; Zhou, L.C.; Huan, C.; Shen, S.L.; Zheng, X.L. 1-MCP regulates ethanol fermentation and GABA shunt pathway involved in kiwifruit quality during postharvest storage. Hortic. Plant J. 2021, 7, 23–30. [Google Scholar] [CrossRef]
- Günther, C.S.; Marsh, K.B.; Winz, R.A.; Harker, R.F.; Wohlers, M.W.; White, A.; Goddard, M.R. The impact of cold storage and ethylene on volatile ester production and aroma perception in ‘Hort16A’ kiwifruit. Food Chem. 2015, 169, 5–12. [Google Scholar] [CrossRef]
- Günther, C.S.; Matich, A.J.; Marsh, K.B.; Winz, R.A.; Harker, R.F.; Wohlers, M.W.; White, A.; Goddard, M.R. Development of a quantitative method for headspace analysis of methylsulfanyl-volatiles from kiwifruit tissue. Food Res. Int. 2011, 44, 1331–1338. [Google Scholar] [CrossRef]
- Lan, T.; Gao, C.X.; Yuan, Q.Y.; Wang, J.Q.; Zhang, H.X.; Sun, X.Y.; Lei, Y.S.; Ma, T.T. Analysis of the aroma chemical composition of commonly planted kiwifruit cultivars in China. Foods 2021, 10, 1645. [Google Scholar] [CrossRef]
- Du, D.D.; Xu, M.; Wang, J.; Gu, S.; Zhu, L.Y.; Hong, X.Z. Tracing internal quality and aroma of a red-fleshed kiwifruit during ripening by means of GC-MS and E-nose. RSC Advances 2019, 9, 21164–21174. [Google Scholar] [CrossRef] [Green Version]
- Varanasi, V.; Shin, S.B.; Johnson, F.; Mattheis, J.P.; Zhu, Y.M. Differential suppression of ethylene biosynthesis and receptor genes in ‘Golden Delicious’ apple by preharvest and postharvest 1-MCP treatments. Plant Growth Reg. 2013, 32, 585–595. [Google Scholar] [CrossRef]
- Yang, X.T.; Song, J.; Du, L.N.; Forney, C.; Leslie, C.; Sherry, F.; Wismer, P.; Zhang, Z.Q. Ethylene and 1-MCP regulate major volatile biosynthetic pathways in apple fruit. Food Chem. 2016, 194, 325–336. [Google Scholar] [CrossRef] [PubMed]
- Luo, M.L.; Zhou, X.; Hao, Y.; Sun, H.J.; Zhou, Q.; Sun, Y.Y.; Ji, S.J. Methyl jasmonate pretreatment improves aroma quality of cold-stored ’Nanguo’ pears by promoting ester biosynthesis. Food Chem. 2020, 338, 127846. [Google Scholar] [CrossRef] [PubMed]
- Contreras, C.; Schwab, W.; Mayershofer, M.; Gonzalez-Aguero, M.; Defilippi, B.G. Volatile compound and gene expression analyses reveal temporal and spatial production of Lox-derived volatiles in pepino (Solanum muricatum Aiton) Fruit and LOX Specificity. J. Agric. Food Chem. 2017, 65, 6049–6057. [Google Scholar] [CrossRef] [PubMed]
- Zhang, A.D.; Zhang, Q.Y.; Li, J.Z.; Gong, H.S.; Fan, X.G.; Yang, Y.Q.; Liu, X.F.; Yin, X.R. Transcriptome co-expression network analysis identifies key genes and regulators of ripening kiwifruit ester biosynthesis. BMC Plant Biol. 2021, 20, 103. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.F.; Zhang, C.; Cao, S.X.; Wang, X.; Qi, H.Y. The effect of CmLOXs on the production of volatile organic compounds in four aroma types of melon (Cucumis melo). PLoS ONE 2015, 10, e0143567. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Wang, J.W.; Chen, J.Y.; Song, T.; Jiang, Y.G.; Zhang, Y.F.; Wang, L.J.; Li, F.L. Preharvest spraying calcium ameliorated aroma weakening and kept higher aroma-related genes expression level in postharvest ‘Nanguo’ pears after long-term refrigerated storage. Sci. Hortic. 2019, 247, 287–295. [Google Scholar] [CrossRef]
- Harb, J.; Lara, I.; Saleh, O.; Streif, J. Khraiwesh, B. Treatments that suppress ethylene production or ethylene action modify ADH and AAT gene expression and aroma-related enzyme activities in ‘Delbarde Estivale’ apple: Consequences for the aroma profiles of fruit. J. Hortic. Sci. Biotech. 2015, 86, 182–188. [Google Scholar] [CrossRef]
- Xi, W.P.; Zhang, B.; Shen, J.Y.; Sun, C.D.; Xu, C.J.; Chen, K.S. Intermittent warming alleviated the loss of peach fruit aroma-related esters by regulation of AAT during cold storage. Postharvest Biol. Technol. 2012, 74, 42–48. [Google Scholar] [CrossRef]
- Peng, B.; Xu, J.L.; Cai, Z.X.; Zhang, B.B.; Yu, M.L.; Ma, R.J. Different roles of the five alcohol acyltransferases in peach fruit aroma development. J. Am. Soc. Hortic. Sci. 2020, 145, 374–381. [Google Scholar] [CrossRef]
No. | Aroma | Relative Content % | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Control (CK) | 1-Methylcyclopropene (1-MCP) | |||||||||||
0 d | 2 d | 4 d | 6 d | 0 d | 2 d | 4 d | 6 d | 8 d | 10 d | 12 d | ||
1 | Ethyl hexanoate | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0.05 ± 0.01 |
2 | Hexyl formate | 0.22 ± 0.13 | 0.28 ± 0.05 | 0.09 ± 0.01 | _ | 0.22 ± 0.13 | 0.38 ± 0.06 | 0.36 ± 0.14 | _ | _ | _ | |
3 | Methyl butyrate | _ | _ | 0.26 ± 0.021 | 4.19 ± 0.82 | _ | _ | _ | _ | _ | _ | 0.695 ± 0.01 |
4 | Ethyl butyrate | _ | _ | 1.07 ± 0.107 | 24.39 ± 1.04 | _ | _ | 0.67 ± 0.01 | 0.08 | 0.41 ± 0.01 | 2.44 ± 0.15 | 16.71 ± 1.01 |
5 | Butyl butyrate | _ | _ | 0.083 ± 0.017 | 4.08 ± 0.058 | _ | _ | _ | _ | _ | _ | _ |
6 | Propyl butyrate | _ | _ | _ | 0.13 ± 0.01 | _ | _ | _ | _ | _ | _ | _ |
7 | Propyl-2-methyl butyrate | _ | _ | _ | 0.13 ± 0.005 | _ | _ | _ | _ | _ | _ | _ |
8 | Methyl benzoate | _ | _ | _ | 0.15 ± 0.07 | _ | _ | _ | _ | _ | _ | _ |
9 | Ethyl benzoate | _ | _ | _ | 0.31 ± 0.14 | _ | _ | _ | _ | _ | _ | 0.12 ± 0.01 |
10 | Butyl benzoate | _ | _ | _ | 0.07 ± 0.02 | _ | _ | _ | _ | _ | _ | _ |
11 | P-tolyl isobutyrate | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0.07 ± 0.05 |
12 | Ethanol | 0.1 ± 0.001 | 0.09 ± 0.001 | 0.16 ± 0.05 | 0.54 ± 0.03 | 0.1 ± 0.001 | _ | _ | _ | _ | _ | 0.61 ± 0.17 |
13 | (Z)-3-Hexenol | 0.04 ± 0.01 | _ | _ | _ | 0.04 ± 0.01 | _ | _ | _ | _ | _ | _ |
14 | (E)-2-Hexenol | 0.02 | 0.46 ± 0.07 | 0.22 ± 0.024 | _ | 0.02 | 0.565 ± 0.08 | 0.37 ± 0.07 | 0.15 ± 0.01 | 0.06 ± 0.01 | 0.165 ± 0.04 | 0.06 ± 0.01 |
15 | (Z)-4-Hexenol | _ | _ | _ | _ | _ | 0.06 ± 0.01 | _ | _ | _ | _ | _ |
16 | Hexanal | 0.87 ± 0.01 | 3.57 ± 0.11 | 3.12 ± 0.02 | 0.72 ± 0.054 | 0.87 ± 0.01 | 1.06 ± 0.11 | 2.72 ± 0.46 | 2.97 ± 0.10 | 1.942 ± 0.03 | 1.775 ± 0.34 | 1.525 ± 0.36 |
17 | (E)-2-Hexenal | 1.89 ± 0.2 | 6.96 ± 0.46 | 4.39 ± 0.181 | 2.06 ± 0.22 | 1.89 ± 0.2 | 2.84 ± 0.05 | 4.64 ± 0.84 | 6.04 ± 0.30 | 5.58 ± 0.28 | 4.27 ± 0.87 | 3.55 ± 1.08 |
18 | (Z)-3-Hexenal | _ | 0.085 ± 0.005 | 0.06 ± 0.01 | _ | _ | _ | 0.04 | 0.1 ± 0.02 | 0.1 ± 0.03 | 0.06 | _ |
19 | 2,2-dimethyl-4-penteneal | _ | _ | _ | _ | _ | _ | _ | _ | 0.02 | _ | _ |
20 | 2 (5H) Furoate | 0.36 ± 0.01 | 0.57 ± 0.005 | _ | 0.12 ± 0.05 | 0.36 ± 0.01 | _ | 0.38 ± 0.01 | 0.43 ± 0.1 | _ | _ | 0.56 ± 0.01 |
21 | (+)-4-Carene | _ | _ | _ | _ | _ | 0.065 ± 0.01 | _ | _ | _ | _ | _ |
22 | trans-Linalool oxide (furanoid) | _ | _ | 0.49 ± 0.01 | _ | _ | _ | _ | _ | _ | 0.24 ± 0.01 | _ |
23 | Cyclopentane, 1,1-dimethyl | _ | _ | _ | _ | _ | 0.035 ± 0.01 | _ | _ | _ | _ |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Q.; An, X.; Xiang, M.; Chen, X.; Luo, Z.; Fu, Y.; Chen, M.; Chen, J. Effects of 1-MCP on the Physiological Attributes, Volatile Components and Ester-Biosynthesis-Related Gene Expression during Storage of ‘Jinyan’ Kiwifruit. Horticulturae 2021, 7, 381. https://doi.org/10.3390/horticulturae7100381
Wang Q, An X, Xiang M, Chen X, Luo Z, Fu Y, Chen M, Chen J. Effects of 1-MCP on the Physiological Attributes, Volatile Components and Ester-Biosynthesis-Related Gene Expression during Storage of ‘Jinyan’ Kiwifruit. Horticulturae. 2021; 7(10):381. https://doi.org/10.3390/horticulturae7100381
Chicago/Turabian StyleWang, Qiang, Xiaoxia An, Miaolian Xiang, Xiu Chen, Zhenyu Luo, Yongqi Fu, Ming Chen, and Jinyin Chen. 2021. "Effects of 1-MCP on the Physiological Attributes, Volatile Components and Ester-Biosynthesis-Related Gene Expression during Storage of ‘Jinyan’ Kiwifruit" Horticulturae 7, no. 10: 381. https://doi.org/10.3390/horticulturae7100381
APA StyleWang, Q., An, X., Xiang, M., Chen, X., Luo, Z., Fu, Y., Chen, M., & Chen, J. (2021). Effects of 1-MCP on the Physiological Attributes, Volatile Components and Ester-Biosynthesis-Related Gene Expression during Storage of ‘Jinyan’ Kiwifruit. Horticulturae, 7(10), 381. https://doi.org/10.3390/horticulturae7100381