Cane Girdling Influence on the Berry Texture Properties of Three Table Grape Varieties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material Experiment Site and Experimental Design
2.2. Berry Sampling
2.3. Texture Analysis
2.4. Statistical Analysis
3. Results
3.1. Berry Weight and Berry Quality Parameters
3.2. Texture Quality Parameters
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chironi, S.; Sortino, G.; Allegra, A.; Saletta, F.; Caviglia, V.; Ingrassia, M. Consumer Assessment on Sensory Attributes of Fresh Table Grapes Cv ‘Italia’ and ‘Red Globe’ after Long Cold Storage Treatment. Chem. Eng. Trans. 2017, 58, 421–426. [Google Scholar] [CrossRef]
- 2019 Statistical Report on World Vitiviniculture. 2019. Available online: https://www.oiv.int/public/medias/6782/oiv-2019-statistical-report-on-world-vitiviniculture.pdf (accessed on 15 March 2021).
- Zoffolli, J.P.; Latorre, B.A. Table Grape (Vitis vinifera L.). In Postharvest Biology and Technology of Tropical and Subtropical Fruits; Woodhead Publishing: Cambridge, MA, USA, 2011; pp. 174–214. [Google Scholar]
- Tóth, A.M. Precision canopy management of the grapevine: Early defoliation and girdling. Acta Carolus Robertus 2020, 2020, 107–118. [Google Scholar] [CrossRef]
- Abu-Zahra, T. Berry size of Thompson seedless as influenced by the application of Gibberellic acid and cane girdling. Pak. J. Bot 2010, 42, 1755–1760. [Google Scholar]
- Zabadal, T. Response of ‘Himrod’ Grapevines to Cane Girdling. HortScience 1992, 27, 975–976. [Google Scholar] [CrossRef] [Green Version]
- Basile, T.; Alba, V.; Gentilesco, G.; Savino, M.; Tarricone, L. Anthocyanins pattern variation in relation to thinning and girdling in commercial Sugrathirteen® table grape. Sci. Hortic. 2018, 227, 202–206. [Google Scholar] [CrossRef]
- Goren, R.; Huberman, M.; Goldschmidt, E.E. Girdling: Physiological and Horticultural Aspects. Hortic. Rev. (Am. Soc. Hortic. Sci.) 2010, 30, 1–36. [Google Scholar]
- Dokoozlian, N.; Luvisi, D.A.; Moriyama, M.M.; Schrader, P.L. Cultural practices improve color, size of ‘Crimson Seedless’. Calif. Agric. 1995, 49, 36–40. [Google Scholar] [CrossRef] [Green Version]
- Soltekin, O.; Candemir, A.; Altindisli, A. Effects of cane girdling on yield, fruit quality and maturation of (Vitis vinifera L.) cv. Flame Seedless. BIO Web Conf. 2016, 7, 01032. [Google Scholar] [CrossRef]
- Brar, H.S.; Singh, Z.; Swinny, E.; Cameron, I. Girdling and grapevine leafroll associated viruses affect berry weight, colour development and accumulation of anthocyanins in ‘Crimson Seedless’ grapes during maturation and ripening. Plant Sci. 2008, 175, 885–897. [Google Scholar] [CrossRef]
- Ferrara, G.; Mazzeo, A.; Netti, G.S.; Pacucci, C.; Matarrese, A.M.S.; Cafagna, I.; Mastrorilli, P.; Vezzoso, M.; Gallo, V. Girdling, gibberellic acid, and forchlorfenuron: Effects on yield, quality, and metabolic profile of table grape cv. Italia. Am. J. Enol. Vitic. 2014, 65, 381–387. [Google Scholar] [CrossRef]
- Roper, T.R.; Williams, L.E. Net CO2 Assimilation and Carbohydrate Partitioning of Grapevine Leaves in Response to Trunk Girdling and Gibberellic Acid Application. Plant Phys. 1989, 89, 1136–1140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamane, T.; Shibayama, K. Effects of Trunk Girdling and Crop Load Levels on Fruit Quality and Root Elongation in ‘Aki Queen’ Grapevines. J. Jpn. Soc. Hortic. Sci. 2006, 75, 439–444. [Google Scholar] [CrossRef]
- Koshita, Y.; Yamane, T.; Yakushiji, H.; Azuma, A.; Mitani, N. Regulation of skin color in ‘Aki Queen’ grapes: Interactive effects of temperature, girdling, and leaf shading treatments on coloration and total soluble solids. Sci. Hortic. 2011, 129, 98–101. [Google Scholar] [CrossRef]
- Soltekin, O.; Teker, T.; Erdem, A.; Kaçar, E.; Altindişli, A. Response of ‘Red Globe’ (Vitis vinifera L.) to cane girdling. BIO Web Conf. 2015, 5, 01019. [Google Scholar] [CrossRef] [Green Version]
- Abu-Zahra, T.; Salameh, N. Influence of Gibberellic Acid and Cane Girdling on Berry Size of Black Magic Grape Cultivar. Mid. East J. Sci. Res. 2012, 11, 718–722. [Google Scholar]
- Zhang, X.; Luo, G.; Wang, R.; Wang, J.; Himelrick, D.G. Growth and Developmental Responses of Seeded and Seedless Grape Berries to Shoot Girdling. J. Am. Soc. Hortic. Sci. 2003, 128, 316–323. [Google Scholar] [CrossRef] [Green Version]
- Lukácsy, G.; Villangó, S.; Váradi, G.; Hajdu, E.; Zanathy, G.; Bálo, B.; Zsófi, Z. The effect of cane girdling on berry skin phenolic concentration of three table grape varieties. J. Cent. Eur. Agric. 2021, 22, 341–345. [Google Scholar] [CrossRef]
- Rolle, L.; Giacosa, S.; Gerbi, V.; Novello, V. Comparative Study of Texture Properties, Color Characteristics, and Chemical Composition of Ten White Table-Grape Varieties. Am. J. Enol. Vitic. 2011, 62, 49–56. [Google Scholar] [CrossRef]
- Bernstein, Z.; Lustig, I. A new method of firmness measurement of grape berries and other juicy fruits. Vitis 1981, 20, 15–21. [Google Scholar]
- Sato, A.; Yamada, M. Berry Texture of Table, Wine, and Dual-purpose Grape Cultivars Quantified. HortScience 2003, 38, 578–581. [Google Scholar] [CrossRef] [Green Version]
- Sato, I.; Yamane, H.; Hirakawa, N.; Otobe, K.; Yamada, M. Varietal differences in the texture of grape berries measured by penetration tests. Vitis 1997, 36, 7–10. [Google Scholar]
- Rolle, L.; Segade, S.R.; Torchio, F.; Giacosa, S.; Cagnasso, E.; Marengo, F.; Gerbi, V. Influence of Grape Density and Harvest Date on Changes in Phenolic Composition, Phenol Extractability Indices, and Instrumental Texture Properties during Ripening. J. Agric. Food Chem. 2011, 59, 8796–8805. [Google Scholar] [CrossRef] [PubMed]
- Rolle, L.; Torchio, F.; Giacosa, S.; Segade, S.R. Berry density and size as factors related to the physicochemical characteristics of Muscat Hamburg table grapes (Vitis vinifera L.). Food Chem. 2015, 173, 105–113. [Google Scholar] [CrossRef] [PubMed]
- Zsófi, Z.; Villangó, S.; Pálfi, Z.; Pálfi, X. Combined effect of berry size and postveraison water deficit on grape phenolic maturity and berry texture characteristics (Vitis vinifera L. ‘Portugieser’). VITIS J. Grapevine Res. 2015, 54, 161–168. [Google Scholar] [CrossRef]
- Zsófi, Z.; Villangó, S.; Pálfi, Z.; Pálfi, X. Texture properties and phenol extractability indices of the grape berry under pre-, and post-veraison water deficit (Vitis vinifera L. cv. ‘Kékfrankos’). Vitis 2021, 60, 125–135. [Google Scholar]
- Segade, S.R.; Giacosa, S.; Gerbi, V.; Rolle, L. Berry skin thickness as main texture parameter to predict anthocyanin extractability in winegrapes. LWT Food Sci. Technol. 2011, 44, 392–398. [Google Scholar] [CrossRef]
- Crespan, M.; Migliaro, D.; Vezzulli, S.; Zenoni, S.; Tornielli, G.B.; Giacosa, S.; Paissoni, M.A.; Segade, S.R.; Rolle, L. A Major QTL is associated with berry grape texture characteristics. OENO One 2021, 55, 183–206. [Google Scholar] [CrossRef]
- Gökbayrak, Z.; Keskin, N.; İşçi, B. Effects of cane-girdling and cluster and berry thinning on berry organic acids of four Vitis vinifera L. table grape cultivars. Acta Sci. Pol. Hortorum Cult. 2013, 12, 115–125. [Google Scholar]
- Letaief, H.; Rolle, L.; Gerbi, V. Mechanical behavior of Winegrapes under compression tests. Am. J. Enol. Vitic. 2008, 59, 323–329. [Google Scholar] [CrossRef]
- Letaief, H.; Rolle, L.; Zeppa, G.; Gerbi, V. Assessment of grape skin hardness by a puncture test. J. Sci. Food Agric. 2008, 88, 1567–1575. [Google Scholar] [CrossRef]
- Xi, X.; Zha, Q.; Jiang, A.; Tian, Y. Stimulatory effect of bunch thinning on sugar accumulation and anthocyanin biosynthesis in Shenhua grape berry (Vitis vinifera × V. labrusca). Aust. J. Grape Wine Res. 2018, 24, 158–165. [Google Scholar] [CrossRef]
- Sun, Q.; Sacks, G.; Lerch, S.; Heuvel, J.E.V. Impact of Shoot Thinning and Harvest Date on Yield Components, Fruit Composition, and Wine Quality of Marechal Foch. Am. J. Enol. Vitic. 2011, 62, 32. [Google Scholar] [CrossRef] [Green Version]
- Poni, S.; Casalini, L.; Bernizzoni, F.; Civardi, S.; Intrieri, C. Effects of Early Defoliation on Shoot Photosynthesis, Yield Components, and Grape Composition. Am. J. Enol. Vitic. 2006, 57, 397. Available online: http://www.ajevonline.org/content/57/4/397.abstract (accessed on 7 November 2022). [CrossRef]
- Segade, S.; Giacosa, S.; Torchino, F.; de Palma, L.; Novello, V.; Gerbi, V.; Rolle, L. Impact of different advanced ripening stages on berry texture properties of ‘Red Globe’ and ‘Crimson Seedless’ table grape cultivars (Vitis vinifera L.). Sci. Hortic. 2013, 160, 313–319. [Google Scholar] [CrossRef]
- Rolle, L.; Siret, R.; Segade, S.R.; Maury, C.; Gerbi, V.; Jourjon, F. Instrumental Texture Analysis Parameters as Markers of Table-Grape and Winegrape Quality: A Review. Am. J. Enol. Vitic. 2012, 63, 2012. [Google Scholar] [CrossRef] [Green Version]
- Zsófi, Z.; Villangó, S.; Pálfi, Z.; Tóth, E.; Bálo, B. Texture characteristics of the grape berry skin and seed (Vitis vinifera L. cv. Kékfrankos) under postveraison water deficit. Sci. Hortic. 2014, 172, 176–182. [Google Scholar] [CrossRef]
- Segade, S.R.; Rolle, L.; Gerbi, V.; Orriols, I. Phenolic ripeness assessment of grape skin by texture analysis. J. Food Compos. Anal. 2008, 21, 644–649. [Google Scholar] [CrossRef]
- Nikolaou, N.; Zioziou, E.; Stavrakas, D.; Patakas, A. Effects of ethephon, methanol, ethanol and girdling treatments on berry maturity and colour development in Cardinal table grapes. Aust. J. Grape Wine Res. 2003, 9, 12–14. [Google Scholar] [CrossRef]
- Segade, S.R.; Vázquez, E.S.; Orriols, I.; Giacosa, S.; Rolle, L. Possible use of texture characteristics of winegrapes as markers for zoning and their relationship with anthocyanin extractability index. Int. J. Food Sci. Technol. 2011, 46, 386–394. [Google Scholar] [CrossRef]
- Segade, S.R.; Orriols, I.; Giacosa, S.; Rolle, L. Instrumental Texture Analysis Parameters as Winegrapes Varietal Markers and Ripeness Predictors. Int. J. Food Prop. 2011, 14, 1318–1329. [Google Scholar] [CrossRef]
- Keller, M. The Science of the Grapevines, 1st ed.; Academic Press: Cambridge, MA, USA, 2010. [Google Scholar]
- Düring, H. Untersuchungen zut Umweltabhängigkeit der stomatären Transpiration bei Reben. II: Ringelungs- und Temperatureffekte. Vitis 1978, 17, 1–9. [Google Scholar]
- Ezzahouani, A.; Williams, L.E. The effects of thinning and girdling on leaf water potential, growth and fruit composition of Ruby Seedless grapevines. J. Int. Sci. OENO One 2001, 35, 79–85. [Google Scholar] [CrossRef] [Green Version]
- le Moigne, M.; Maury, C.; Bertrand, D.; Jourjon, F. Sensory and instrumental characterisation of Cabernet Franc grapes according to ripening stages and growing location. Food Qual. Prefer. 2008, 19, 220–231. [Google Scholar] [CrossRef]
- Rolle, L.; Torchio, F.; Zeppa, G.; Gerbi, V. Anthocyanin extractability assessment of grape skins by texture analysis. OENO One 2008, 42, 157–162. [Google Scholar] [CrossRef]
- Roby, G.; Matthews, M.A. Relative proportions of seed, skin and flesh, in ripe berries from Cabernet Sauvignon grapevines grown in a vineyard either well irrigated or under water deficit. Aust. J. Grape Wine Res. 2004, 10, 74–82. [Google Scholar] [CrossRef]
2017 | 2018 | |||||
---|---|---|---|---|---|---|
Áron | Melinda | Muscat Pölöskei | Áron | Melinda | Muscat Pölöskei | |
Total soluble solids (°Bx) | ||||||
C | 17.47 b | 15.8 a | 24.17 a | 19.43 a | 14.20 b | 17.30 b |
G | 20.87 a | 18.10 a | 25.47 a | 20.77 a | 17.5 b | 20.20 b |
p value | <0.001 | <0.001 | 0.26 | <0.01 | <0.0001 | <0.001 |
Berry weight (g) | ||||||
C | 4.212 a | 7.703 a | 3.437 a | 4.274 a | 6.441 b | 3.512 a |
G | 5.718 a | 9.183 a | 4.380 a | 5.155 b | 7.381 b | 4.411 a |
p value | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
2017 | BH (mN) | BCo | BG (N) | BS (mm) | BCh (mJ) | BR | |
---|---|---|---|---|---|---|---|
Áron | C | 956.4 a | 0.5507 a | 518.0 a | 3.660 b | 1911 a | 0.2647 a |
G | 1091 a | 0.4838 a | 513.5 a | 3.836 b | 1971 a | 0.2187 a | |
p value | <0.01 | <0.001 | 0.872 | <0.01 | 0.989 | <0.0001 | |
Melinda | C | 1751 a | 0.3675 a | 636.9 a | 3.852 a | 2469 a | 0.1566 a |
G | 1881 a | 0.4078 a | 766.9 a | 4.033 a | 3109 a | 0.1851 a | |
p value | <0.05 | <0.01 | <0.0001 | <0.01 | <0.0001 | <0.0001 | |
Muscat Pölöskei | C | 820 a | 0.5427 a | 443.3 b | 3.413 b | 1517 b | 0.2449 a |
G | 912.9 a | 0.5272 a | 477.7 a | 3.426 b | 1638 b | 0.2306 a | |
p value | <0.001 | 1.000 | <0.01 | 0.805 | <0.05 | <0.05 | |
2018 | |||||||
Áron | C | 969.6 a | 0.4601 b | 489.3 b | 3.871 a | 1672 b | 0.1977 b |
G | 1047 a | 0.4744 a | 546.2 a | 4.014 a | 1962 a | 0.2075 a | |
p value | <0.05 | 0.683 | <0.01 | <0.01 | <0.01 | 0.999 | |
Melinda | C | 1542 b | 0.4205 b | 643.4 a | 3.874 a | 2502 a | 0.1855 b |
G | 1712 a | 0.4220 a | 713.7 a | 3.865 b | 2756 b | 0.1862 a | |
p value | <0.05 | 0.999 | <0.01 | 1.000 | <0.05 | 0.997 | |
Muscat Pölöskei | C | 866.2 a | 0.5467 a | 471.3 a | 3.548 a | 1673 a | 0.2345 b |
G | 905.7 a | 0.5263 a | 474.3 a | 3.697 a | 1756 a | 0.2242 a | |
p value | 0.827 | <0.05 | 1.000 | <0.001 | 1.000 | <0.05 |
2017 | Fsk (N) | Esk (n/mm) | Wsk (mJ) | |
---|---|---|---|---|
Áron | C | 458.3 a | 0.7119 a | 0.1933 a |
G | 413.3 a | 0.7048 b | 0.1643 a | |
p value | <0.05 | 0.743 | <0.05 | |
Melinda | C | 410.8 a | 1.174 a | 0.0956 b |
G | 391.4 a | 1.126 a | 0.0920 b | |
p value | 0.291 | 0.892 | 0.064 | |
Muscat Pölöskei | C | 556.6 b | 0.6394 a | 0.2490 a |
G | 538.3 a | 0.5918 a | 0.2496 a | |
p value | 0.346 | 0.116 | 0.849 | |
2018 | ||||
Áron | C | 327 b | 0.7138 a | 0.1059 a |
G | 293.7 b | 0.7940 a | 0.0787 a | |
p value | <0.05 | <0.05 | <0.01 | |
Melinda | C | 396.6 a | 0.7808 b | 0.1340 a |
G | 389.1 a | 0.8380 b | 0.1173 a | |
p value | 0.688 | 0.690 | 0.143 | |
Muscat Pölöskei | C | 573.8 a | 0.5859 a | 0.3147 a |
G | 499.2 a | 0.5327 b | 0.2758 a | |
p value | <0.001 | <0.01 | <0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tóth, A.M.; Zsófi, Z.; Veres, S. Cane Girdling Influence on the Berry Texture Properties of Three Table Grape Varieties. Horticulturae 2022, 8, 1101. https://doi.org/10.3390/horticulturae8121101
Tóth AM, Zsófi Z, Veres S. Cane Girdling Influence on the Berry Texture Properties of Three Table Grape Varieties. Horticulturae. 2022; 8(12):1101. https://doi.org/10.3390/horticulturae8121101
Chicago/Turabian StyleTóth, Adrienn Mária, Zsolt Zsófi, and Szilvia Veres. 2022. "Cane Girdling Influence on the Berry Texture Properties of Three Table Grape Varieties" Horticulturae 8, no. 12: 1101. https://doi.org/10.3390/horticulturae8121101
APA StyleTóth, A. M., Zsófi, Z., & Veres, S. (2022). Cane Girdling Influence on the Berry Texture Properties of Three Table Grape Varieties. Horticulturae, 8(12), 1101. https://doi.org/10.3390/horticulturae8121101