Volatile Profiles of Vidal Grapes in the Shangri-La High-Altitude Region during On-Vine Non-Destructive Dehydration
Abstract
:1. Introduction
2. Materials and Methods
2.1. Vineyard and Sampling Information
2.2. Physicochemical Parameters Analysis
2.3. Free and Bound Volatile Compounds Analysis
2.3.1. Extraction of Free and Bound Volatile Compounds
2.3.2. HS-SPME Conditions
2.3.3. GC-MS Analysis
2.3.4. Identification and Quantification of Volatile Compounds
2.4. Data Processing and Statistical Analysis
3. Results and Discussion
3.1. Physicochemical Parameters
3.2. Volatile Profiles of Vidal Grapes in Weixi Region after On-Vine Dehydration (T5)
3.2.1. FADs
3.2.2. AADs
3.2.3. IPDs
3.3. Evolution of the Volatile Compounds during Dehydration
3.3.1. Volatile Compounds Evolution Expressed as μg/L
3.3.2. Volatile Compounds Evolution Expressed as ng/berry
3.4. Screening of Volatiles Mainly Effected by Dehydration Concentration
3.5. Identification of Key Parameters at Different Dehydration Degree
3.6. Further Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hjelmeland, A.K.; Ebeler, S.E. Glycosidically Bound Volatile Aroma Compounds in Grapes and Wine: A Review. Am. J. Enol. Vitic. 2015, 66, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, V.; Lopez, R. The Actual and Potential Aroma of Winemaking Grapes. Biomolecules 2019, 9, 818. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gonzalez-Barreiro, C.; Rial-Otero, R.; Cancho-Grande, B.; Simal-Gandara, J. Wine Aroma Compounds in Grapes: A Critical Review. Crit. Rev. Food Sci. Nutr. 2015, 55, 202–218. [Google Scholar] [CrossRef] [PubMed]
- Robinson, A.L.; Boss, P.K.; Solomon, P.S.; Trengove, R.D.; Heymann, H.; Ebeler, S.E. Origins of Grape and Wine Aroma. Part 1. Chemical Components and Viticultural Impacts. Am. J. Enol. Vitic. 2014, 65, 1–24. [Google Scholar] [CrossRef] [Green Version]
- Wei, X.-F.; Ma, X.-L.; Cao, J.-H.; Sun, X.-Y.; Fang, Y.-L. Aroma Characteristics and Volatile Compounds of Distilled Crystal Grape Spirits of Different Alcohol Concentrations: Wine Sprits in the Shangri-La Region of China. Food Sci. Technol. 2018, 38, 50–58. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Pan, Q.-H.; Jin, Z.-M.; Mu, L.; Duan, C.-Q. Comparison on Phenolic Compounds in Vitis Vinifera Cv. Cabernet Sauvignon Wines from Five Wine-Growing Regions in China. Food Chem. 2011, 125, 77–83. [Google Scholar] [CrossRef]
- Wang, X.Q.; Xie, X.L.; Chen, N.; Wang, H.; Li, H. Study on Current Status and Climatic Characteristics of Wine Regions in China. Vitis 2018, 57, 9–16. [Google Scholar] [CrossRef]
- Zhao, P.; Gao, J.; Qian, M.; Li, H. Characterization of the Key Aroma Compounds in Chinese Syrah Wine by Gas Chromatography-Olfactometry-Mass Spectrometry and Aroma Reconstitution Studies. Molecules 2017, 22, 1045. [Google Scholar] [CrossRef]
- Genovese, A.; Gambuti, A.; Piombino, P.; Moio, L. Sensory Properties and Aroma Compounds of Sweet Fiano Wine. Food Chem. 2007, 103, 1228–1236. [Google Scholar] [CrossRef]
- Mencarelli, F.; Tonutti, P. Sweet, Reinforced and Fortified Wines: Grape Biochemistry, Technology and Vinification; John Wiley & Sons: Chichester, UK, 2013. [Google Scholar]
- Noguerol-Pato, R.; Gonzalez-Alvarez, M.; Gonzalez-Barreiro, C.; Cancho-Grande, B.; Simal-Gandara, J. Evolution of the Aromatic Profile in Garnacha Tintorera Grapes During Raisining and Comparison with That of the Naturally Sweet Wine Obtained. Food Chem. 2013, 139, 1052–1061. [Google Scholar] [CrossRef]
- Jackson, R.S. Wine Science—Principles and Applications, 3rd ed.; Elsevier: London, UK, 2008. [Google Scholar]
- Giacosa, S.; Giordano, M.; Vilanova, M.; Cagnasso, E.; Segade, S.R.; Rolle, L. On-Vine Withering Process of ‘Moscato Bianco’ Grapes: Effect of Cane-Cut System on Volatile Composition. J. Sci. Food Agric. 2018, 99, 1135–1144. [Google Scholar] [CrossRef] [PubMed]
- Bellincontro, A.; De Santis, D.; Botondi, R.; Villa, I.; Mencarelli, F. Different Postharvest Dehydration Rates Affect Quality Characteristics and Volatile Compounds of Malvasia, Trebbiano and Sangiovese Grapes for Wine Production. J. Sci. Food Agric. 2004, 84, 1791–1800. [Google Scholar] [CrossRef]
- Javed, H.U.; Wang, D.; Wu, G.F.; Kaleem, Q.M.; Duan, C.Q.; Shi, Y. Post-Storage Changes of Volatile Compounds in Air- and Sun-Dried Raisins with Different Packaging Materials Using Hs-Spme with Gc/Ms. Food Res. Int. 2019, 119, 23–33. [Google Scholar] [CrossRef] [PubMed]
- Cirilli, M.; Bellincontro, A.; De Santis, D.; Botondi, R.; Colao, M.C.; Muleo, R.; Mencarelli, F. Temperature and Water Loss Affect ADH Activity and Gene Expression in Grape Berry During Postharvest Dehydration. Food Chem. 2012, 132, 447–454. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.; Zhang, L.; Qiu, S.; Wu, X.G.; Li, J.M.; Ma, L.Y. Freeze-Thaw Cycles Characterize Varietal Aroma of Vidal Blanc Grape During Late Harvest by Shaping Self-Assembled Microeukaryotic Communities. Food Chem. 2022, 384, 132553. [Google Scholar] [CrossRef]
- Franco, M.; Peinado, R.A.; Medina, M.; Moreno, J. Off-Vine Grape Drying Effect on Volatile Compounds and Aromatic Series in Must from Pedro Ximenez Grape Variety. J. Agric. Food Chem. 2004, 52, 3905–3910. [Google Scholar] [CrossRef]
- Lan, Y.-B.; Qian, X.; Yang, Z.-J.; Xiang, X.-F.; Yang, W.-X.; Liu, T.; Zhu, B.-Q.; Pan, Q.-H.; Duan, C.-Q. Striking Changes in Volatile Profiles at Sub-Zero Temperatures During over-Ripening of ‘Beibinghong’ Grapes in Northeastern China. Food Chem. 2016, 212, 172–182. [Google Scholar] [CrossRef]
- Costantini, V.; Bellincontro, A.; De Santis, D.; Botondi, R.; Mencarelli, F. Metabolic Changes of Malvasia Grapes for Wine Production During Postharvest Drying. J. Agric. Food Chem. 2006, 54, 3334–3340. [Google Scholar] [CrossRef]
- Ma, Y.; Xu, Y.; Tang, K. Aroma of Icewine: A Review on How Environmental, Viticultural, and Oenological Factors Affect the Aroma of Icewine. J. Agric. Food Chem. 2021, 69, 6943–6957. [Google Scholar] [CrossRef]
- GB/T15038-2006; Analytical Methods of Wine and Fruit Wine (State Administration for Market Regulation of China). China Standard Press: Beijing, China, 2006.
- Ruiz, M.J.; Zea, L.; Moyano, L.; Medina, M. Aroma Active Compounds During the Drying of Grapes Cv. Pedro Ximenez Destined to the Production of Sweet Sherry Wine. Eur. Food Res. Technol. 2010, 230, 429–435. [Google Scholar] [CrossRef]
- Reboredo-Rodríguez, P.; González-Barreiro, C.; Rial-Otero, R.; Cancho-Grande, B.; Simal-Gándara, J. Effects of Sugar Concentration Processes in Grapes and Wine Aging on Aroma Compounds of Sweet Wines-a Review. Crit. Rev. Food Sci. Nutr. 2015, 55, 1053–1073. [Google Scholar] [CrossRef] [PubMed]
- Bowen, A.J.; Reynolds, A.G. Aroma Compounds in Ontario Vidal and Riesling Icewines. I. Effects of Harvest Date. Food Res. Int. 2015, 76, 540–549. [Google Scholar] [CrossRef]
- Chkaiban, L.; Botondi, R.; Bellicontro, A.; De Santis, D.; Kefalas, P.; Mencarelli, F. Influence of Postharvest Water Stress on Lipoxygenase and Alcohol Dehydrogenase Activities, and on the Composition of Some Volatile Compounds of Gewurztraminer Grapes Dehydrated under Controlled and Uncontrolled Thermohygrometric Conditions. Aust. J. Grape Wine Res. 2007, 13, 142–149. [Google Scholar] [CrossRef]
- Pan, Q.-H.; Chen, F.; Zhu, B.-Q.; Ma, L.-Y.; Li, L.; Li, J.-M. Molecular Cloning and Expression of Gene Encoding Aromatic Amino Acid Decarboxylase in ‘Vidal Blanc’ Grape Berries. Mol. Biol. Rep. 2012, 39, 4319–4325. [Google Scholar] [CrossRef] [PubMed]
- van Gemert, L.J. Odour Thresholds Compilations of Odour Threshold Values in Air, Water and Other Media, 2nd ed.; Oliemans, Punter & Partners BV: Zeist, The Netherlands, 2011. [Google Scholar]
- Zhu, J.-C.; Chen, F.; Wang, L.-Y.; Niu, Y.-W.; Xiao, Z.-B. Evaluation of the Synergism among Volatile Compounds in Oolong Tea Infusion by Odour Threshold with Sensory Analysis and E-Nose. Food Chem. 2017, 221, 1484–1490. [Google Scholar] [CrossRef]
- Chou, H.C.; Suklje, K.; Antalick, G.; Schmidtke, L.M.; Blackman, J.W. Late-Season Shiraz Berry Dehydration That Alters Composition and Sensory Traits of Wine. J. Agric. Food Chem. 2018, 66, 7750–7757. [Google Scholar] [CrossRef]
- Chen, K.; Wen, J.F.; Ma, L.Y.; Wen, H.C.; Li, J.M. Dynamic Changes in Norisoprenoids and Phenylalanine-Derived Volatiles in Off-Vine Vidal Blanc Grape During Late Harvest. Food Chem. 2019, 289, 645–656. [Google Scholar] [CrossRef]
- Simonato, B.; Lorenzini, M.; Cipriani, M.; Finato, F.; Zapparoli, G. Correlating Noble Rot Infection of Garganega Withered Grapes with Key Molecules and Odorants of Botrytized Passito Wine. Foods 2019, 8, 642. [Google Scholar] [CrossRef] [Green Version]
- Negri, S.; Lovato, A.; Boscaini, F.; Salvetti, E.; Torriani, S.; Commisso, M.; Danzi, R.; Ugliano, M.; Polverari, A.; Tornielli, G.B.; et al. The Induction of Noble Rot (Botrytis cinerea) Infection During Postharvest Withering Changes the Metabolome of Grapevine Berries (Vitis vinifera L., Cv. Garganega). Front. Plant Sci. 2017, 8, 12. [Google Scholar] [CrossRef]
- Tosi, E.; Fedrizzi, B.; Azzolini, M.; Finato, F.; Simonato, B.; Zapparoli, G. Effects of Noble Rot on Must Composition and Aroma Profile of Amarone Wine Produced by the Traditional Grape Withering Protocol. Food Chem. 2012, 130, 370–375. [Google Scholar] [CrossRef]
- D’Onofrio, C.; Matarese, F.; Scalabrelli, G.; Boss, P.K. Functional Characterization of Terpene Synthases of ‘Aromatic’ and ‘Non-Aromatic’ Grapevine Cultivars. In Proceedings of the X International Conference on Grapevine Breeding and Genetics, Geneva, NY, USA, 1–5 August 2010; pp. 557–563. [Google Scholar]
- Segade, S.R.; Vilanova, M.; Giacosa, S.; Perrone, I.; Chitarra, W.; Pollon, M.; Torchio, F.; Boccacci, P.; Gambino, G.; Gerbi, V.; et al. Ozone Improves the Aromatic Fingerprint of White Grapes. Sci. Rep. 2017, 7, 16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Torchio, F.; Giacosa, S.; Vilanova, M.; Segade, S.R.; Gerbi, V.; Giordano, M.; Rolle, L. Use of Response Surface Methodology for the Assessment of Changes in the Volatile Composition of Moscato Bianco (Vitis vinifera L.) Grape Berries During Ripening. Food Chem. 2016, 212, 576–584. [Google Scholar] [CrossRef] [PubMed]
- D’Onofrio, C.; Matarese, F.; Cuzzola, A. Study of the Terpene Profile at Harvest and During Berry Development of Vitis Vinifera L. Aromatic Varieties Aleatico, Brachetto, Malvasia Di Candia Aromatica and Moscato Bianco. J. Sci. Food Agric. 2017, 97, 2898–2907. [Google Scholar] [CrossRef]
- Crespo, J.; Rigou, P.; Romero, V.; García, M.; Arroyo, T.; Cabellos, J.M. Effect of Seasonal Climate Fluctuations on the Evolution of Glycoconjugates During the Ripening Period of Grapevine Cv. Muscat à Petits Grains Blancs Berries. J. Sci. Food Agric. 2018, 98, 1803–1812. [Google Scholar] [CrossRef]
- Mendes-Pinto, M.M. Carotenoid Breakdown Products the-Norisoprenoids-in Wine Aroma. Arch. Biochem. Biophys. 2009, 483, 236–245. [Google Scholar] [CrossRef] [PubMed]
- Feng, H.; Yuan, F.; Skinkis, P.A.; Qian, M.C. Influence of Cluster Zone Leaf Removal on Pinot Noir Grape Chemical and Volatile Composition. Food Chem. 2015, 173, 414–423. [Google Scholar] [CrossRef] [PubMed]
- Darriet, P.; Pons, M.; Henry, R.; Dumont, O.; Findeling, V.; Cartolaro, P.; Calonnec, A.; Dubourdieu, D. Impact Odorants Contributing to the Fungus Type Aroma from Grape Berries Contaminated by Powdery Mildew (Uncinula necator); Incidence of Enzymatic Activities of the Yeast Saccharomyces Cerevisiae. J. Agric. Food Chem. 2002, 50, 3277–3282. [Google Scholar] [CrossRef]
- Bylesjö, M.; Rantalainen, M.; Cloarec, O.; Nicholson, J.K.; Holmes, E.; Trygg, J. OPLS Discriminant Analysis: Combining the Strengths of PLS-DA and Simca Classification. J. Chemom. 2006, 20, 341–351. [Google Scholar] [CrossRef]
- Triba, M.N.; Le Moyec, L.; Amathieu, R.; Goossens, C.; Bouchemal, N.; Nahon, P.; Rutledge, D.N.; Savarin, P. PLS/OPLS Models in Metabolomics: The Impact of Permutation of Dataset Rows on the K-Fold Cross-Validation Quality Parameters. Mol. Biosyst. 2015, 11, 13–19. [Google Scholar] [CrossRef]
- Wang, X.-Y.; Wang, H.-L.; Zhang, G.-J.; Yan, A.-L.; Ren, J.-C.; Liu, Z.-H.; Xu, H.-Y.; Sun, L. Effects of Fruit Bagging Treatment with Different Types of Bags on the Contents of Phenolics and Monoterpenes in Muscat-Flavored Table Grapes. Horticulturae 2022, 8, 411. [Google Scholar] [CrossRef]
- Zhao, Q.; Xi, J.; Xu, D.; Jin, Y.; Wu, F.; Tong, Q.; Xu, X. Effect of Optimal-Water Boiling Cooking on the Volatile Compounds in 26 Japonica Rice Varieties from China. Food Res. Int. 2022, 155, 111078. [Google Scholar] [CrossRef] [PubMed]
- Santos, H.; Augusto, C.; Reis, P.; Rego, C.; Figueiredo, A.C.; Fortes, A.M. Volatile Metabolism of Wine Grape Trincadeira: Impact of Infection with Botrytis Cinerea. Plants 2022, 11, 141. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Wu, Y.; Zhu, H.; Zhang, H.; Xu, J.; Fu, Q.; Bao, M.; Zhang, J. Headspace Volatiles and Endogenous Extracts of Prunus Mume Cultivars with Different Aroma Types. Molecules 2021, 26, 7256. [Google Scholar] [CrossRef] [PubMed]
- Nan, L.; Liu, L.; Li, Y.; Huang, J.; Wang, Y.; Wang, C.; Wang, Z.; Xu, C. Comparison of Aroma Compounds in Cabernet Sauvignon Red Wines from Five Growing Regions in Xinjiang in China. J. Food Qual. 2021, 2021, 5562518. [Google Scholar] [CrossRef]
- de Macêdo Morais, S.; de Sousa GalvÃO, M.; de Carvalho, L.M.; Olegario, L.S.; Pereira, G.E.; de Andrade Lima, L.L.; da Silva, F.L.H.; Madruga, M.S. Potential Typicality Marker of Volatile Composition of Commercial Sparkling Wines from the Caatinga Biome. Food Anal. Method. 2022. [Google Scholar] [CrossRef]
- Zhao, L.; Ruan, S.; Yang, X.; Chen, Q.; Shi, K.; Lu, K.; He, L.; Liu, S.; Song, Y. Characterization of Volatile Aroma Compounds in Litchi (Heiye) Wine and Distilled Spirit. Food Sci. Nutr. 2021, 9, 5914–5927. [Google Scholar] [CrossRef]
- Amorim, C.; Alves Filho, E.G.; Rodrigues, T.H.S.; Bender, R.J.; Canuto, K.M.; Garruti, D.S.; Antoniolli, L.R. Volatile Compounds Associated to the Loss of Astringency in ‘Rama Forte’ Persimmon Fruit. Food Res. Int. 2020, 136, 109570. [Google Scholar] [CrossRef]
- Liu, J.; Liu, M.; Ye, P.; Lin, F.; Huang, J.; Wang, H.; Zhou, R.; Zhang, S.; Zhou, J.; Cai, L. Characterization of Major Properties and Aroma Profile of Kiwi Wine Co-Cultured by Saccharomyces Yeast (S. Cerevisiae, S. Bayanus, S. Uvarum) and T. Delbrueckii. Eur. Food Res. Technol. 2020, 246, 807–820. [Google Scholar] [CrossRef]
- Gao, H.; Li, P.; Xu, X.; Zeng, Q.; Guan, W. Research on Volatile Organic Compounds from Bacillus Subtilis Cf-3: Biocontrol Effects on Fruit Fungal Pathogens and Dynamic Changes During Fermentation. Front. Microbiol. 2018, 9, 456. [Google Scholar] [CrossRef] [Green Version]
- Ali, A.; Chong, C.H.; Mah, S.H.; Abdullah, L.C.; Choong, T.S.Y.; Chua, B.L. Impact of Storage Conditions on the Stability of Predominant Phenolic Constituents and Antioxidant Activity of Dried Piper Betle Extracts. Molecules 2018, 23, 484. [Google Scholar] [CrossRef]
- Zhao, F.; Wang, P.; Lucardi, R.D.; Su, Z.; Li, S. Natural Sources and Bioactivities of 2,4-Di-Tert-Butylphenol and Its Analogs. Toxins 2020, 12, 35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, P.; Li, P.; Wu, S.; Zhou, M.; Zhi, R.; Gao, H. Volatile Organic Compounds (VOCs) from Bacillus Subtilis Cf-3 Reduce Anthracnose and Elicit Active Defense Responses in Harvested Litchi Fruits. AMB Express 2019, 9, 119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, S.; Wang, P.; Yuan, W.; Su, Z.; Bullard, S.H. Endocidal Regulation of Secondary Metabolites in the Producing Organisms. Sci. Rep. 2016, 6, 29315. [Google Scholar] [CrossRef] [Green Version]
- Ge, Q.; Guo, C.; Yan, Y.; Sun, X.; Ma, T.; Zhang, J.; Li, C.; Gou, C.; Yue, T.; Yuan, Y. Contribution of Non-Saccharomyces Yeasts to Aroma-Active Compound Production, Phenolic Composition and Sensory Profile in Chinese Vidal Icewine. Food Biosci. 2022, 46, 101152. [Google Scholar] [CrossRef]
- Huang, L.; Ma, Y.; Tian, X.; Li, J.M.; Li, L.X.; Tang, K.; Xu, Y. Chemosensory Characteristics of Regional Vidal Icewines from China and Canada. Food Chem. 2018, 261, 66–74. [Google Scholar] [CrossRef] [PubMed]
- Blanco-Ulate, B.; Amrine, K.C.H.; Collins, T.S.; Rivero, R.M.; Vicente, A.R.; Morales-Cruz, A.; Doyle, C.L.; Ye, Z.; Allen, G.; Heymann, H.; et al. Developmental and Metabolic Plasticity of White-Skinned Grape Berries in Response to Botrytis Cinerea During Noble Rot. Plant Physiol. 2015, 169, 2422–2443. [Google Scholar] [CrossRef] [Green Version]
- Furdikova, K.; Machynakova, A.; Drtilova, T.; Klempova, T.; Durcanska, K.; Spanik, I. Comparison of Volatiles in Noble-Rotten and Healthy Grape Berries of Tokaj. Lwt-Food Sci. Technol. 2019, 105, 37–47. [Google Scholar] [CrossRef]
- Lopez Pinar, A.; Rauhut, D.; Ruehl, E.; Buettner, A. Effects of Botrytis Cinerea and Erysiphe Necator Fungi on the Aroma Character of Grape Must: A Comparative Approach. Food Chem. 2016, 207, 251–260. [Google Scholar] [CrossRef]
Compounds | CAS | RI Calculated | RI in Literatures | Quantitative Ion (m/z) | Identification * | Purity of Standards | Manufacturers of Standards | Quantitative Standards | Calibration Curves | R2 |
---|---|---|---|---|---|---|---|---|---|---|
Ethanol | 64-17-5 | 944 | 943 | 31 | A | 99% | Sigma–Aldrich | A ** | Y = 0.1135 × X − 0.0016 | 0.9982 |
Acetaldehyde | 75-07-0 | 714 | 714 | 29 | A | 99% | Sigma–Aldrich | A | Y = 1.3283 × X − 0.0314 | 0.9989 |
Acetic acid | 64-19-7 | 1477 | 1476 | 43 | A | 99% | Sigma–Aldrich | A | Y = 1.5206 × X − 0.0363 | 0.9966 |
Ethyl Acetate | 141-78-6 | 898 | 896 | 43 | A | 99% | Sigma–Aldrich | A | Y = 9.598 × X − 0.0131 | 0.9996 |
Hexanol | 111-27-3 | 1359 | 1356 | 56 | A | 98% | Sigma–Aldrich | A | Y = 2.3556 × X + 0.0017 | 0.9998 |
trans-3-Hexenol | 928-97-2 | 1371 | 1372 | 41 | A | 97% | Sigma–Aldrich | A | Y = 0.8062 × X − 0.0002 | 0.9983 |
cis-3-Hexenol | 928-96-1 | 1393 | 1393 | 67 | A | 98% | Sigma–Aldrich | A | Y = 0.5711 × X − 0.0015 | 0.9998 |
trans-2-Hexenol | 928-95-0 | 1411 | 1412 | 57 | A | 97% | Sigma–Aldrich | A | Y = 1.1561 × X + 0.005 | 0.9991 |
cis-2-Hexenol | 928-94-9 | 1421 | 1418 | 57 | B | trans-2-Hexenol | Y = 1.1561 × X + 0.005 | 0.9991 | ||
Nonyl alcohol | 143-08-8 | 1668 | 1664 | 56 | B | Octanol | Y = 0.16169 × X − 0.027 | 0.9957 | ||
cis-6-Nonenol | 35854-86-5 | 1694 | 1696 | 55 | B | Octanol | Y = 0.16169 × X − 0.027 | 0.9957 | ||
Butanol | 71-36-3 | 1148 | 1147 | 56 | A | 99% | Sigma–Aldrich | A | Y = 0.1135 × X − 0.0016 | 0.9982 |
Pentanol | 71-41-0 | 1255 | 1259 | 55 | A | 99% | Sigma–Aldrich | A | Y = 0.457 × X − 0.0001 | 0.9998 |
Heptanol | 111-70-6 | 1463 | 1463 | 70 | A | 98% | Sigma–Aldrich | A | Y = 7.3243 × X − 0.008 | 0.9995 |
Octanol | 111-87-5 | 1564 | 1562 | 56 | A | 99% | Sigma–Aldrich | A | Y = 0.16169 × X − 0.027 | 0.9957 |
Decanol | 112-30-1 | 1769 | 1766 | 70 | A | 99% | Sigma–Aldrich | A | Y = 0.0025 × X + 0.0004 | 0.9761 |
Hexanal | 66-25-1 | 1086 | 1084 | 56 | A | 98% | Sigma–Aldrich | A | Y = 1.3283 × X − 0.0314 | 0.9989 |
trans-2-Hexenal | 6728-26-3 | 1230 | 1231 | 55 | B | Hexanal | Y = 0.7147 × X + 0.0047 | 0.9986 | ||
Nonanal | 124-19-6 | 1402 | 1402 | 57 | A | 95% | Sigma–Aldrich | A | Y = 2.0585 × X + 0.0018 | 0.9881 |
Heptanal | 111-71-7 | 1189 | 1186 | 70 | B | Nonanal | Y = 1.3283 × X − 0.0314 | 0.9989 | ||
trans-2-Heptenal | 18829-55-5 | 1335 | 1336 | 83 | B | Nonanal | Y = 1.3283 × X − 0.0314 | 0.9989 | ||
Decanal | 112-31-2 | 1509 | 1506 | 57 | B | Nonanal | Y = 1.3283 × X − 0.0315 | 0.9989 | ||
Hexanoic acid | 142-62-1 | 1869 | 1869 | 60 | A | 99% | Sigma–Aldrich | A | Y = 1.5206 × X − 0.0363 | 0.9966 |
Ethyl butanoate | 105-54-4 | 1041 | 1039 | 71 | A | 99% | Sigma–Aldrich | A | Y = 2.7781 × X − 0.001 | 0.9995 |
Butyl acetate | 123-86-4 | 1077 | 1075 | 56 | A | 99% | Sigma–Aldrich | A | Y = 0.3517 × X − 0.1564 | 0.9957 |
Butyl propionate | 590-01-2 | 1146 | 1145 | 57 | A | 99% | Sigma–Aldrich | A | Y = 0.2618 × X − 0.0856 | 0.9957 |
Butyl 2-propenoate | 141-32-2 | 1185 | 1189 | 55 | B | Butyl propionate | Y = 0.2618 × X − 0.0856 | 0.9957 | ||
Ethyl hexanoate | 123-66-0 | 1242 | 1244 | 88 | A | 99% | Sigma–Aldrich | A | Y = 8.4587 × X + 0.0001 | 0.9994 |
Hexyl acetate | 142-92-7 | 1279 | 1282 | 43 | A | 99% | Sigma–Aldrich | A | Y = 0.3564 × X − 0.1254 | 0.9957 |
Propyl octanoate | 624-13-5 | 1526 | 1526 | 145 | A | 98% | Macklin | A | Y = 6.9526 × X + 0.0001 | 0.9996 |
γ-Butyrolactone | 96-48-0 | 1654 | 1652 | 42 | A | 99% | Sigma–Aldrich | A | Y = 9.598 × X − 0.0131 | 0.9996 |
Guaiacol | 90-05-1 | 1882 | 1884 | 109 | A | 99% | Sigma–Aldrich | A | Y = 0.9011 × X + 0.0001 | 0.9914 |
2-Methylphenol | 95-48-7 | 2028 | 2030 | 108 | A | 99% | Sigma–Aldrich | A | Y = 1.2188 × X − 0.0007 | 0.9938 |
Phenol | 108-95-2 | 2033 | 2032 | 94 | A | 99% | Sigma–Aldrich | A | Y = 1.2188 × X − 0.0007 | 0.9938 |
4-Ethyl guaiacol | 2785-89-9 | 2052 | 2058 | 137 | A | 98% | Sigma–Aldrich | A | Y = 0.9001 × X − 0.0001 | 0.9914 |
3-Methylphenol | 108-39-4 | 2113 | 2112 | 108 | B | 4-Methylphenol | Y = 1.2188 × X − 0.0007 | 0.9938 | ||
4-Methylphenol | 106-44-5 | 2117 | 2121 | 108 | A | 99% | Sigma–Aldrich | A | Y = 1.2188 × X − 0.0007 | 0.9938 |
4-Ethylphenol | 123-07-9 | 2200 | 2196 | 107 | A | 97% | Sigma–Aldrich | A | Y = 0.514 × X − 0.0001 | 0.9954 |
4-Vinylguaiacol | 7786-61-0 | 2221 | 2217 | 150 | A | 98% | Sigma–Aldrich | A | Y = 0.9011 × X − 0.0001 | 0.9914 |
2,4-Di-tert-butylphenol | 96-76-4 | 2328 | 2315 | 191 | A | 99% | Sigma–Aldrich | A | Y = 1.2188 × X − 0.0007 | 0.9938 |
4-Vinylphenol | 2628-17-3 | 2420 | 2417 | 120 | A | 95% | J&K | A | Y = 0.8654 × X − 0.0004 | 0.9938 |
Benzaldehyde | 100-52-7 | 1546 | 1546 | 105 | A | 99% | Sigma–Aldrich | A | Y = 6.9511 × X − 0.0201 | 0.9964 |
4-Methylbenzaldehyde | 104-87-0 | 1639 | 1638 | 120 | B | Benzaldehyde | Y = 6.9511 × X − 0.0201 | 0.9964 | ||
Benzylethylaldehyde | 122-78-1 | 1664 | 1662 | 91 | A | 95% | Sigma–Aldrich | A | Y = 0.937 × X − 0.0001 | 0.9877 |
3,5-Dimethylbenzaldehyde | 5779-95-3 | 1836 | 1837 | 133 | B | Benzaldehyde | Y = 6.9511 × X − 0.0201 | 0.9964 | ||
α-Phenylethanol | 98-85-1 | 1830 | 1827 | 107 | B | β-Phenylethanol | Y = 1.0633 × X − 0.052 | 0.9935 | ||
Benzyl alcohol | 100-51-6 | 1897 | 1896 | 108 | A | 98% | Sigma–Aldrich | A | Y = 0.2772 × X − 0.0014 | 0.9980 |
β-Phenylethanol | 1960/12/8 | 1933 | 1935 | 91 | A | 99% | Sigma–Aldrich | A | Y = 1.0633 × X − 0.052 | 0.9935 |
Styrene | 100-42-5 | 1270 | 1267 | 104 | A | 99% | Sigma–Aldrich | A | Y = 1.3254 × X − 0.6542 | 0.9926 |
p-Cymene | 99-87-6 | 1283 | 1278 | 119 | B | Styrene | Y = 1.3254 × X − 0.6543 | 0.9926 | ||
Naphthalene | 91-20-3 | 1764 | 1763 | 128 | A | 99% | Sigma–Aldrich | A | Y = 1.5624 × X − 0.3541 | 0.9859 |
2-Methylnaphthalene | 91-57-6 | 1876 | 1872 | 142 | B | Naphthalene | Y = 1.5624 × X − 0.3542 | 0.9859 | ||
Methyl salicylate | 119-36-8 | 1798 | 1798 | 120 | A | 99% | Sigma–Aldrich | A | Y = 2.1954 × X − 0.0001 | 0.9967 |
2-Phenethyl acetate | 103-45-7 | 1833 | 1835 | 104 | A | 99% | Sigma–Aldrich | A | Y = 0.0038 × X − 0.0001 | 0.9984 |
2-Methyl-1-propanol | 78-83-1 | 1097 | 1097 | 43 | A | 99% | Sigma–Aldrich | A | Y = 0.1135 × X − 0.0016 | 0.9982 |
2-Methyl-1-butanol | 137-32-6 | 1213 | 1208 | 57 | A | 98% | Sigma–Aldrich | A | Y = 0.6546 × X − 0.0125 | 0.9989 |
3-Methyl-1-butanol | 123-51-3 | 1214 | 1210 | 55 | A | 98% | Sigma–Aldrich | A | Y = 0.4941 × X − 0.0014 | 0.9997 |
3-Methyl-2-butenol | 556-82-1 | 1326 | 1327 | 71 | B | 3-Methyl-1-butanol | Y = 0.4941 × X − 0.0014 | 0.9997 | ||
4-Methyl-3-pentenol | 763-89-3 | 1395 | 1390 | 69 | B | trans-2-Hexenol | Y = 0.5711 × X − 0.0015 | 0.9998 | ||
3-Octanol | 589-98-0 | 1397 | 1398 | 83 | A | 99% | Sigma–Aldrich | A | Y = 0.3196 × X − 0.0172 | 0.9991 |
2-Octanol | 123-96-6 | 1422 | 1421 | 45 | B | 3-Octanol | Y = 0.3196 × X − 0.0172 | 0.9991 | ||
1-Octen-3-ol | 3391-86-4 | 1457 | 1460 | 57 | A | 98% | Sigma–Aldrich | A | Y = 0.3844 × X − 0.0021 | 0.9994 |
2-Ethyl-1-hexanol | 104-76-7 | 1496 | 1496 | 57 | A | 99% | Sigma–Aldrich | A | Y = 0.5869 × X − 0.0154 | 0.9966 |
trans-2-Heptenol | 33467-76-4 | 1517 | 1517 | 57 | B | Heptanol | Y = 0.3196 × X − 0.0172 | 0.9991 | ||
2-Nonanol | 628-99-9 | 1522 | 1522 | 45 | B | Octanol | Y = 0.0158 × X − 0.0001 | 0.9949 | ||
Isoamyl acetate | 123-92-2 | 1130 | 1132 | 43 | A | 99% | Macklin | A | Y = 9.598 × X − 0.0131 | 0.9996 |
Ethyl 2-methylbutanoate | 7452-79-1 | 1056 | 1056 | 102 | A | 99% | Sigma–Aldrich | A | Y = 2.7781 × X − 0.001 | 0.9995 |
2-Methylbutanal | 96-17-3 | 920 | 920 | 57 | B | Hexanal | Y = 1.3283 × X − 0.0314 | 0.9989 | ||
3-Methylbutanal | 590-86-3 | 924 | 924 | 44 | B | Hexanal | Y = 1.3283 × X − 0.0314 | 0.9989 | ||
β-Myrcene | 123-35-3 | 1162 | 1167 | 93 | B | Limonene | Y = 1.1804 × X − 0.0001 | 0.9947 | ||
α-Terpinene | 99-86-5 | 1187 | 1183 | 121 | A | 95% | Sigma–Aldrich | A | Y = 0.9491 × X − 0.0001 | 0.9963 |
Limonene | 138-86-3 | 1207 | 1195 | 68 | A | 96% | Sigma–Aldrich | A | Y = 1.1804 × X − 0.0001 | 0.9947 |
β-Phellandrene | 555-10-2 | 1216 | 1218 | 93 | B | Limonene | Y = 1.1804 × X − 0.0001 | 0.9947 | ||
β-cis-Ocimene | 3338-55-4 | 1242 | 1252 | 93 | B | Limonene | Y = 1.1804 × X − 0.0001 | 0.9947 | ||
β-trans-Ocimene | 3779-61-1 | 1260 | 1260 | 93 | B | Limonene | Y = 1.1804 × X − 0.0001 | 0.9947 | ||
α-Terpinolene | 586-62-9 | 1291 | 1290 | 121 | B | Limonene | Y = 1.1804 × X − 0.0001 | 0.9947 | ||
cis-Rose oxide | 16409-43-1 | 1360 | 1363 | 139 | A | 99% | Sigma–Aldrich | A | Y = 0.0105 × X − 0.0001 | 0.9964 |
trans-Rose oxide | 876-18-6 | 1376 | 1383 | 139 | B | cis-Rose oxide | Y = 0.0105 × X − 0.0001 | 0.9964 | ||
cis-Allo-ocimene | 673-84-7 | 1383 | 1382 | 121 | B | Limonene | Y = 1.1804 × X − 0.0001 | 0.9947 | ||
trans-Allo-ocimene | 14947-20-7 | 1404 | 1403 | 121 | B | Limonene | Y = 1.1804 × X − 0.0001 | 0.9947 | ||
trans-Linalol furanoxide | 34995-77-2 | 1451 | 1450 | 59 | B | Linalool | Y = 0.0027 × X − 0.0001 | 0.9940 | ||
cis-Linalol furanoxide | 5989-33-3 | 1481 | 1478 | 59 | B | Linalool | Y = 0.0027 × X − 0.0001 | 0.9940 | ||
Nerol oxide | 1786-08-9 | 1482 | 1480 | 68 | B | Nerol | Y = 1.475 × X − 0.0004 | 0.9984 | ||
Linalool | 78-70-6 | 1554 | 1554 | 93 | A | 97% | Sigma–Aldrich | A | Y = 0.0027 × X − 0.0001 | 0.9940 |
Terpinen-4-ol | 562-74-3 | 1615 | 1617 | 71 | A | 95% | Sigma–Aldrich | A | Y = 0.0025 × X − 0.0001 | 0.9962 |
Hotrienol | 29957-43-5 | 1619 | 1616 | 71 | A | A | Y = 0.0027 × X − 0.0001 | 0.9940 | ||
Neral | 106-26-3 | 1698 | 1694 | 69 | B | Nerol | Y = 1.475 × X − 0.0004 | 0.9984 | ||
α-Terpineol | 98-55-5 | 1709 | 1707 | 59 | A | 96% | Sigma–Aldrich | A | Y = 0.0025 × X − 0.0001 | 0.9962 |
Citral | 5392-40-5 | 1748 | 1733 | 69 | B | Nerol | Y = 1.475 × X − 0.0004 | 0.9984 | ||
trans-Pyran linalool oxide | 39028-58-5 | 1752 | 1749 | 68 | B | Linalool | Y = 0.0027 × X − 0.0001 | 0.9940 | ||
Citronellol | 106-22-9 | 1774 | 1772 | 69 | A | 95% | Sigma–Aldrich | A | Y = 0.0026 × X − 0.0001 | 0.9969 |
γ-Isogeraniol | 13066-51-8 | 1797 | 1800 | 69 | B | Geraniol | Y = 0.9871 × X − 0.0004 | 0.9980 | ||
Nerol | 106-25-2 | 1810 | 1808 | 69 | A | 97% | Sigma–Aldrich | A | Y = 1.475 × X − 0.0004 | 0.9984 |
Geraniol | 106-24-1 | 1856 | 1857 | 69 | A | 99% | Sigma–Aldrich | A | Y = 0.9871 × X − 0.0004 | 0.9980 |
6-Methyl-5-hepten-2-one | 110-93-0 | 1347 | 1345 | 108 | B | Nonanal | Y = 2.0585 × X + 0.0018 | 0.9881 | ||
6-Methyl-5-hepten-2-ol | 1569-60-4 | 1469 | 1467 | 95 | B | Octanol | Y = 0.3196 × X − 0.0172 | 0.9991 | ||
α-Cyclogeraniol | 6627-74-3 | 1715 | NA | 123 | C | β-Damascenone | Y = 0.0057 × X − 0.0001 | 0.9990 | ||
β-Damascenone | 23726-93-4 | 1837 | 1838 | 69 | A | 98% | Macklin | A | Y = 0.0057 × X − 0.0001 | 0.9990 |
2-Pentylfuran | 3777-69-3 | 1240 | 1244 | 81 | B | Furfural | Y = 0.846 × X − 0.0041 | 0.9985 | ||
Furfural | 98-01-1 | 1482 | 1482 | 96 | A | 99% | Sigma–Aldrich | A | Y = 0.846 × X − 0.0041 | 0.9985 |
Free | Bound | Total | |||||||
---|---|---|---|---|---|---|---|---|---|
R2 | p-Value | RC * | R2 | p-Value | RC | R2 | p-Value | RC | |
trans-2-Hexenol | 0.954 | 0.004 | −2.087 | ||||||
Pentanol | 0.945 | 0.006 | −0.519 | ||||||
Heptanol | 0.982 | 0.001 | −0.017 | ||||||
Octanol | 0.996 | 0.003 | −0.004 | ||||||
trans-2-Heptenal | 0.943 | 0.006 | −0.009 | ||||||
Propyl octanoate | 0.923 | 0.009 | 0.050 | - ** | - | - | 0.923 | 0.009 | 0.050 |
Benzyl alcohol | 0.980 | 0.001 | −0.551 | ||||||
Methyl salicylate | 0.934 | 0.007 | −0.031 | 0.935 | 0.007 | −0.031 | |||
2-Methyl-1-butanol | 0.963 | 0.003 | −0.834 | 0.923 | 0.009 | −1.450 | |||
3-Methyl-1-butanol | 0.960 | 0.003 | −1.231 | ||||||
1-Octen-3-ol | 0.967 | 0.003 | −0.011 | 0.943 | 0.006 | −0.075 | 0.947 | 0.005 | −0.086 |
2-Methylbutanal | 0.962 | 0.003 | −0.055 | - | - | - | 0.962 | 0.003 | −0.055 |
α-Terpinene | 0.963 | 0.003 | −0.048 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, Q.-F.; Fan, L.; Lu, K.-X.; Zhao, D.-M.; Zhang, M.-X.; Cai, J. Volatile Profiles of Vidal Grapes in the Shangri-La High-Altitude Region during On-Vine Non-Destructive Dehydration. Horticulturae 2022, 8, 1029. https://doi.org/10.3390/horticulturae8111029
Xu Q-F, Fan L, Lu K-X, Zhao D-M, Zhang M-X, Cai J. Volatile Profiles of Vidal Grapes in the Shangri-La High-Altitude Region during On-Vine Non-Destructive Dehydration. Horticulturae. 2022; 8(11):1029. https://doi.org/10.3390/horticulturae8111029
Chicago/Turabian StyleXu, Qing-Fang, Liang Fan, Kai-Xiang Lu, Dong-Mei Zhao, Ming-Xia Zhang, and Jian Cai. 2022. "Volatile Profiles of Vidal Grapes in the Shangri-La High-Altitude Region during On-Vine Non-Destructive Dehydration" Horticulturae 8, no. 11: 1029. https://doi.org/10.3390/horticulturae8111029
APA StyleXu, Q. -F., Fan, L., Lu, K. -X., Zhao, D. -M., Zhang, M. -X., & Cai, J. (2022). Volatile Profiles of Vidal Grapes in the Shangri-La High-Altitude Region during On-Vine Non-Destructive Dehydration. Horticulturae, 8(11), 1029. https://doi.org/10.3390/horticulturae8111029